Archivo de la etiqueta: variable compleja

Variable Compleja I: Funciones complejas elementales como series de potencias

Por Pedro Rivera Herrera

Introducción

En la entrada 16 abordamos algunas de las funciones elementales en el estudio de la variable compleja. Vimos que todas las funciones de dicha entrada estaban motivadas por la extensión de las funciones reales a $\mathbb{C}$, además de que todas las funciones definidas en dicha entrada estuvieron dadas en términos de la función exponencial compleja, por lo que nos resulta de gran interés estudiar a detalle las propiedades de dicha función y justificar el por qué la definición dada para dicha función realmente extiende a la función exponencial real.

En esta entrada abordaremos de nueva cuenta a algunas de las funciones elementales desde el sentido complejo, pero utilizando series de potencias. Como veremos, esta caracterización nos permitirá entender mejor la analicidad de dichas funciones.

Primeramente consideremos la definición de la función exponencial como una serie de potencias dada en nuestros cursos de cálculo. Si $x \in \mathbb{R}$, entonces:
\begin{equation*}
\operatorname{exp}(x) = e^x = \sum_{n=0}^\infty \frac{x^n}{n!} \tag{31.1}.
\end{equation*}

De acuerdo con la definición 20.1, tenemos que si $z=x+iy\in\mathbb{C}$, entonces la función exponencial compleja está dada por:
\begin{equation*}
\operatorname{exp}(z) = e^x\left[\operatorname{cos}(y) + i \operatorname{sen}(y)\right]. \tag{31.2}
\end{equation*}

Por la fórmula de Euler tenemos que si $z\in\mathbb{C}$ es un número complejo puro, es decir, $z=iy$ con $y\in\mathbb{R}$, entonces:
\begin{equation*}
\operatorname{exp}(iy) =\operatorname{cos}(y) + i \operatorname{sen}(y). \tag{31.3}
\end{equation*}

Motivados en la definición de la función exponencial para el caso real (31.1), veamos que mediante series de potencias podemos dar una definición similar para el caso complejo, que extienda de manera natural a la exponencial real a su versión compleja. Más aún, veamos que a través de dicha definición podemos justificar la definición (31.2) y todos los resultados de la entrada 20, como la fórmula de Euler (31.1), que resultarán ser consecuencia de esta expansión en series y sus propiedades.

Entonces, la pregunta fundamental es ¿cómo podemos llegar a una expresión similar a la de (31.1) para el caso complejo?

Sea $z\in\mathbb{C}$. Definimos a la función:
\begin{equation*}
f(z) = \sum_{n=0}^\infty c_n z^n.
\end{equation*}

Dado que $f$ es nuestra función candidata a ser la exponencial compleja, de acuerdo con las propiedades de la exponencial compleja vistas en la entrada 20, planteamos la siguiente ecuación diferencial con condición inicial.
\begin{equation*}
f(z) = f'(z), \quad f(0) = 1 \tag{31.4}
\end{equation*}

La respuesta a nuestra pregunta está dada por la solución de la ecuación diferencial anterior.

Tenemos que:
\begin{equation*}
f(z) = c_0 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots,
\end{equation*}como la función exponencial es entera, entonces el radio de convergencia de la serie que define a $f$ debe ser infinito, entonces, por la proposición 30.2 tenemos que el de su derivada también es infinito y $f’$ deberá estar dada por la derivada término a término de la serie que la define, es decir:
\begin{align*}
f(z) = c_0 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots,\\
f'(z) = c_1 + 2c_2 z + 3c_3 z^2 + 4 c_4 z^3 + \cdots .
\end{align*}

Como $f(z) = f'(z)$, entonces, por el corolario 30.2, los coeficientes de ambas series deben ser iguales, es decir:
\begin{equation*}
c_0 = c_1, \,\, c_1 = 2 c_2, \,\, c_2 = 3 c_3, \,\, \ldots, c_{n-1} = n c_n,
\end{equation*}de donde $c_n = \dfrac{1}{n} c_{n-1}$, para todo $n\geq 1$.

Considerando lo anterior y la condición inicial $f(0) = 1$, entonces $c_0 = 1$, por lo que:
\begin{equation*}
c_1 = 1, \,\, c_2 = \frac{1}{2} = \frac{1}{2!}, \,\, c_3 = \left(\frac{1}{3}\right) \left(\frac{1}{2}\right) = \frac{1}{3!}, \,\, \ldots \,\, , c_{n} = \left( \frac{1}{n}\right)\left( \frac{1}{(n-1)!}\right) = \frac{1}{n!}.
\end{equation*}

Por lo que, la solución a la ecuación diferencial (31.4) es:
\begin{equation*}
f(z) = \sum_{n=0}^\infty \frac{z^n}{n!}, \forall z\in\mathbb{C}.
\end{equation*}

Definición 31.1. (Exponencial compleja como serie de potencias.)
Sea $z \in\mathbb{C}$, entonces definimos a la exponencial compleja como la serie de potencias:
\begin{equation*}
\operatorname{exp}(z) = \sum_{n=0}^\infty \frac{z^n}{n!}. \tag{31.5}
\end{equation*}

Observación 31.1.
En el ejemplo 27.8 hemos probado que la serie de potencias que define a la exponencial compleja es absolutamente convergente para todo $z\in\mathbb{C}$. Por lo que la función exponencial compleja está bien definida para todo $z\in\mathbb{C}$.

Podemos mencionar algunas de las propiedades más importantes de esta función, dada como series de potencias, en la siguiente:

Proposición 31.1. (Propiedades de la exponencial compleja.)
La función exponencial compleja definida como en (31.5) satisface las siguientes propiedades.

  1. Es una función entera y para todo $z\in\mathbb{C}$ se cumple que $\dfrac{d}{dz} \operatorname{exp}(z) = \operatorname{exp}(z)$.
  2. $\operatorname{exp}(0) = 1$.
  3. $\operatorname{exp}(z_1 + z_2) = \operatorname{exp}(z_1) \operatorname{exp}(z_2)$ para todo $z_1, z_2 \in\mathbb{C}$.
  4. $\operatorname{exp}(z) \neq 0$ para todo $z\in\mathbb{C}$.
  5. $\operatorname{exp}(-z) = \dfrac{1}{\operatorname{exp}(z)}$ y $\operatorname{exp}(z_1 – z_2) = \dfrac{\operatorname{exp}(z_1)}{\operatorname{exp}(z_2)}$, para cualesquiera $z, z_1, z_2 \in\mathbb{C}$.
  6. $\overline{\operatorname{exp}(z)} = \operatorname{exp}\left(\overline{z}\right)$ para todo $z\in\mathbb{C}$.
  7. Para todo $z\in\mathbb{C}$ se cumple que $|\operatorname{exp}(z)| = \operatorname{exp}\left(\operatorname{Re}(z)\right)$, de donde:
    \begin{equation*}
    |\operatorname{exp}(i\theta)| = 1 \quad \Longleftrightarrow \quad \theta \in\mathbb{R} \quad \text{y} \quad |\operatorname{exp}(z)| \leq \operatorname{exp}(|z|).
    \end{equation*}

Demostración.

  1. Sea $z\in\mathbb{C}$, entonces, por la proposición 30.2 se cumple que:
    \begin{equation*}
    \dfrac{d}{dz} \operatorname{exp}(z) = \dfrac{d}{dz} \sum_{n=0}^\infty \frac{z^n}{n!} = \sum_{n=1}^\infty \frac{n z^{n-1}}{n (n-1)!} = \sum_{n=0}^\infty \frac{z^n}{n!} = \operatorname{exp}(z).
    \end{equation*}
  2. Es inmediata de la definición de la función exponencial compleja.
  3. Sean $z_1, z_2 \in\mathbb{C}$, entonces:
    \begin{equation*}
    \operatorname{exp}(z_1) = \sum_{n=0}^\infty \frac{z_1^n}{n!} \quad \text{y} \quad \operatorname{exp}(z_2) = \sum_{n=0}^\infty \frac{z_2^n}{n!}.
    \end{equation*}Por el ejemplo 27.8 sabemos que ambas series son absolutamente convergentes. Del ejemplo 27.11, tenemos que el producto de Cauchy de dichas series es:
    \begin{equation*}
    \sum_{n=0}^\infty c_n = \sum_{n=0}^\infty \frac{(z_1 + z_2)^n}{n!}.
    \end{equation*}Por último, por el ejemplo 27.12, sabemos que el producto de estas series absolutamente convergentes, converge a su producto de Cauchy, es decir:
    \begin{align*}
    \operatorname{exp}(z_1) \operatorname{exp}(z_2) & = \left(\sum_{n=0}^\infty \frac{z_1^n}{n!}\right) \left(\sum_{n=0}^\infty \frac{z_2^n}{n!}\right)\\
    & = \sum_{n=0}^\infty \frac{(z_1 + z_2)^n}{n!}\\
    & = \operatorname{exp}(z_1 + z_2).
    \end{align*}Por inducción es fácil verificar que:
    \begin{equation*}
    \prod_{i=1}^n \operatorname{exp}(z_i) = \operatorname{exp}\left( \sum_{i=1}^n z_i\right), \quad \forall n\geq 2.
    \end{equation*}
  4. Se sigue de los incisos 2 y 3, por lo que los detalles se dejan como ejercicio al lector.
  5. Se sigue de los incisos 2 y 3, por lo que los detalles se dejan como ejercicio al lector.
  6. El resultado se sigue de la proposición 27.2(2).
  7. Sea $z\in\mathbb{C}$. Sabemos que:
    \begin{equation*}
    \operatorname{Re}(z) = \frac{z + \overline{z}}{2} \quad \text{y} \quad |z|^2 = z \overline{z}.
    \end{equation*}De los incisos 3, 4 y 6 tenemos que:
    \begin{equation*}
    |\operatorname{exp}(z)|^2 = \operatorname{exp}(z) \overline{\operatorname{exp}(z)} = \operatorname{exp}(z) \operatorname{exp}\left(\overline{z}\right) = \operatorname{exp}\left(z+\overline{z}\right) = \operatorname{exp}\left(2 \operatorname{Re}(z)\right) = \left[\operatorname{exp}\left(\operatorname{Re}(z)\right)\right]^2 >0,
    \end{equation*}de donde:
    \begin{equation*}
    |\operatorname{exp}(z)| = \operatorname{exp}\left(\operatorname{Re}(z)\right).
    \end{equation*}La parte restante del resultado se sigue de esta última igualdad, por lo que los detalles se dejan como ejercicio al lector.

$\blacksquare$

Es claro que si $z=x\in\mathbb{R}$, entonces las definiciones (31.5) y (31.1), correspondientes con la exponencial compleja y la exponencial real, coinciden. Sin embargo, procedemos a verificar que en efecto la exponencial compleja extiende a la exponencial real de manera formal.

Recordemos los siguientes resultados de Cálculo.

Teorema 31.1. (Teorema del Valor Intermedio.)
Sea $f:[a, b] \to \mathbb{R}$ una función continua en $[a, b]$. Entonces, para todo $y$ entre $f(a)$ y $f(b)$ existe $c\in [a, b]$ tal que $f(c) = y$.

Teorema 31.2. (Teorema del Valor Medio.)
Sea $f:[a,b] \to \mathbb{R}$ una función continua en $[a, b]$ y diferenciable en $(a, b)$. Entonces, existe $c\in (a, b)$ tal que:
\begin{equation*}
f'(c) = \frac{f(b) – f(a)}{b – a}.
\end{equation*}

Lema 31.1.
Si $f:(a,b) \to \mathbb{R}$ es una función diferenciable en $(a, b)$ tal que $f'(x)>0$ para todo $x\in(a, b)$, entonces $f$ es estrictamente creciente en $(a, b)$.

Demostración. Es una consecuencia de teorema del valor medio, por lo que se deja como ejercicio al lector.

$\blacksquare$

Lema 31.2.
Si $f:[a,b] \to \mathbb{R}$ es una función estrictamente creciente en $[a, b]$, entonces $f$ es inyectiva.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Lema 31.3.
Sea $I\subset\mathbb{R}$ un intervalo. Si $f:I \to \mathbb{R}$ es una función continua e inyectiva. Entonces $f^{-1}$ es continua.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Puede consultarse la prueba de estos resultados en alguno de los siguientes textos:

  • Elementary Analysis: The Theory of Calculus de Kenneth A. Ross.
  • An Introduction to Analysis de William R. Wade.
  • An Introduction to Analysis de James R. Kirkwood.

Procedemos con el resultado.

Corolario 31.1. ($\pmb{e^x = \operatorname{exp}|_{\mathbb{R}}(x)}$.)
Si $z = x+i0 \in\mathbb{C}$, con $x\in\mathbb{R}$, entonces la función $u(x) = \operatorname{exp}|_{\mathbb{R}}(x)$, es decir, la exponencial compleja restringida a $\mathbb{R}$, satisface lo siguiente:

  1. $u$ es una función real, continua y estrictamente creciente en su dominio $\mathbb{R}$.
  2. $u(\mathbb{R}) = (0, \infty)$.
  3. $u$ es un homeomorfismo, definición 9.2, entre $\mathbb{R}$ y $(0, \infty)$ y la única solución de la ecuación $u(0)=1$ es $x=0$.

Demostración. Dadas las hipótesis.

  1. De acuerdo con la definición 30.1, es claro que al evaluar la expresión (31.5) con $z=x\in\mathbb{R}$, la función $u(x) = \operatorname{exp}(x)$ es una función real de variable real. La continuidad de la función $u$ se sigue de la proposición 31.1(1), pues la exponencial compleja es una función entera y por tanto continua en $\mathbb{C}$, proposición 16.1, en particular es continua en $\mathbb{R}\subset\mathbb{C}$.

    Por otra parte, de la proposición 31.1(4) sabemos que para todo $z\in\mathbb{C}$ se cumple que $\operatorname{exp}(z) \neq 0$, y por el inciso 2, de la misma proposición, para todo $z=x\in\mathbb{R}$ tenemos que:
    \begin{equation*}
    u(x) = \operatorname{exp}(x) = \operatorname{exp}\left(\frac{x}{2} + \frac{x}{2} \right) = \left[\operatorname{exp}\left(\frac{x}{2}\right)\right]^2 >0.
    \end{equation*}Dado que $u'(x) = u(x) > 0$, proposición 31.1(1), entonces se sigue del lema 31.1 que la función $u$ es estrictamente creciente en $\mathbb{R}$.
  2. Como $u$ es continua y $\mathbb{R}$ es un conjunto conexo, entonces de la proposición 10.3 se sigue que $u(\mathbb{R}) = \operatorname{exp}(\mathbb{R}) \subset{\mathbb{R}}$ debe ser un conjunto conexo, por lo tanto, proposición 10.1, es un intervalo. Puesto que para todo $z=x\in\mathbb{R}$ se cumple que $u(x)>0$, entonces $u(\mathbb{R}) \subset (0, \infty)$.

    Probemos la otra contención. De acuerdo con la definición de $u$, es claro que para $z = x>0$ se cumple que:
    \begin{equation*}
    u(x) = \operatorname{exp}(x) > 1 + x,
    \end{equation*}por lo que:
    \begin{equation*}
    \lim_{x \to\infty} u(x) = \infty. \tag{31.6}
    \end{equation*}Dado que para todo $z\in\mathbb{C}$ se cumple que $\operatorname{exp}(z) = 1/\operatorname{exp}(-z)$, proposición 31.1(5), entonces, para $z=t\in\mathbb{R}$ tal que $t<0$, es claro que:
    \begin{equation*}
    \lim_{t \to -\infty} u(t) = \lim_{-t \to \infty} \frac{1}{u(-t)} = \lim_{x \to\infty} \frac{1}{u(x)} = 0. \tag{31.7}
    \end{equation*}Sea $L>0$. De acuerdo con la definición del límite, de (31.6) se sigue que si $K=L>0$, entonces existe $M>0$ tal que:
    \begin{equation*}
    f(x) > K, \quad \text{si} \quad x>M.
    \end{equation*}En particular, para $x=M+1$ tenemos que $u(M+1) > L$.

    Análogamente, considerando la definición del límite (31.7), si $\varepsilon=L>0$, entonces existe $N<0$ tal que:
    \begin{equation*}
    |u(x) – 0| = |u(x)| = u(x) < L, \quad \text{si} \quad x < N.
    \end{equation*}Entonces, para $x=N-1$ tenemos que $u(N-1) < L$. Por lo tanto, dado $L>0$ existen $a=N-1<0$ y $b = M+1>0$ tales que:
    \begin{equation*}
    u(a) < L < u(b).
    \end{equation*}Como $u$ es continua en $\mathbb{R}$, en particular lo es en $(a, b)$, entonces, del teorema del valor intermedio se sigue que existe $c\in(a, b)$ tal que $u(c) = L$, lo cual prueba la contención restante, por lo que $u(\mathbb{R}) = (0, \infty)$.
  3. Dado que $u$ es estrictamente creciente, entonces, del lema 31.2 se sigue que es una función inyectiva. Por otra parte, del inciso anterior tenemos que $u:\mathbb{R} \to (0,\infty)$ es una función suprayectiva, por lo que $u$ es una función biyectiva y por tanto invertible. Denotamos a $u^{-1}(y)=x$ como la función inversa, entonces $u^{-1}$ es continua, lema 31.3, ya que $u$ es continua e inyectiva, por lo que $\mathbb{R}$ y $(0, \infty)$ son homeomorfos, definición 9.2.

    Como $u$ es inyectiva es claro que la única solución de la ecuación $u(0)=1$ es $x=0$.

$\blacksquare$

Observación 31.2.
De acuerdo con estos resultados, es claro que para $z=x\in\mathbb{R}$, la definición de la exponencial compleja dada en (31.5) se reduce al caso real dado por (31.1), por lo que de manera natural hemos hecho una extensión de la función exponencial real a $\mathbb{C}$, y como la serie que define a la exponencial converge absolutamente para todo $z\in\mathbb{C}$, entonces podemos utilizar las expresiones $e^z$ y $\operatorname{exp}(z)$ de manera indistinta para referirnos a la función exponencial compleja.

De nuestros cursos de cálculo, sabemos que las series de potencias de las funciones trigonométricas reales seno y coseno son:
\begin{align*}
\operatorname{sen}(x) = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n+1)!},\\
\operatorname{cos}(x) = \sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{(2n)!}.
\end{align*}

Notemos que si $z = iy \in\mathbb{C}$, con $y\in\mathbb{R}$, entonces:
\begin{align*}
\operatorname{exp}(iy) & = \sum_{n=0}^\infty \frac{(iy)^n}{n!}\\
& = 1 + iy – \frac{y^2}{2!} – i\frac{y^3}{3!} + \frac{y^4}{4!} + i \frac{y^5}{5!} – \frac{y^6}{6!} – i
\frac{y^7}{7!} + \frac{y^8}{8!} + \cdots\\
& = \left( 1 – \frac{y^2}{2!} + \frac{y^4}{4!} – \frac{y^6}{6!} + \frac{y^8}{8!} – \cdots \right) + i \left( y – \frac{y^3}{3!} + \frac{y^5}{5!} – \frac{y^7}{7!} – \cdots \right)\\
& = \sum_{n=0}^\infty \frac{(-1)^n y^{2n}}{(2n)!} + i \sum_{n=0}^\infty \frac{(-1)^n y^{2n+1}}{(2n+1)!}\\
& = \operatorname{cos}(y) + i \operatorname{sen}(y).
\end{align*}

De acuerdo con la proposición 31.1(3), para $z = x+ iy \in\mathbb{C}$ se tiene que:
\begin{align*}
e^z = \operatorname{exp}(z) & = \operatorname{exp}(x + iy)\\
& = \operatorname{exp}(x) \operatorname{exp}(iy)\\
& = e^x \left[ \operatorname{cos}(y) + i \operatorname{sen}(y)\right],
\end{align*}lo cual justifica la definición 20.1 y por tanto todos los resultados de las entradas 20, 21, 22 y 23 son válidos.

De manera análoga, se puede utilizar la definición en series de potencias de la función exponencial compleja y las definiciones de las funciones trigonométricas e hiperbólicas, dadas en la entrada 22, para obtener sus correspondientes definiciones en series de potencias, que extienden de manera natural a $\mathbb{C}$ a sus versiones reales.

Proposición 31.2. (Series de las funciones trigonométricas e hiperbólicas seno y coseno.)
Sea $z\in\mathbb{C}$, entonces:
\begin{align*}
\operatorname{sen}(z) := \sum_{n=0}^\infty \frac{(-1)^n z^{2n+1}}{(2n+1)!}, \tag{31.8} \\
\operatorname{cos}(z) := \sum_{n=0}^\infty \frac{(-1)^n z^{2n}}{(2n)!}, \tag{31.9}\\
\operatorname{senh}(z) := \sum_{n=0}^\infty \frac{z^{2n+1}}{(2n+1)!}, \tag{31.10} \\
\operatorname{cosh}(z) := \sum_{n=0}^\infty \frac{z^{2n}}{(2n)!}. \tag{31.11}
\end{align*}

Demostración. La demostración es análoga para las cuatro funciones y se sigue de las definiciones 22.1, 22.3, 31.1 y de la proposición 27.2(1). Para ejemplificar el procedimiento realicemos la prueba de la serie de la función coseno hiperbólico y el resto de las series se dejan como ejercicio al lector.

De las definiciones 22.3 y 30.1, para todo $z\in\mathbb{C}$, por la proposición 27.2(1) tenemos que:
\begin{align*}
\operatorname{cosh}(z) & = \frac{\operatorname{exp}(z) + \operatorname{exp}(-z)}{2}\\
& = \dfrac{\displaystyle \sum_{n=0}^\infty \dfrac{z^n}{n!} + \displaystyle \sum_{n=0}^\infty \dfrac{(-z)^n}{n!}}{2}\\
& = \displaystyle \sum_{n=0}^\infty \dfrac{z^n + (-z)^n}{2 \cdot n!}\\
& = \displaystyle \sum_{n=0}^\infty \dfrac{z^n \left[1 + (-1)^n\right]}{2 \cdot n!}.
\end{align*}

Sea $c_n = \dfrac{1 + (-1)^n}{2 \cdot n!}$, para todo $n\in\mathbb{N}$. Notemos que:
\begin{equation*}
c_n = \left\{ \begin{array}{lcc}
0 & \text{si} & n = 2k+1, \\
\\ \dfrac{1}{(2k)!} & \text{si} & n=2k,
\end{array}
\right.
\end{equation*} donde $k\in\mathbb{N}$.

Entonces:
\begin{equation*}
\operatorname{cosh}(z) = \sum_{n=0}^\infty \frac{z^{2n}}{(2n)!}.
\end{equation*}

$\blacksquare$

De manera análoga es posible deducir las series de potencias del resto de funciones trigonométricas e hiperbólicas, por lo que se deja como ejercicio al lector.

Observación 31.2.
De estas definiciones para las funciones trigonométricas e hiperbólicas seno y coseno es claro que para todo $z\in\mathbb{C}$ se cumple que:
\begin{equation*}
\operatorname{sen}(-z) = -\operatorname{sen}(z) \quad \text{y} \quad \operatorname{cos}(-z) = \operatorname{cos}(z),
\end{equation*}
\begin{equation*}
\operatorname{senh}(-z) = -\operatorname{senh}(z) \quad \text{y} \quad \operatorname{cosh}(-z) = \operatorname{cosh}(z),
\end{equation*}ya que las series de potencias de las funciones $\operatorname{sen}$ y $\operatorname{senh}$ solo consideran a las potencias impares de $z$, mientras que las series de potencias de las funciones $\operatorname{cos}$ y $\operatorname{cosh}$ solo consideran potencias pares de $z$.

Observación 31.3.
De acuerdo con las definiciones en series de las funciones hiperbólicas seno y coseno es claro que si restringimos el dominio de estas funciones al conjunto de los números reales positivos, entonces estas funciones serán positivas y estrictamente crecientes.

Más aún, por la observación 22.5, sabemos que para todo $z=x+iy\in\mathbb{C}$ se cumplen las identidades:
\begin{align*}
|\operatorname{sen}(z)|^2 = \operatorname{sen}^2(x) + \operatorname{senh}^2(y),\\
|\operatorname{cos}(z)|^2 = \operatorname{cos}^2(x) + \operatorname{senh}^2(y),
\end{align*}de donde es claro que los únicos ceros de las series (31.8) y (31.9), que definen al seno y coseno complejos, son reales ya que $\operatorname{senh}(y) = 0$ si y solo si $y=0$.

Considerando las propiedades que hemos probado para las series de números complejos a lo largo de esta unidad, podemos probar fácilmente algunas de las identidades con las que estamos familiarizados para el caso real, mediante la manipulación algebraica de las series de potencias que definen a las funciones trigonométricas e hiperbólicas.

Ejemplo 31.1.
Verifiquemos que para todo $z\in\mathbb{C}$ se cumple que:
a) \begin{equation*}
\operatorname{cos}^2(z) = \frac{1+\operatorname{cos}(2z)}{2}.
\end{equation*}
b) \begin{equation*}
\operatorname{sen}(2z) = 2 \operatorname{sen}(z)\operatorname{cos}(z).
\end{equation*}

Solución.

a) Notemos que:
\begin{align*}
\frac{1+\operatorname{cos}(2z)}{2} & = \frac{1}{2} + \frac{\operatorname{cos}(2z)}{2}\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{(-1)^n (2z)^{2n}}{2 (2n)!}\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{i^{2n} \, 2^{2n-1} \, z^{2n}}{(2n)!}.
\end{align*}

Por otra parte:
\begin{align*}
\operatorname{cos}^2(z) & = \left(\frac{\operatorname{exp}(iz) + \operatorname{exp}(-iz)}{2}\right)^2\\
& = \frac{1}{4} \left[\operatorname{exp}(2iz) + 2 +\operatorname{exp}(-2iz)\right]\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{(2iz)^n}{4 \cdot n!} + \sum_{n=0}^\infty \frac{(-2iz)^n}{4 \cdot n!}\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{2^{n-2} \, i^n \, z^n}{n!} + \sum_{n=0}^\infty \frac{(-1)^n \, 2^{n-2} \, i^n \, z^n}{n!}\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{2^{n-2} \, i^n \, z^n \left[1 + (-1)^n\right]}{n!}.
\end{align*}

Sea $c_n = \dfrac{2^{n-2} \, i^n \left[1 + (-1)^n\right]}{n!}$, para todo $n\in\mathbb{N}$. Notemos que:
\begin{equation*}
c_n = \left\{ \begin{array}{lcc}
0 & \text{si} & n = 2k+1, \\
\\ \dfrac{2^{2k-1} i^{2k}}{(2k)!} & \text{si} & n=2k,
\end{array}
\right.
\end{equation*}donde $k\in\mathbb{N}$.

Entonces:
\begin{equation*}
\frac{1+\operatorname{cos}(2z)}{2} = \frac{1}{2} + \sum_{n=0}^\infty \frac{i^{2n} \, 2^{2n-1} \, z^{2n}}{(2n)!} = \operatorname{cos}^2(z).
\end{equation*}b) De acuerdo con el inciso anterior tenemos que:
\begin{equation*}
\operatorname{cos}^2(z) = \frac{1}{2} + \sum_{n=0}^\infty \frac{i^{2n} \, 2^{2n-1} \, z^{2n}}{(2n)!},
\end{equation*}la cual es una serie con radio de convergencia infinito.

Derivando ambos lados de ésta última igualdad, por la proposición 30.2 tenemos que:
\begin{align*}
-2 \operatorname{sen}(z) \operatorname{cos}(z) & = \sum_{n=1}^\infty \frac{i^{2n} \, 2^{2n-1} \, 2n \, z^{2n-1}}{2n \, (2n-1)!}\\
& = \sum_{n=1}^\infty \frac{(-1)^{n} \, (2z)^{2n-1}}{(2n-1)!}\\
& = \sum_{n=0}^\infty \frac{(-1)^{n+1} \, (2z)^{2n+1}}{(2n+1)!}\\
& = – \operatorname{sen}(2z),
\end{align*}de donde:
\begin{equation*}
\operatorname{sen}(2z) = 2 \operatorname{sen}(z)\operatorname{cos}(z).
\end{equation*}

Ejemplo 31.2.
Las funciones complejas exponencial, seno y coseno son analíticas, definición 30.1, en $\mathbb{C}$.

Solución. Sea $z_0\in\mathbb{C}$ fijo. Tenemos que:
\begin{align*}
e^z = e^{z_0 + z-z_0} & = e^{z_0} e^{z-z_0}\\
&= e^{z_0} \sum_{n=0}^\infty \frac{(z-z_0)^n}{n!}\\
& = \sum_{n=0}^\infty e^{z_0} \frac{(z-z_0)^n}{n!}, \quad \forall z\in\mathbb{C}.
\end{align*}

Por otra parte, por la proposición 22.1 sabemos que para todo $z\in\mathbb{C}$ se cumple que:
\begin{align*}
\operatorname{sen}(z) = \operatorname{sen}(z_0+z-z_0) = \operatorname{sen}(z_0) \operatorname{cos}(z-z_0) + \operatorname{sen}(z-z_0) \operatorname{cos}(z_0),\\
\operatorname{cos}(z) = \operatorname{cos}(z_0+z-z_0)= \operatorname{cos}(z_0) \operatorname{cos}(z-z_0) – \operatorname{sen}(z_0) \operatorname{sen}(z-z_0).
\end{align*}

Entonces:
\begin{equation*}
\operatorname{sen}(z) = \operatorname{sen}(z_0) \sum_{n=0}^\infty \frac{(-1)^n(z-z_0)^{2n}}{(2n)!} + \operatorname{cos}(z_0) \sum_{n=0}^\infty \frac{(-1)^n(z-z_0)^{2n+1}}{(2n+1)!}, \quad \forall z\in\mathbb{C},
\end{equation*}
\begin{equation*}
\operatorname{cos}(z) = \operatorname{cos}(z_0) \sum_{n=0}^\infty \frac{(-1)^n(z-z_0)^{2n}}{(2n)!} – \operatorname{sen}(z_0) \sum_{n=0}^\infty \frac{(-1)^n(z-z_0)^{2n+1}}{(2n+1)!}, \quad \forall z\in\mathbb{C}.
\end{equation*}

Ejemplo 31.3.
Determinemos el radio de convergencia y la suma de la serie:
\begin{equation*}
\sum_{n=2}^\infty \frac{n}{(n-2)!} z^n.
\end{equation*}

Solución. Por la forma de la serie, al tener un factorial en el denominador, inferimos que la función suma que describe la serie dada debe estar en términos de la exponencial compleja.

Sabemos que la serie de potencias, centrada en $z_0 = 0$, de la exponencial es:
\begin{equation*}
f(z) = e^z = \sum_{n=0}^\infty \frac{z^n}{n!}, \quad \forall z\in\mathbb{C},
\end{equation*}entonces, al derivar dos veces de ambos lados de la igualdad, por el corolario 30.1 tenemos que:
\begin{equation*}
f»(z) = e^z = \sum_{n=2}^\infty \frac{n(n-1) z^{n-2}}{n!}= \sum_{n=2}^\infty \frac{z^{n-2}}{(n-2)!}, \quad \forall z\in\mathbb{C}.
\end{equation*}

Multiplicando ambos lados por $z^2$ tenemos:
\begin{equation*}
z^2 e^z = \sum_{n=2}^\infty \frac{z^{n}}{(n-2)!} = \sum_{k=0}^\infty c_k z^k, \quad \forall z\in\mathbb{C},
\end{equation*}de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{1}{(n-2)!}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n,\\
\\ 0, & \text{en otro caso.}\\
\end{array}
\right.
\end{equation*}

Por lo que $c_0 = c_1 =0$ y para todo $k\geq 2$:
\begin{equation*}
c_k = \dfrac{1}{(k-2)!}.
\end{equation*}

Considerando lo anterior no es difícil verificar que esta última serie tiene radio de convergencia infinito, por lo que podemos volver a aplicar la proposición 30.2 y derivar de ambos lados de la igualdad, de donde se sigue que:
\begin{align*}
\frac{d}{dz} z^2 e^z = 2ze^z + z^2 e^z & = \sum_{k=1}^\infty k c_k z^{k-1}\\
& = \sum_{n=2}^\infty \frac{n z^{n-1}}{(n-2)!}, \quad \forall z\in\mathbb{C}.
\end{align*}

Por último, si multiplicamos por $z$ ésta última igualdad tenemos que:
\begin{equation*}
e^z(2z^2 + z^3) = \sum_{n=2}^\infty \frac{n z^{n}}{(n-2)!}, \quad \forall z\in\mathbb{C},
\end{equation*}la cual es la función suma correspondiente a la serie dada y tiene también radio de convergencia infinito.

Para cerrar esta entrada analicemos ahora a la función multivaluada logaritmo complejo, para ello consideremos el siguiente:

Ejemplo 31.4.
Veamos que la serie de potencias para la función $\operatorname{Log}(1+z)$ es:
\begin{equation*}
\sum_{n=0}^\infty \frac{(-1)^n z^{n+1}}{n+1},
\end{equation*}y determinemos su dominio de convergencia.

Solución. De acuerdo con el ejercicio 10 de la entrada 21, sabemos que la función $\operatorname{Log}(1+z)$ es analítica en $\mathbb{C}\setminus(-\infty, -1]$ y para todo punto en dicho dominio su derivada es:
\begin{equation*}
\frac{d}{dz} \operatorname{Log}(1+z) = \frac{1}{1+z}. \tag{31.12}
\end{equation*}

En particular, dicha función es analítica en $B(0,1)$ y para $|z|<1$ se cumple (31.12).

Por otra parte, considerando la serie geométrica, tenemos que:
\begin{equation*}
\sum_{n=0}^\infty (-z)^n = \sum_{n=0}^\infty (-1)^n z^n = \frac{1}{1+z}, \quad \text{si} \,\, |z|<1.
\end{equation*}

Entonces:
\begin{equation*}
\frac{d}{dz} \operatorname{Log}(1+z) = \sum_{n=0}^\infty (-1)^n z^n = \frac{1}{1+z}, \quad \text{si} \,\, |z|<1.
\end{equation*}

Notemos que si definimos a una función $f$ considerando la serie de potencias dada, tenemos que:
\begin{equation*}
f(z) = \sum_{n=0}^\infty \frac{(-1)^n z^{n+1}}{n+1} = \sum_{k=0}^\infty c_k z^k,
\end{equation*}de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{(-1)^{n}}{n+1}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n+1,\\
\\ 0, & \text{en otro caso.}\\
\end{array}
\right.
\end{equation*}

Por lo que, $c_0 = 0$ y para $k\geq 1$ se tiene que:
\begin{equation*}
c_k = \frac{(-1)^{k-1}}{k}.
\end{equation*}

Es claro que para $k\geq 1$ se tiene que $c_k \neq 0$ y como:
\begin{equation*}
\lambda = \lim_{k\to\infty} \frac{|c_{k+1}|}{|c_{k}|} = \lim_{k\to\infty} \left|\frac{k (-1)^{k}}{(k+1) (-1)^{k-1}}\right| = \lim_{k\to\infty} \frac{k}{k+1} = 1,
\end{equation*}entonces, del corolario 29.3 se sigue que $R = 1/ \lambda = 1$, es decir, la serie que define a $f$ tiene radio de convergencia 1, por lo que su dominio de convergencia es el disco $B(0,1)$.

Lo anterior nos garantiza que tanto $f(z)$ como $\operatorname{Log}(1+z)$ están bien definidas en el disco abierto $B(0,1)$.

De acuerdo con la proposición 30.2 y la definición 30.1, tenemos que $f$ es analítica en $B(0,1)$ y su derivada es:
\begin{align*}
f'(z) & = \sum_{k=1}^\infty k c_k z^{k-1}\\
& = \sum_{k=1}^\infty k \left(\frac{(-1)^{k-1}}{k}\right) z^{k-1}\\
& = \sum_{n=0}^\infty (-1)^n z^{n}\\
& = \frac{1}{1+z}, \quad \text{si} \,\, |z|<1.
\end{align*}

Sea $g(z) = f(z) – \operatorname{Log}(1+z)$. Claramente $g$ es analítica en $B(0,1)$ y su derivada es:
\begin{equation*}
g'(z) = \dfrac{d}{dz} \left [f(z) – \operatorname{Log}(1+z)\right] = 0, \quad \forall z\in B(0,1),
\end{equation*}por lo que $g$ es una función constante en $B(0,1)$, proposición 19.2. Para $z=0$ tenemos que:
\begin{equation*}
g(0) = f(0) – \operatorname{Log}(1+0) = 0,
\end{equation*}entonces:
\begin{equation*}
f(z) – \operatorname{Log}(1+z) = 0 \quad \Longrightarrow \quad f(z) = \operatorname{Log}(1+z).
\end{equation*}

Por lo tanto:
\begin{equation*}
\operatorname{Log}(1+z) = \sum_{n=0}^\infty \frac{(-1)^n z^{n+1}}{n+1}, \quad \text{si} \,\, |z|<1.
\end{equation*}

Observación 31.4.
Notemos que si sustituimos a $z$ por $z-1$ en el resultado anterior, entonces:
\begin{equation*}
\operatorname{Log}(z) = \sum_{n=0}^\infty \frac{(-1)^n (z-1)^{n+1}}{n+1}, \quad \text{si} \,\, |z-1|<1.
\end{equation*}

Tarea moral

  1. Prueba los lemas 31.1, 31.2 y 31.3.
  2. Completa la demostración de la proposición 31.1.
  3. Completa la demostración de la proposición 31.2.
  4. Utilizando las definiciones en series de potencias de las funciones seno y coseno prueba la identidad Pitagórica $\operatorname{sen}^2(z) + \operatorname{cos}^2(z) = 1$ para todo $z\in\mathbb{C}$.
  5. Determina la serie de potencias de la función $\operatorname{Log}\left(\dfrac{1}{1-z}\right)$ y determina su región de convergencia.

    Hint: Recuerda que para la rama principal del logaritmo se cumple que $\operatorname{Log}\left(w^{-1}\right) = -\operatorname{Log}(w)$ si $w\in\mathbb{C}\setminus(-\infty,0]$.
  6. a) Considera el desarrollo en serie de potencias para la función $f(z) = \operatorname{Log}(z)$ dado en la observación 31.4 y muestra que $f'(z) = 1/z$.

    b) Sea $z_0 \neq 0$. Para $z \in B(z_0, 1)$ define a la función:
    \begin{equation*}
    f(z) = \displaystyle\sum_{n=0}^\infty \dfrac{(-1)^{n-1}}{n} \left(\dfrac{z-z_0}{z_0}\right)^n.
    \end{equation*} Muestra que $f'(z) = 1/z$.
  7. Determina la función suma y el dominio de convergencia de las siguientes series de potencias.
    a) $\displaystyle \sum_{n=0}^\infty \frac{(-1)^{n+1}}{n!} z^{3n}$.
    b) $\displaystyle \sum_{n=1}^\infty \frac{z^{2n+1}}{(2n-1)!}$.
    c) $\displaystyle \sum_{n=0}^\infty \frac{2^{n+1}(z-i)^{n+2}}{(n+1)!}$.
  8. Se definen a los números de Bernoulli $B_n$ a través de la serie de potencias:
    \begin{equation*}
    \frac{z}{e^z -1} = \displaystyle \sum_{n=0}^\infty \frac{B_n}{n!} z^n.
    \end{equation*}a) Prueba la fórmula recursiva:
    \begin{equation*}
    \frac{B_0}{n! \, 0!} + \frac{B_1}{(n-1)! \, 1!} + \cdots + \frac{B_{n-1}}{1! \, (n-1)!} = \left\{ \begin{array}{lcc}
    1 & \text{si} & n=1, \\
    \\ 0 & \text{si} & n>1.
    \end{array}
    \right.
    \end{equation*}Entonces $B_0=1$.

    b) Calcula $B_1$, $B_2$, $B_3$, $B_4$.

    c) Muestra que $B_n=0$ si $n$ es un número impar distinto de $1$.
  9. Define a la función $f:\mathbb{R} \to \mathbb{R}$ como:
    \begin{equation*}
    f(x) = \left\{ \begin{array}{lcc}
    0 & \text{si} & x\leq 0, \\
    \\ e^{-1/x} & \text{si} & x>0.
    \end{array}
    \right.
    \end{equation*}Muestra que $f$ es infinitamente diferenciable y que $f^{(n)}=0$ para todo $n\in\mathbb{N}$.

Más adelante…

Esta entrada es la última de la tercera unidad, correspondiente al tema de series de números complejos. En ella hemos abordado de manera general algunas de las funciones complejas elementales vistas como series de potencias, cabe mencionar que muchas de las propiedades referentes a estas funciones las hemos estudiado a detalle en la segunda unidad. Es importante notar que muchas de las definiciones dadas en esta entrada coinciden con las definiciones de estas funciones como series para el caso real, por lo que resulta natural la extensión de estas funciones al caso complejo.

En la siguiente entrada iniciamos con la cuarta unidad, correspondiente con el tema de integración compleja, en la cual veremos algunos de los resultados más importantes para las funciones complejas que sin duda son fundamentales en la teoría de la variable compleja en sí, mismos que nos permitirán caracterizar de manera clara a las funciones complejas y distinguirlas de las funciones reales.

Entradas relacionadas

Variable Compleja I: Exponencial compleja

Por Pedro Rivera Herrera

Introducción

Hasta ahora hemos visto la definición de función compleja y hemos estudiado los conceptos de límite, continuidad y diferenciabilidad de dicho objeto matemático. En la entrada anterior, a través de las ecuaciones de Cauchy-Riemann, hemos caracterizado la diferenciabilidad compleja y probamos que no basta la diferenciabilidad de las funciones escalares reales para garantizar la diferenciabilidad compleja, aún cuando toda función compleja queda completamente determinada por dos funciones escalares reales a las que llamamos su parte real e imaginaria.

En esta entrada definiremos una de las funciones complejas más elementales, recordando que hemos hecho una extensión de los números reales $\mathbb{R}$ a través de la construcción del campo de los números complejos $\mathbb{C}$, por lo que nos gustaría que la función exponencial compleja preservará las propiedades de su versión real correspondiente. Motivados en este hecho procedemos a deducir una definición para la función exponencial compleja.

Queremos definir una función analítica $f$ tal que si $z_1, z_2\in\mathbb{C}$, entonces: \begin{equation*} f(z_1 + z_2) = f(z_1)f(z_1), \end{equation*} además, que para toda $z=x\in\mathbb{R}$ cumpla que: \begin{equation*} f(z) = f(x) = e^x. \end{equation*}

De acuerdo con estas propiedades, si $z=x+iy\in\mathbb{C}$ se debe cumplir que: \begin{align*} f(z) &= f(x+iy)\\ &= f(x)f(iy)\\ &= e^x f(iy). \end{align*}

Tomando $f(iy) = A(y) + iB(y)$, tenemos: \begin{align*} f(z) &= e^x\left[ A(y) + iB(y) \right]\\ &= e^xA(y) + ie^xB(y), \end{align*} de donde $u(x,y) = e^x A(y)$ y $v(x,y) = e^x B(y)$.

Para que $f$ sea una función analítica se deben satisfacer las ecuaciones de Cauchy-Riemann, es decir: \begin{equation*} u_x(x,y) = e^x A(y) = e^x B'(y) = v_y(x,y) \end{equation*} \begin{equation*} u_y(x,y) = e^x A'(y) = – e^x B(y) = – v_x(x,y), \end{equation*} por lo que las funciones reales $A(y)$ y $B(y)$ deben cumplir que:
\begin{align*} A(y) = B'(y),\\ B(y) = -A'(y), \tag{20.1} \end{align*} de donde: \begin{equation*} A^{‘ ‘}(y) = – A(y), \quad B^{‘ ‘}(y) = – B(y). \end{equation*}

Sean $\alpha,\beta \in\mathbb{R}$. Tomando: \begin{equation*} A(y) := \alpha \operatorname{cos}(y) + \beta \operatorname{sen}(y), \end{equation*} tenemos que: \begin{equation*} A'(y) = – \alpha \operatorname{sen}(y) + \beta \operatorname{cos}(y), \end{equation*} \begin{equation*} A^{‘ ‘}(y) = – \left[\alpha \operatorname{cos}(y) – \beta \operatorname{sen}(y)\right] = – A(y), \end{equation*} de donde: \begin{equation*} B(y) := -\beta \operatorname{cos}(y) + \alpha \operatorname{sen}(y), \end{equation*} \begin{equation*} B^{‘ ‘}(y) = \left[-\beta \operatorname{cos}(y) + \alpha \operatorname{sen}(y)\right] = -B(y). \end{equation*}

Claramente las funciones reales $A(y)$ y $B(y)$ propuestas cumplen (20.1).

Entonces, para $z=x+iy\in\mathbb{C}$ tenemos que: \begin{align*} f(z) & = e^x\left[ A(y) + iB(y) \right]\\ &= e^x\left[ (\alpha-i\beta)\operatorname{cos}(y) + (\beta + i \alpha)\operatorname{sen}(y) \right]. \end{align*} Como $f(z) = e^x$ para $z=x+i0\in\mathbb{R}$, entonces: \begin{align*} f(z) & = e^x \left[(\alpha-i\beta)\operatorname{cos}(0) + (\beta + i \alpha)\operatorname{sen}(0)\right]\\ & = e^x\left(\alpha-i\beta\right)\\ & = e^x, \end{align*} lo cual se cumple si y solo si $\alpha = 1$ y $\beta = 0$.

De acuerdo con lo anterior hemos motivado la siguiente:

Definición 20.1. (Exponencial compleja.)
Si $z=x+iy\in\mathbb{C}$, entonces se define a la función exponencial compleja, denotada por $\operatorname{exp}(z)$, como el número complejo: \begin{equation*} \operatorname{exp}(z) = e^x\left[ \operatorname{cos}(y) + i \operatorname{sen}(y)\right], \end{equation*} donde $e^x$, $\operatorname{cos}(y)$ y $\operatorname{sen}(y)$ corresponden a las funciones reales exponencial, coseno y seno, respectivamente.

Observación 20.1.
La función exponencial compleja extiende a la exponencial real, por lo que se utilizarán de forma indistinta las expresiones $\operatorname{exp}(z)$ y $e^z$ para denotar a dicha función. La justificación de este hecho se dará más adelante al hablar de series de potencias, donde se verá que las definiciones de las funciones más elementales, en particular de la exponencial compleja, que veremos en esta unidad coinciden con las definiciones de nuestros cursos de Cálculo.

Ejemplo 20.1.
Obtengamos el valor de $f(z)= e^z$ para $z=3-i\frac{\pi}{3}$, $z = 2+3\pi i$ y $z = -1+\pi i$.

Solución. De acuerdo con la definición de la función exponencial compleja tenemos que:
a) $f\left(3-i\frac{\pi}{3}\right) = e^{3}\left[\operatorname{cos}\left(-\frac{\pi}{3}\right) + i \operatorname{sen}\left(-\frac{\pi}{3}\right)\right] = e^{3} \left( \frac{1}{2} – i \frac{\sqrt{3}}{2}\right)$.
b) $f(2+3\pi) = e^{2}\left[\operatorname{cos}(3\pi) + i \operatorname{sen}(3\pi)\right] = e^{2}\left(-1\right) = -e^2$.
c) $f(-1+\pi i) = e^{-1}\left[\operatorname{cos}(\pi) + i \operatorname{sen}(\pi)\right] = e^{-1} (-1) = -\dfrac{1}{e}$.

Proposición 20.1. (Analicidad de la exponencial compleja.)
La función exponencial compleja, $f(z) = e^z$, es una función entera y su derivada está dada por: \begin{equation*} \frac{d}{dz} e^z = e^z. \end{equation*}

Demostración.
De acuerdo con la definición de la función exponencial compleja para $z=x+iy\in\mathbb{C}$ tenemos que: \begin{align*} \operatorname{Re}(e^z) = u(x,y) = e^x \operatorname{cos}(y),\\ \operatorname{Im}(e^z) = v(x,y) = e^x \operatorname{sen}(y). \end{align*}

Es claro que las funciones $u(x,y)$ y $v(x,y)$ son continuas en $\mathbb{R}^2$ y que ambas tienen derivadas parciales de primer orden continuas para todo $(x,y)\in\mathbb{R}^2$. Notemos que: \begin{align*} \frac{\partial u}{\partial x} = e^x \operatorname{cos}(y) = \frac{\partial v}{\partial y},\\ \frac{\partial u}{\partial y} = -e^x \operatorname{sen}(y) = -\frac{\partial v}{\partial x}, \end{align*} es decir que $u$ y $v$ satisfacen las ecuaciones de C-R para todo $z=x+iy\in\mathbb{C}$, por lo que de acuerdo con el teorema 18.1 (o el teorema 18.3) concluimos que la función $f(z) = e^z$ es analítica en $\mathbb{C}$, por lo que es una función entera.

Más aún, sabemos que la derivada de $f$ está dada por: \begin{align*} \frac{d}{dz}e^z & = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}\\ & = e^x \operatorname{cos}(y) + i e^x \operatorname{sen}(y)\\ & =e^x\left[ \operatorname{cos}(y) + i \operatorname{sen}(y)\right]\\ & = e^z. \end{align*} para todo $z=x+iy\in \mathbb{C}$.

$\blacksquare$

Corolario 20.1. (Continuidad de la exponencial compleja.)
La función exponencial compleja, $f(z) = e^z$, es continua en $\mathbb{C}$.

Demostración. Se sigue de la proposición 16.1.

$\blacksquare$

Observación 20.2.
Notemos que utilizando la proposición 20.1 y la regla de la cadena podemos deducir que si $f(z)$ es una función analítica en un dominio $D$, entonces la función $e^{f(z)}$ también será analítica en $D$ y su derivada está dada por: \begin{equation*} \frac{d}{dz}e^{f(z)} = f'(z)e^{f(z)}, \quad \forall z\in D. \end{equation*}

Ejemplo 20.2.
Estudiemos la analicidad de las siguientes funciones y determinemos su derivada.
a) $f(z) = iz^3(z-e^{z^2})$.
b) $f(z) = e^{z^2-(1+i)z+3}$.

Solución.
a) Primeramente notemos que $f$ está dada como el producto de las funciones $h(z) = iz^3$ y $g(z) = z-e^{z^2}$. Claramente la función $h$ es entera pues es un polinomio complejo. Por otra parte, notemos que $h$ está dada como la resta de dos funciones, pero ambas son funciones enteras pues la primera función es un polinomio complejo y la segunda función es una composición entre las funciones $e^z$ y $z^2$ que sabemos son enteras, por tanto la función $f$ es entera y su derivada está dada por la regla del producto, es decir: \begin{align*} f'(z) & = h'(z) g(z) + g'(z)h(z)\\ & = 3iz^2\left(z-e^{z^2}\right) + \left(1-e{z^2}(2z)\right)\left(iz^{3}\right)\\ & = iz^{2}\left(4z – e^{z^2}\left(2z^2+3\right)\right). \end{align*} b) Notemos que $f$ está dada por la composición de las funciones $h(z) = e^z$ y $g(z)= z^2-(1+i)z+3$ las cuales son enteras por tratarse de la exponencial compleja y de un polinomio complejo, por lo que considerando la regla de la cadena tenemos que su derivada es: \begin{align*} f'(z) & = h'(g(z))g'(z)\\ & = e^{z^2-(1+i)z+3}\left(2z-1-i\right). \end{align*}

Ejemplo 20.3.
Veamos que al igual que en el caso real, para la función exponencial compleja se cumple que: \begin{equation*} \lim_{z\to 0} \frac{e^z – 1}{z} = 1. \end{equation*}

Solución. De acuerdo con la proposición 20.1 sabemos que la función $f(z) = e^z$ es entera. En particular notemos que: \begin{equation*} 1 = e^0 = f'(0) = \lim_{z \to 0}\frac{f(z) – f(0)}{z-0} = \lim_{z \to 0}\frac{e^z – 1}{z}. \end{equation*}

Ejemplo 20.4.
Estudiemos la analicidad de las siguientes funciones. Determinemos los puntos donde son al menos diferenciables y de existir obtengamos sus derivadas.
a) $f(z) = e^{|\,z\,|^2}$.
b) $f(z) = \overline{z} e^{-|\,z\,|^2}$.

Solución.
a) De acuerdo con el ejercicio 3(a) de la entrada 17, sabemos que la función $g(z) = |\,z\,|^2$ no es analítica para ningún $z\in\mathbb{C}$, pero que al menos es diferenciable en $z=0$. Considerando la observación 20.2 veamos que esto se mantiene para la función $f$.

Sea $z=x+iy\in\mathbb{C}$, entonces: \begin{equation*} f(z) = e^{|\,z\,|^2} = e^{x^2 + y^2}, \end{equation*} por lo que: \begin{equation*} u(x,y) = e^{x^2 + y^2}, \quad v(x,y) = 0. \end{equation*}

Notemos que para todo $z=x+iy\in\mathbb{C}$ tenemos que: \begin{equation*} u_x(x,y) = 2x e^{x^2 + y^2}, \quad u_y(x,y) = 2y e^{x^2 + y^2}, \end{equation*} \begin{equation*} v_x(x,y) = 0, \quad u_y(x,y) = 0. \end{equation*}

Entonces $ u_x(x,y) = v_y(x,y)$ y $ u_y(x,y) = – v_x(x,y)$ si y solo si $x=0=y$, es decir para $z=0$.

Puesto que las derivadas parciales existen y son continuas para todo $z=x+iy \in\mathbb{C}$, entonces $f$ solo es diferenciable en $z=0$ y como no existe disco abierto alrededor de $z=0$ donde $f$ sea diferenciable, entonces $f$ no es analítica en ningún punto en $\mathbb{C}$.

Por último, tenemos que: \begin{align*} f'(0) & = \lim_{z\to 0}\frac{f(z) – f(0)}{z-0}\\ & = \lim_{z\to 0}\frac{e^{|\,z\,|^2} – 1}{z}\\ & = \lim_{z\to 0} \overline{z} \left(\frac{e^{|\,z\,|^2} – 1}{z \overline{z}}\right)\\ & = \left( \lim_{z\to 0} \overline{z}\right) \left(\lim_{z\to 0}\frac{e^{|\,z\,|^2} – 1}{|\,z\,|^2}\right)\\ & = 0(1)\\ & = 0. \end{align*}

b) Podemos proceder de manera similar que en el inciso anterior, sin embargo considerando los resultados de la entrada anterior, tenemos que: \begin{equation*} f(z) = \overline{z} e^{-|\,z\,|^2} = \overline{z} e^{-z \overline{z}} =g(z,\overline{z}). \end{equation*}

Por los ejercicios 8 y 9 de la entrada anterior tenemos que: \begin{equation*} f_{z} = \frac{\partial g}{\partial z} = 0 + \overline{z}\left(e^{-z \overline{z}} \left(-\overline{z}\right)\right) = – \overline{z}^2 e^{-z \overline{z}} = – \overline{z}^2 e^{-|\,z\,|^2}. \end{equation*} \begin{equation*} f_{\overline{z}} = \frac{\partial g}{\partial \overline{z}} = e^{-z \overline{z}} + \overline{z}\left(e^{-z \overline{z}} \left(-z\right)\right) = e^{-z \overline{z}}\left(1-z\overline{z}\right) = e^{-|\,z\,|^2}\left(1-|\,z\,|^2\right). \end{equation*}

Claramente $f_z$ y $f_{\overline{z}}$ existen y son continuas para todo $z\in\mathbb{C}$, por lo que las derivadas parciales $u_x, u_y, v_x$ y $v_y$ existen y son continuas para todo punto $z=x+iy\in\mathbb{C}$, es decir $f$ es de clase $C^1$.

Notemos que: \begin{equation*} f_{\overline{z}} =0 \quad \Longleftrightarrow \quad e^{-|\,z\,|^2}\left(1-|\,z\,|^2\right) = 0 \quad \Longleftrightarrow \quad 1-|\,z\,|^2 = 0 \quad \Longleftrightarrow \quad |\,z\,| = 1. \end{equation*}

Entonces, las ecuaciones de C-R solo la satisfacen los puntos $z=x+iy\in\mathbb{C}$ tales que $|\,z\,|=1$, es decir los puntos sobre la circunferencia unitaria $C(0,1)$, por lo que al existir y ser continuas las cuatro derivadas parciales en todo $\mathbb{C}$, en particular en $C(0,1)$, concluimos que $f$ solo es diferenciable en los puntos sobre la circunferencia unitaria. Más aún, para $z=x+iy\in C(0,1)$, es decir $|\,z\,|=1$, tenemos que: \begin{align*} f'(z) = f_z(z) & = – \overline{z}^2 e^{-|\,z\,|^2}\\ & = -(\overline{x+iy})^2 e^{-(1^2)}\\ & = -e^{-1}\left(x-iy\right)^2\\ & = -e^{-1}\left(x^2-i2xy-y^2\right)\\ & = -e^{-1}\left(x^2-i2xy-(1-x^2)\right)\\ & = e^{-1}\left(1-2x^2+i2xy\right). \end{align*}

Dado que para ningún $z\in C(0,1)$ existe disco abierto, alrededor de dicho punto, donde $f$ sea diferenciable, entonces $f$ no es analítica en ningún punto en $\mathbb{C}$.

Ejemplo 20.5.
Determinemos dónde es analítica la función $f(z) = \sqrt{1+e^z}$ y obtengamos su derivada.

Solución. Recordemos que la función $F(w) = \sqrt{w}$ es multivaluada, por lo que si elegimos a la rama principal del argumento, es decir $-\pi < \operatorname{Arg}(w) \leq \pi$ obtenemos a la rama principal de $F$, que de acuerdo con el ejemplo 16.5 sabemos que dicha rama es analítica en el dominio: \begin{equation*} D = \mathbb{C} \setminus (-\infty,0] = \mathbb{C} \setminus \left\{w\in\mathbb{C} : \operatorname{Re}(w)\leq 0, \operatorname{Im}(w)=0 \right\}. \end{equation*}

Procedemos a determinar el corte de rama de la función $f$ restringida a la rama principal del argumento, es decir los puntos donde $f$ es discontinua, entonces para $w=1+e^z$ y $z=x+iy\in\mathbb{C}$ tenemos que: \begin{equation*}\left\{ \begin{array}{l} \operatorname{Re}(1+e^z) = 1 + e^x \operatorname{cos}(y)\leq 0,\\ \\ \operatorname{Im}(1+e^z) = e^x\operatorname{sen}(y) = 0. \end{array} \right. \end{equation*}

Dado que para todo $x\in\mathbb{R}$ se cumple que $e^x>0$, entonces de la segunda condición se sigue que $y=k\pi$, con $k\in\mathbb{Z}$.

Notemos que si $k=2n$, con $n\in\mathbb{Z}$, entonces $\operatorname{cos}(2n\pi) =1 $, por lo que de la primera condición se sigue que: \begin{equation*} 1+e^x(1) \leq 0 \quad \Longleftrightarrow \quad e^x \leq -1, \end{equation*} lo cual claramente no es posible desde que $x\in\mathbb{R}$.

Entonces $k=2n+1$, con $n\in\mathbb{Z}$, por lo que de la primera condición se sigue que: \begin{equation*} 1+e^x(-1) \leq 0 \quad \Longleftrightarrow \quad -e^x \leq -1 \quad \Longleftrightarrow \quad e^x \geq 1 \quad \Longleftrightarrow \quad x \geq 0. \end{equation*}

Por lo que ambas condiciones se satisfacen si $z=x+i(2n+1)\pi$, con $x\geq 0$ y $k\in\mathbb{Z}$, es decir que $f$ es una función analítica en el dominio: \begin{equation*} A = \mathbb{C} \setminus \left\{z=x+iy\in\mathbb{C} : x\geq 0, y=(2n+1)\pi, n\in\mathbb{Z}\right\}. \end{equation*}

Figura 76: Dominio de analicidad $A$ de la función $f(z) = \sqrt{1+e^z}$ del ejemplo 20.5.

Por último, para determinar la derivada de $f$ en $A$ procedemos a utilizar la regla de la cadena.

Por el ejemplo 16.5, sabemos que la derivada de la rama principal de la función multivaluada $F(w) = \sqrt{w}$, es decir $f_0(w) =\sqrt{w}$ con $w\in\mathbb{C}\setminus(-\infty, 0]$, es: \begin{equation*} f_0^{‘}(w) = \frac{1}{2\sqrt{w}}. \end{equation*}

Notemos que $f = f_0 \circ g$, con $g(z) = 1+e^z$ una función entera, entonces por la regla de la cadena para $z\in A$ tenemos que: \begin{equation*} f'(z) = f_0′(g(z))g'(z) = \frac{e^z}{2\sqrt{1+e^z}}. \end{equation*}

Proposición 20.2. (Propiedades exponencial.)
La función exponencial compleja satisface las siguientes propiedades:

  1. $e^{z_1} \cdot e^{z_2} = e^{z_1 + z_2}$, para todo $z_1,z_2\in\mathbb{C}$.
  2. $e^0 = 1$.
  3. $\dfrac{e^{z_1}}{e^{z_2}} = e^{z_1 – z_2}$, para todo $z_1,z_2\in\mathbb{C}$. En particular $e^{-z} = \dfrac{1}{e^z}$.
  4. $|\,e^z\,| = e^x$ y $e^z \neq 0$, para todo $z=x+iy\in\mathbb{C}$.
  5. $e^{i\theta} =\operatorname{cis}(\theta) = \operatorname{cos}(\theta) + i\operatorname{sen}(\theta)$, con $\theta\in\mathbb{R}$, fórmula de Euler.
  6. Para todo $\theta \in\mathbb{R}$ se tiene que $|\,e^{i\theta}\,| = 1$, en particular se cumple la identidad de Euler $e^{i \pi} = -1$ y \begin{equation*} e^{\pm i 2\pi} = 1, \quad e^{i \frac{\pi}{2}} = i, \quad e^{i \frac{3\pi}{2}} = -i. \end{equation*}
  7. $\left(e^z\right)^n = e^{nz}$, para todo $z\in\mathbb{C}$ y para todo $n\in\mathbb{Z}$.
  8. $\overline{e^z} = e^{\overline{z}}$, para todo $z\in\mathbb{C}$.
  9. $e^{z+i\pi} = – e^z$, para todo $z\in\mathbb{C}$.
  10. $e^z = 1$ si y solo si $z = i 2k\pi$ para algún $k\in\mathbb{Z}$.

Demostración.

  1. Sean $z_1, z_2\in\mathbb{C}$ tales que $z_1=x_1+iy_1$ y $z_2=x_2+iy_2$.
    Por definición tenemos que:\begin{align*} e^{z_1} \cdot e^{z_1} & = e^{x_1}\left[ \operatorname{cos}(y_1) + i \operatorname{sen}(y_1)\right] e^{x_2}\left[ \operatorname{cos}(y_2) + i \operatorname{sen}(y_2)\right]\\ & = e^{x_1 + x_2}\left(\left[ \operatorname{cos}(y_1) \operatorname{cos}(y_2) – \operatorname{sen}(y_1) \operatorname{sen}(y_2)\right] \right. \\ & \left. \quad \quad \quad \quad+ i\left[ \operatorname{sen}(y_1)\operatorname{cos}(y_2) + \operatorname{sen}(y_2)\operatorname{cos}(y_1)\right]\right)\\ & = e^{x_1 + x_2} \left[ \operatorname{cos}(y_1 + y_2) + i \operatorname{sen}(y_1 + y_2)\right]\\ & = e^{z_1 + z_2} \end{align*}
  2. Se deja como ejercicio al lector.
  3. Se deja como ejercicio al lector.
  4. Sea $z = x+iy \in\mathbb{C}$, entonces: \begin{align*}|\,e^z\,| & = |\, e^x\left[ \operatorname{cos}(y) + i \operatorname{sen}(y)\right] \,|\\ & = |\, e^x \,| |\,\operatorname{cos}(y) + i \operatorname{sen}(y)\,|\\ & = e^x \left[\operatorname{cos}^2(y) + \operatorname{sen}^2(y)\right]\\ & = e^x. \end{align*} Dado que para todo $x\in\mathbb{R}$ se tiene que $e^x > 0$, entonces: \begin{equation*} |\,e^z\,| = e^x \neq 0, \end{equation*} por lo que $e^z \neq 0$ para todo $z\in\mathbb{C}$.
  5. Sea $z = iy$, con $y\in\mathbb{R}$, es decir $\operatorname{Re}(z) = x = 0$, entonces: \begin{align*} e^z = e^{0 + iy} & = e^0\left[ \operatorname{cos}(y) + i \operatorname{sen}(y)\right]\\ & = \operatorname{cos}(y) + i\operatorname{sen}(y). \end{align*}
  6. Por el inciso anterior sabemos que para $\theta \in\mathbb{R}$ se tiene que: \begin{equation*} e^{i\theta} = \operatorname{cos}(y) + i \operatorname{sen}(y), \end{equation*} por lo que: \begin{equation*} |\,e^{i\theta}\,|^2 = \operatorname{cos}^2(y) + \operatorname{sen}^2(y) = 1, \end{equation*} de donde se sigue el resultado.
    Notemos que: \begin{equation*} e^{\pm i \pi} = \operatorname{cos}\left(\pm \pi\right) + i \operatorname{sen}\left(\pm \pi\right) = -1 + i 0 = -1, \end{equation*} \begin{equation*} e^{\pm i 2\pi} = \operatorname{cos}\left(\pm 2\pi\right) + i \operatorname{sen}\left(\pm 2\pi\right) = 1 + i 0 = 1, \end{equation*} \begin{equation*} e^{i \frac{\pi}{2}} = \operatorname{cos}\left(\frac{\pi}{2}\right) + i \operatorname{sen}\left(\frac{\pi}{2}\right) = 0 + i(1) = i, \end{equation*} \begin{equation*} e^{i \frac{3\pi}{2}} = \operatorname{cos}\left(\frac{\pi}{2}\right) + i \operatorname{sen}\left(\frac{\pi}{2}\right) = 0 + i (-1) = -i. \end{equation*}
  7. Se deja como ejercicio al lector.
  8. Se deja como ejercicio al lector.
  9. Sea $z\in \mathbb{C}$, por (1) y (6) tenemos que: \begin{equation*} e^{z+i\pi} = e^{z} e^{i\pi} = – e^{z}. \end{equation*}
  10. $\Rightarrow)$
    Sea $z=x+iy\in\mathbb{C}$. Tenemos que: \begin{equation*} e^{z} = 1 \quad \Longleftrightarrow \quad e^{x}\operatorname{cos}(y) + i e^{x}\operatorname{sen}(y) = 1 \quad \Longleftrightarrow \quad \left\{\begin{array}{l} e^{x}\operatorname{cos}(y) = 1\\ e^{x}\operatorname{sen}(y)=0. \end{array} \right. \end{equation*} Dado que $e^x>0$ para todo $x\in\mathbb{R}$, entonces de la segunda ecuación tenemos que: \begin{equation*} \operatorname{sen}(y)=0 \quad \Longleftrightarrow \quad y = k\pi, \,\,\, \text{para algún} \,\,\, k\in\mathbb{Z}. \end{equation*} Dado que $\operatorname{cos}(k\pi) = (-1)^k$, para $k\in\mathbb{Z}$, entonces: \begin{equation*} e^{x}\operatorname{cos}(k\pi) = 1 \quad \Longleftrightarrow \quad e^{x}(-1)^k =1, \end{equation*} de donde $k = 2n$, con $n\in\mathbb{Z}$. Por lo tanto, tenemos que $e^x = 1$ si y solo si $x= 0$. Entonces $z = x +iy = 0 + i2k\pi = i2k\pi$, para algún $k\in\mathbb{Z}$.

    $(\Leftarrow$
    Sea $z = i2k\pi$, con $k\in\mathbb{Z}$. Por (6) y (7) tenemos que: \begin{equation*} e^z = e^{i2k\pi} = \left( e^{i2\pi} \right)^k = \left( 1 \right)^k = 1, \end{equation*} para todo $k\in\mathbb{Z}$.

$\blacksquare$

Observación 20.3.
De acuerdo con el ejercicio 2 de la entrada 15, notemos que la función compleja de variable real $f:\mathbb{R} \to \mathbb{C}$ dada por: \begin{equation*} f(\theta) = e^{i\theta} = \operatorname{cos}(\theta) + i \operatorname{sen}(\theta), \end{equation*} es una función continua desde que las funciones $u(\theta) = \operatorname{cos}(\theta)$ y $v(\theta) = \operatorname{sen}(\theta)$ son continuas en $\mathbb{R}$.

Observación 20.4.
De la fórmula de Euler se sigue que, para $z\in\mathbb{C}$, podemos expresar a la función exponencial compleja como: \begin{equation*} f(z) = e^z = e^x\left[ \operatorname{cos}(y) + i \operatorname{sen}(y)\right] = e^x e^{iy}, \end{equation*} lo cual es consecuente con las propiedades de la exponencial compleja.

De esta última igualdad es claro que si $f(z) = e^z = w$, entonces: \begin{equation*} |\,w\,| = e^x, \quad \operatorname{arg} w = y + 2\pi k, \,\,\, k\in\mathbb{Z}. \end{equation*}

Más aún, la fórmula de Euler resulta de mucha utilidad pues nos permite establecer una relación entre la forma polar de un número complejo $z\neq 0$ y la exponencial compleja, es decir: \begin{equation*} z = r\operatorname{cis}(\theta) = r e^{i\theta}, \end{equation*} donde $r=|\,z\,|$ y $\theta = \operatorname{arg} z$.

Esta última expresión suele llamarse representación exponencial de un número complejo y nos permite aprovechar las propiedades de la exponencial compleja al trabajar con la forma polar de un número complejo, lo cual resulta de mucha utilidad pues simplifica muchos cálculos. Muestra de esto es que dada una función analítica, de acuerdo con la proposición 17.1, podemos obtener su derivada mediante las ecuaciones de C-R en su forma polar.

Ejemplo 20.6.
Sea $\theta\in\mathbb{R}$. Determinemos expresiones para $\operatorname{sen}(3\theta)$ y $\operatorname{cos}(3\theta)$ en términos de $\operatorname{sen}(\theta)$ y $\operatorname{cos}(\theta)$, respectivamente.

Solución. Notemos que: \begin{align*} \operatorname{cos}(3\theta) + i \operatorname{sen}(3\theta) = e^{i3\theta} & = \left(e^{i\theta}\right)^3\\ & = \left(\operatorname{cos}(\theta) + i \operatorname{sen}(\theta)\right)^3\\ & = \operatorname{cos}^3(\theta) + i3\operatorname{cos}^2(\theta)\operatorname{sen}(\theta)-3\operatorname{cos}(\theta)\operatorname{sen}^2(\theta)-i\operatorname{sen}^3(\theta)\\ & = \operatorname{cos}^3(\theta) – 3\operatorname{cos}(\theta)\operatorname{sen}^2(\theta) +i\left(3\operatorname{cos}^2(\theta)\operatorname{sen}(\theta) – \operatorname{sen}^3(\theta)\right). \end{align*}

Igualando las partes real e imaginaria tenemos que: \begin{align*} \operatorname{cos}(3\theta) & = \operatorname{cos}^3(\theta) – 3\operatorname{cos}(\theta)\operatorname{sen}^2(\theta)\\ & = \operatorname{cos}^3(\theta) – 3\operatorname{cos}(\theta)\left[1 – \operatorname{cos}^2(\theta)\right]\\ & = 4\operatorname{cos}^3(\theta) – 3\operatorname{cos}(\theta). \end{align*} \begin{align*} \operatorname{sen}(3\theta) & = 3\operatorname{cos}^2(\theta)\operatorname{sen}(\theta) – \operatorname{sen}^3(\theta)\\ & = 3\left[1 – \operatorname{sen}^2(\theta)\right]\operatorname{sen}(\theta) – \operatorname{sen}^3(\theta)\\ & = 3\operatorname{sen}(\theta) -4\operatorname{sen}^3(\theta). \end{align*}

Ejemplo 20.7.
Sea $\alpha\in\mathbb{R}$ fijo y sea $I=(\alpha, \alpha+2\pi]$. Definimos: \begin{equation*} f(z) = \sqrt[3]{z} = \sqrt[3]{r} \operatorname{exp}\left(i\frac{\theta(z)}{3}\right), \end{equation*} con $z\in \mathbb{C}\setminus L_\alpha$, $r = |\,z\,|$ y $\theta(z) = \operatorname{Arg}_I(z)$, donde $L_\alpha = \left\{ re^{i \alpha} : r\geq 0 \right\}$.

Veamos que la función $f$ corresponde con una rama de la función multivaluada $F(z) = z^{1/3}$. Determinemos dónde es analítica $f$ y obtengamos su derivada.

Solución. Sabemos que el conjunto $L_\alpha$ corresponde con la semirrecta que parte del origen y que forma un ángulo $\alpha$ con el semieje real positivo, figura 77.

Figura 77: Dominio $D$ de la función $f$ del ejemplo 20.7.

De acuerdo con la observación 15.4, sabemos que la función $\theta(z) = \operatorname{Arg}_I(z)$ es continua en el dominio: \begin{equation*} D = \mathbb{C}\setminus L\alpha = \left\{z\in\mathbb{C} : |\,z\,|>0, \,\, \alpha < \operatorname{arg} z < \alpha + 2\pi\right\}, \end{equation*} por lo que la función $f(z)$ es continua en el mismo dominio, es decir para $z \in D$ tenemos que $f$ determina una rama de la función multivaluada $F(z) = z^{1/3}$.

Sea $z \in D$ dado por $z = r e^{i\theta}$, con $r = |\,z\,|$ y $\theta = \operatorname{Arg}_I(z)$ tal que $\alpha<\theta <\alpha+2\pi$, entonces: \begin{equation*} f(z) = \sqrt[3]{r} e^{i\frac{\theta}{3}} = \sqrt[3]{r} \operatorname{cos}\left(\frac{\theta}{3}\right) + i \sqrt[3]{r} \operatorname{cos}\left(\frac{\theta}{3}\right), \end{equation*} de donde:

\begin{equation*} u(r,\theta) = \sqrt[3]{r} \operatorname{cos}\left(\frac{\theta}{3}\right), \quad v(r,\theta) = \sqrt[3]{r}\operatorname{sen}\left(\frac{\theta}{3}\right). \end{equation*}

Es claro que para todo $z\in D$ existen y son continuas las derivadas parciales: \begin{align*} u_r(r,\theta) = \frac{\operatorname{cos}\left(\frac{\theta}{3}\right)}{3 r^{2/3}}, \quad u_\theta(r,\theta) = -\frac{r^{1/3}}{3} \operatorname{sen}\left(\frac{\theta}{3}\right),\\ v_r(r,\theta) = \frac{\operatorname{sen}\left(\frac{\theta}{3}\right)}{3 r^{2/3}}, \quad v_\theta(r,\theta) = \frac{r^{1/3}}{3} \operatorname{cos}\left(\frac{\theta}{3}\right). \end{align*}

Notemos que para todo $z\in D$ se cumple que: \begin{align*} u_r(r,\theta) = \frac{\operatorname{cos}\left(\frac{\theta}{3}\right)}{3 r^{2/3}} = \frac{1}{r} v_\theta(r,\theta),\\ v_r(r,\theta) = \frac{\operatorname{sen}\left(\frac{\theta}{3}\right)}{3 r^{2/3}} = -\frac{1}{r} u_\theta(r,\theta), \end{align*} es decir que se satisfacen las ecuaciones de C-R en su forma polar en $D$, por lo que, de acuerdo con los ejercicios 1 y 2 de la entrada 17 y el teorema 18.1, tenemos que $f$ es una función analítica en $D$. Más aún, por la proposición 17.1 tenemos que la derivada de $f$ está dada por: \begin{align*} f'(z) & = e^{-i\theta} \left[ u_r(r, \theta) + i v_r(r, \theta)\right]\\ & = e^{-i\theta} \left[\frac{\operatorname{cos}\left(\frac{\theta}{3}\right)}{3 r^{2/3}} + i \frac{\operatorname{sen}\left(\frac{\theta}{3}\right)}{3 r^{2/3}}\right]\\ & = \frac{1}{3 r^{2/3}} e^{-i\theta} e^{i \frac{\theta}{3}}\\ & = \frac{1}{3 r^{2/3}e^{i 2/3 \theta}}\\ & = \frac{1}{3\left(\sqrt[3]{r}e^{i \frac{\theta}{3}}\right)^2}\\ & = \frac{1}{3 z^{2/3}}, \end{align*} para todo $z\in D$.

Definición 20.2. (Función periódica.)
Sea $f:S\subset\mathbb{C} \to \mathbb{C}$ una función. Diremos que $f$ es una función periódica con período $T$ si para todo $z\in S$ se tiene que: \begin{equation*} f(z+T) = f(z). \end{equation*}

Observación 20.5.
Una diferencia importante entre la función exponencial real y la exponencial compleja es que la exponencial compleja es periódica. Este hecho se justifica en que la exponencial compleja está definida en términos de las funciones reales trigonométricas seno y coseno, las cuales son periódicas.

Proposición 20.3. (Periodicidad de la función exponencial.)
La función exponencial compleja, $f(z) = e^z$, es periódica con periodo imaginario $2\pi i$. En consecuencia la exponencial compleja no es una función inyectiva. Además es una función suprayectiva en $\mathbb{C}\setminus\{0\}$.

Demostración. Sea $z\in\mathbb{C}$. De acuerdo con la proposición 20.2 tenemos que:
\begin{align*} f(z + 2\pi i) & = e^{z + 2\pi i}\\ & = e^{z} e^{2\pi i}\\ & = e^z\\ & = f(z). \end{align*}

Dado que $z + 2\pi i \neq z$ para todo $z\in\mathbb{C}$, entonces la exponencial compleja no es una función inyectiva.

Por último, veamos que $f(z) = e^z$ es una función suprayectiva en $\mathbb{C}\setminus\{0\}$. Sea $w \in \mathbb{C}\setminus\{0\}$ tal que: \begin{equation*} w = r_0 \operatorname{cis}(\theta_0) = r_0 e^{i\theta_0}, \end{equation*} donde $r_0 = |\,w\,| > 0$ y $\theta_0 = \operatorname{Arg} w$, es decir $\theta_0 \in(-\pi, \pi]$.

Queremos ver que existe $z = x+iy \in \mathbb{C}$ tal que $e^z = w$. Sea $z = \operatorname{ln}(r_0) + i(\theta_0)$, tenemos que: \begin{equation*} e^z = e^{\operatorname{ln}(r_0)}e^{i\theta_0} = r_0 e^{i\theta_0} = w, \end{equation*} donde $\operatorname{ln}(x)$ corresponde con la función real logaritmo natural.

$\blacksquare$

Corolario 20.2.
Sean $z_1, z_2 \in\mathbb{C}$, entonces $e^{z_1} = e^{z_2}$ si y solo si $z_2 = z_1 + i 2\pi n$ para algún entero $n$.

Demostración. Sean $z_1, z_2 \in\mathbb{C}$.

$\Rightarrow)$
Supongamos que $e^{z_1} = e^{z_2}$. Considerando las propiedades de la exponencial, lo anterior implica que: \begin{equation*} \frac{e^{z_2}}{e^{z_1}} = e^{z_2}e^{-z_1} = e^{z_2-z_1} = 1. \end{equation*}

Entonces, de acuerdo con la proposición 20.2(10), tenemos que $z_2 – z_1 = i2\pi n$ para algún $n\in\mathbb{Z}$, de donde se sigue el resultado.

$(\Leftarrow$
Supongamos que $z_2 = z_1 + i2\pi n$, para algún $n\in\mathbb{Z}$, entonces: \begin{equation*} e^{z_2} = e^{z_1 + i2\pi n} = e^{z_1} e^{i2\pi n} = e^{z_1}. \end{equation*}

$\blacksquare$

Debido a la periodicidad de la función exponencial compleja, $f(z) = e^z$, tenemos que:
\begin{equation*} f(z) = e^z = e^{z+i2\pi} = e^{(z+i2\pi)+i2\pi} = f(z + i4\pi). \end{equation*}

Procediendo de manera similar podemos concluir que: \begin{equation*} f(z) = e^z = e^{z+i2\pi n} = f(z + i2\pi n), \quad n\in\mathbb{Z}, \end{equation*} es decir que $\pm i2\pi, \pm i4\pi, \pm i6\pi, \ldots$, son también periodos de la función exponencial compleja.

Más aún, dado que $f$ no es inyectiva, tenemos que si $z\in\mathbb{C}$ es tal que $f(z)=w$, es decir si $z$ se mapea bajo $f$ en un punto $w$, entonces bajo $f$ los puntos $z\pm i2\pi, z\pm i4\pi, z\pm i6\pi, \ldots$, también serán mapeados al punto $w$. Por lo que, podemos restringir los valores de $z$ que toma $f$ a una banda horizontal infinita de ancho $2\pi$ en el plano complejo $z$, figura 78, para garantizar que los valores $w$ que asigna $f$ sean distintos. Es decir, para $y_0\in\mathbb{R}$ fijo, todos los valores $w$ distintos que toma la función exponencial compleja $f$, estarán dados por los $z$ en la banda: \begin{equation*} S_{y_0} = \left\{z = x+iy\in\mathbb{C} : -\infty <x<\infty, y_0 < y \leq y_0 + 2\pi \right\}. \end{equation*}

En la figura 78 hemos divido el plano complejo en bandas horizontales, de ancho $2\pi$, fijando el valor de $y_0$ a múltiplos impares de $\pi$. En general, podemos dividir el plano complejo en bandas horizontales infinitas, de ancho $2\pi$, considerando solo múltiplos de impares de $\pi$, es decir, para $n\in\mathbb{Z}$ definimos a las bandas: \begin{equation*} S_n = \left\{z = x+iy\in\mathbb{C} : -\infty<x<\infty, \,\, (2n-1)\pi < y \leq (2n+1)\pi\right\}. \end{equation*}

En cualquiera de estas bandas la función exponencial compleja tendrá el mismo comportamiento.

Si tomamos $y_0 = -\pi \in\mathbb{R}$ ó $n=0$, entonces obtenemos la banda: \begin{equation*} S_0 = \left\{z\in\mathbb{C} : -\infty<\operatorname{Re}(z)<\infty, -\pi < \operatorname{Im}(z) \leq \pi \right\}, \end{equation*} a la cual llamaremos la región fundamental de la función exponencial compleja y se representa en color azul en la figura 78.

Figura 78: Región fundamental de la función exponencial compleja.

Proposición 20.4.
La función exponencial compleja es inyectiva si se restringe su dominio a la región fundamental.

Demostración. Sea $f(z) = e^z$ definida sobre el dominio $S_0$ y sean $z_1=x_1+iy_1, z_2 =x_2+iy_2 \in S_0$.

Supongamos que $e^{z_1} = e^{z_2}$, entonces: \begin{equation*} |\,e^{z_1}\,| = |\,e^{z_2}\,|, \quad \operatorname{arg}\left(e^{z_1}\right) = \operatorname{arg}\left(e^{z_2}\right). \tag{20.2} \end{equation*}

De acuerdo con la observación 20.4, de (20.2) tenemos que: \begin{equation*} e^{x_1} = e^{x_2}, \quad y_2 = y_1 +2\pi n, \,\,\, n\in\mathbb{Z}. \tag{20.3} \end{equation*}

Como $z_1, z_2 \in S_0$, entonces $x_1,x_2\in\mathbb{R}$ y $y_1,y_2\in(-\pi, \pi]$. Por lo que, se sigue de (20.3) que $x_1 = x_2$ y $y_1 = y_2$, de donde $z_1 = z_2$.

$\blacksquare$

Ejemplo 20.8.
Determinemos las soluciones de la ecuación $e^{z}= i$.

Solución. Sea $z=x+iy\in\mathbb{C}$. Por la observación 20.4 y la proposición 20.2(6) tenemos que: \begin{align*} e^{z}= i \quad \Longleftrightarrow \quad e^x e^{iy} = 1 e^{i\frac{\pi}{2}} \quad & \Longleftrightarrow \quad \left\{ \begin{array}{l} |\,e^z\,| = |i|,\\ \operatorname{arg}\left(e^z\right) = \operatorname{arg}\left(i\right). \end{array} \right. \\ \quad & \Longleftrightarrow \quad \left\{ \begin{array}{l} e^x =1,\\ y +2\pi n_1 = \dfrac{\pi}{2} +2\pi n_2, \,\, n_1, n_2\in\mathbb{Z}. \end{array} \right. \end{align*}

De la primera ecuación es claro que $x=0$. Por otra parte, de la segunda ecuación tenemos que: \begin{equation*} y = \dfrac{\pi}{2} + 2\pi \left(n_2 – n_1\right) = \dfrac{\pi}{2}\left(4k +1\right), \quad k = n_2 – n_1 \in\mathbb{Z}. \end{equation*}

Por lo que, las soluciones de la ecuación $e^{z}= i$ son:
\begin{equation*} z = x + iy = 0 + i\left(4k+1\right)\frac{\pi}{2} = i\frac{\pi}{2} + 2k \pi i, \quad k\in\mathbb{Z}. \end{equation*}

Es interesante notar que todas las soluciones difieren por $2k\pi i$, con $k\in\mathbb{Z}$.

Observación 20.6 (Condición función univaluada.)
Notemos que a través de la representación exponencial de un número complejo podemos caracterizar a las funciones multivaluadas y univaluadas.

Sea $z\in\mathbb{C}\setminus\{0\}$, escribiendo a $z$ en su representación exponencial tenemos: \begin{equation*} z=z(r,\theta)=re^{i\theta}, \end{equation*} donde $r=|\,z\,|$ y $\theta = \operatorname{Arg} z \in(-\pi, \pi]$.

Si aumentamos de $\theta$ a $\theta + 2\pi$, entonces: \begin{align*} z(r,\theta + 2\pi) & = re^{i(\theta+2\pi)}\\ & = re^{i\theta} e^{i2\pi}\\ & = re^{i\theta}\\ & = z(r,\theta), \end{align*} es decir, al aumentar el argumento principal de $z$ en $2\pi$ tenemos que $z$ regresa a su valor original.

Definición 20.3. (Funciones univaluadas y multivaluadas.)
Diremos que una función compleja $f$ es una función univaluada si $f$ es tal que: \begin{align*} f(z)&= f(z(r,\theta))\\ &= f(z(r,\theta + 2\pi)), \end{align*} para todo $z$ en el dominio de $f$. Si $f$ no es univaluada, entonces diremos que $f$ es una función multivaluada.

Ejemplo 20.9.
Sea $f(z) = z^n$, con $z\in\mathbb{C}$, tenemos que:

a) Si $n\in\mathbb{Z}$, entonces $f$ es simple.
Solución. Sabemos que para todo $n\in\mathbb{Z}$ se cumple que: \begin{equation*} e^{i 2\pi n} = 1. \end{equation*} Considerando a $z$ en su representación exponencial, observación 20.4, tenemos que: \begin{align*} f(z(r,\theta+2\pi)) & = \left[ re^{i(\theta + 2\pi)} \right]^n\\ & = r^n e^{in(\theta + 2\pi)}\\ & = r^n e^{in\theta} e^{i 2\pi n}\\ & = r^n e^{in\theta}\\ & = \left[r e^{i\theta}\right]^n\\ & = f(z(r,\theta)). \end{align*}

b) Si $n\notin\mathbb{Z}$, entonces $f$ es multivaluada.
Solución. Dado que $e^{i2\pi n} \neq 1$ para $n\notin\mathbb{Z}$, entonces: \begin{equation*} f(z(r,\theta)) \neq f(z(r,\theta+2\pi)), \end{equation*} por lo que, en tal caso, $f$ es una función multivaluada.

Tarea moral

  1. Completa la demostración de la proposición 20.1.
  2. Determina las funciones $u(x,y)$ y $v(x,y)$, correspondientes con la parte real e imaginaria, de las siguientes funciones y en cada caso expresa a $f$ como $f(z) = u(x,y)+iv(x,y)$.
    a) $f(z) = e^{2\overline{z} + 1}$.
    b) $f(z) = e^{1/z}$.
    c) $f(z) = z^2e^{z + i}$.
    d) $f(z) = \overline{ie^{z} + 1}$.
  3. Para cada una de las siguientes funciones determina su dominio de analicidad y encuentra su derivada.
    a) $f(z) = \dfrac{3e^{2z} – ie^{-z}}{z^3-1+i}$.
    b) $f(z) = i e^{1/z}$.
    c) $f(z) = \dfrac{e^z -1}{e^z + 1}$.
    d) $f(z) = e^{\overline{z}}$.
    e) $f(z) = e^{2\overline{z} + 1}$.
    f) $f(z) = e^{z^2}$.
  4. Determina todas las soluciones para las siguientes ecuaciones.
    a) $e^z = 1+i\sqrt{3}$.
    b) $e^{1/z} = -1$.
    c) $e^{2z} = 1+i$.
    d) $(1-i)e^{z} = 1+i$.
  5. Considera los siguientes planteamientos, en cada caso da una prueba o un contraejemplo.
    a) Sabemos que la función exponencial real es una función creciente, es decir si $x_1 < x_2$ entonces $e^{x_1} < e^{x_2}$. Considera la función exponencial compleja, ¿si $|\,z_1\,| < |\,z_2\,|$ entonces $|\,e^{z_1}\,| < |\,e^{z_2}\,|$?
    b) Sabemos que la función exponencial real siempre es positiva, es decir si $x\in\mathbb{R}$ entonces $e^{x} > 0$. Considera la función exponencial compleja, ¿siempre es positiva o existe $z\in\mathbb{C}$ tal que $e^z <0$?
  6. Muestra que para todo $z=x+iy\in\mathbb{C}$ se cumple que:
    a)] $|\,e^z\,|\leq 1$ si y solo si $\operatorname{Re}(z) \leq 0$. ¿Para qué valores se da la igualdad?
    b) $|\,e^z\,|\leq e^{|\,z\,|}$ si y solo si $\operatorname{Re}(z) \leq 0$. ¿Para qué valores se da la igualdad?
    c) $|\,1 + \,e^z\,|\leq 1 + e^x$.
    d) Determina para qué valores se cumple la igualdad en $|\,e^{-iz}\,|\leq 1$.
  7. Supón que $f(z)=f(x+iy)=Re^{i\phi}$ es una función analítica. Muestra que: \begin{equation*} \frac{\partial R}{\partial x} = R \frac{\partial \phi}{\partial y}. \end{equation*} Toma $a,b\in\mathbb{R}$ constantes y $z = re^{i\theta}$, con $r=|\,z\,|$ y $\theta = \operatorname{arg} z$. Considera a los dominios: \begin{align*} D_a = \left\{z\in\mathbb{C} : a<|\,z\,|<1 \right\}, \quad D_b = \left\{z\in\mathbb{C} : b<|\,z\,|<1 \right\}. \end{align*} Define la función $f:D_a \to D_b$ dada por: \begin{equation*} f\left(re^{i\theta}\right) = \left[\left(\frac{1-b}{1-a}\right)r + \frac{b-a}{1-a}\right]e^{i\theta}. \end{equation*} Muestra que $f$ es una función biyectiva y prueba que $f$ es analítica si y solo si $a=b$.
  8. Verifica que la función: \begin{equation*} f(z) = \left\{ \begin{array}{lcc} e^{-1/z^4} & \text{si} & z \neq 0, \\ 0 & \text{si} & z \neq 0, \end{array} \right. \end{equation*} satisface las ecuaciones de C-R en todo punto del plano complejo $\mathbb{C}$, pero que la función no es analítica en todo $\mathbb{C}$. ¿Cuál es su dominio de analicidad? Donde exista, obtén su derivada.
    Hint: Estudia la continuidad de $f$ en $z=0$.
  9. Escribe cada una de las siguientes expresiones considerando su representación exponencial, es decir, en la forma $e^{i\alpha}$, con $\alpha\in\mathbb{R}$.
    a) $\dfrac{\operatorname{cos}(\theta) – i\operatorname{sen}(\theta)}{\operatorname{cos}(3\theta) + i\operatorname{sen}(3\theta)}$.
    b) $\left(\dfrac{1}{\operatorname{cos}(\theta) – i\operatorname{sen}(\theta)}\right)^8$.
    c) $\dfrac{1}{\left(\frac{\sqrt{2}}{2}\operatorname{cos}(\theta) – i\frac{\sqrt{2}}{2}\operatorname{sen}(\theta)\right)^3}$.
    d) $\left[\operatorname{cos}(\theta) + i\operatorname{sen}(\theta)\right] \left[\operatorname{cos}(2\theta) – i\operatorname{sen}(2\theta)\right]$.
  10. Muestra que: \begin{align*} \operatorname{cos}(\theta+\beta+\alpha) & = \operatorname{cos}(\theta)\operatorname{cos}(\beta)\operatorname{cos}(\alpha) – \operatorname{cos}(\theta)\operatorname{sen}(\beta)\operatorname{sen}(\alpha)\\ & \quad – \operatorname{cos}(\beta)\operatorname{sen}(\theta)\operatorname{sen}(\alpha) – \operatorname{cos}(\alpha)\operatorname{sen}(\theta)\operatorname{sen}(\alpha). \end{align*} Determina una expresión similar para $ \operatorname{sen}(\theta+\beta+\alpha)$.

Más adelante…

En esta entrada hemos definido la función exponencial compleja, de tal modo que garantizamos que sea una función entera. A través de esta función hemos extendido a la exponencial real y algunas de sus propiedades.

Es importante recordar que esta nueva función tiene propiedades muy particulares que no se cumplen en su versión real, algunas de ellas son que la exponencial compleja puede tomar valores reales negativos y que es una función
periódica. Este último hecho nos llevo a concluir que la función exponencial compleja no es inyectiva, aunque podemos garantizar esta propiedad al restringir el dominio de dicha función a una banda horizontal infinita de ancho $2\pi$.

La función exponencial compleja juega un papel fundamental en el estudio de las funciones complejas, pues además de ser una función elemental, podemos definir al resto de las funciones complejas elementales en términos de la exponencial compleja, hecho que veremos en las siguientes entradas.

La siguiente entrada definiremos al logaritmo complejo, motivados en determinar una solución a la ecuación $e^w = z$, que como veremos nos llevará a concluir que el logaritmo complejo, es decir la solución a esta ecuación, será una función multivaluada. Veremos que a través del concepto de rama podremos definir una función univaluada que corresponda con una de las inversas de la función exponencial compleja y que nos permita caracterizar a la función logaritmo complejo.

Entradas relacionadas

Variable Compleja I: Funciones multivaluadas

Por Pedro Rivera Herrera

Introducción

A lo largo de nuestros cursos hemos trabajado con el concepto de función. Intuitivamente entendemos a una función como una regla que asocia elementos entre dos conjuntos, con la condición de que a cada elemento del primer conjunto se le asigne uno y solo uno del segundo conjunto.

Para el caso complejo el concepto de función que conocemos no es una excepción, sin embargo resulta necesario introducir un nuevo concepto referente a funciones que «asignan más de un valor» a un mismo número complejo, las funciones multivaluadas. En el sentido estricto de la palabra es claro que esta idea de función carece de sentido pues rompe con la definición de lo que entendemos por función, pero para las funciones complejas esta idea resulta algo necesario al abordar el concepto de función inversa. Nuestro objetivo en esta entrada será definir esta nueva idea de «función», la cual nos permitirá ver que los conceptos de función inversa y función multivaluada están estrechamente ligados.

Observación 13.1.
Recordemos que para un número complejo $z\neq 0$, tal que $z=r\operatorname{cis}(\theta)$, con $r=|\,z\,|$ y $\theta = \operatorname{arg} z$, sus $n$-raíces complejas están dadas por: \begin{equation*} w_k = \sqrt[n]{r} \left[\operatorname{cos}\left(\frac{\theta + 2k\pi}{n}\right) + i \operatorname{sen}\left( \frac{\theta + 2k\pi}{n} \right)\right], \end{equation*} donde $k=0, 1,\ldots, n-1$.

Para motivar una definición de función multivaluada consideremos el siguiente:

Ejemplo 13.1.
De acuerdo con la observación 4.8 (entrada 4 de la primera unidad) sabemos que para $n\in\mathbb{N}^+$ la expresión $z^{1/n}$ es $n$-valuada. Si consideramos a la función $w= g(z) = z^{1/3}$, con $z\neq 0$, entonces está función es $3$-valuada, es decir, para cada valor de $z$ existen tres valores distintos de $w$ que satisfacen la ecuación $z=w^3$. Por ejemplo, para la ecuación $w^3 = 1$, si consideramos el argumento principal de $z=1$, es decir $\operatorname{Arg} z = 0$, tenemos que: \begin{align*} w_0 = 1,\\ w_1 = \frac{-1 + i\sqrt{3}}{2},\\ w_2 = \frac{-1 – i\sqrt{3}}{2}, \end{align*} son las 3 raíces cúbicas de la unidad, es decir las soluciones de la ecuación. Entonces, para $z=1$ la función $g(z) = z^{1/3}$, asigna los valores $w_0, w_1$ y $w_2$ dados.

Notemos que si consideramos a las funciones $f(z)=z^3$ y $g(z) = z^{1/3}$, entonces $g$ no puede ser la inversa de $f$ desde que $f$ no es inyectiva pues claramente $f(w_0) = 1 = f(w_1)$, pero $w_0 \neq w_1$.

Debe ser claro que en general las funciones de la forma $f(z)=z^{1/n}$, con $n\in\mathbb{N}^+$, asignan más de un valor para cada número complejo $z\neq 0$, por lo que en el sentido estricto dichas reglas de asignación no representan a una función, sino a un conjunto de funciones. Podemos visualizar este hecho en el siguiente Applet de GeoGebra https://www.geogebra.org/m/mqwkd66u.

Definición 13.1. (Función univaluada y función multivaluada.)
Sea $U\subset\mathbb{C}$ un conjunto abierto y $f:U \to \mathbb{C}$ una función. Diremos que $f$ es una función univaluada o simplemente una función compleja si para cada $z\in U$ existe un único $w\in \mathbb{C}$ tal que $f(z) = w$. En caso contrario diremos que $f$ es una función multivaluada.

Observación 13.2.
Para representar a una función multivaluada usaremos como notación letras mayúsculas, mientras que para referirnos a funciones univaluadas utilizaremos letras minúsculas, así por ejemplo, para $n\in\mathbb{N}^+$, la función $F(z) = z^{1/n}$ es multivaluada, mientras que la función $f(z) = 3z+1$ es univaluada.

Definición 13.2. (Rama de una función multivaluada.)
Sea $F(z)$ una función multivaluada definida en un dominio $D\subset\mathbb{C}$. Diremos que $f(z)$ es una rama de $F(z)$ en $D$ si:

  1. $f$ está bien definida en $D$, es decir $f$ es una función univaluada.
  2. $f(z)$ es uno de los posibles valores de $F(z)$ para cada $z\in D$.
  3. $f$ es continua en $D$.

Observación 13.3.
Cuando representemos ramas de una función multivaluada $F$ utilizaremos subíndices en la notación de función univaluada, por ejemplo $f_0, f_1, f_2, \ldots$.

Observación 13.4.
El concepto de dominio en la definición anterior corresponde con el de una región en el plano complejo $\mathbb{C}$, es decir, un conjunto abierto y conexo.

Observación 13.5.
Aunque en esta entrada no abordaremos formalmente el concepto de continuidad de una función compleja, utilizamos esta propiedad fuertemente en la definición de una rama de una función multivaluada, ya que en ocasiones el dominio de una función multivaluada no corresponderá con el dominio de una rama puesto que puede suceder que la función univaluada no sea continua en dicho conjunto, como veremos en los ejemplos 13.2 y 13.4. Para mayor detalle sobre el concepto de continuidad se puede consultar la entrada 15 de esta unidad.

Ejemplo 13.2.
En la definición 4.1, de la entrada 4, se específico que la notación usada para referirnos al argumento de un número complejo, es decir $\operatorname{arg} z$, no representa a una función de $z$, ya que dicha notación describe a un conjunto de números reales $\theta$ que satisfacen las ecuaciones: \begin{equation*} \text{sen}(\theta) = \frac{\text{Re}(z)}{|\, z \,|}, \quad \text{cos}(\theta) = \frac{\text{Im}(z)}{|\, z \,|}. \tag{13.1} \end{equation*}

Considerando el concepto de función multivaluada podemos hablar de la función $F(z) = \operatorname{arg}(z)$, la cual asignará a cada número complejo $z\neq 0$ una infinidad de argumentos que satisfacen las ecuaciones (13.1), ya que para cada $n\in\mathbb{Z}$, si $\theta\in\mathbb{R}$ satisface las ecuaciones (13.1), entonces $\theta + 2\pi n$ también lo hará.

Si fijamos un valor de $k\in\mathbb{Z}$, obtenemos una función univaluda que comunmente es llamada «rama» de la función $F(z)= \operatorname{arg}(z)$. Es importante hacer énfasis aquí en el hecho de que esta «rama» no es necesariamente una rama en el sentido estricto de la palabra, es decir de acuerdo con la definición 13.2, pues como veremos en el ejemplo 15.6 de la entrada 15, la función argumento es continua en el dominio $\mathbb{C}\setminus\left(-\infty,0\right]$, mientras que la función multivaluada $F(z)= \operatorname{arg}(z)$ está definida en el dominio $\mathbb{C}\setminus\{0\}$.

Es claro que existen infinitas ramas, en particular, si elegimos el valor $k = 0$, obtenemos la rama que denominamos la rama principal, que corresponde con el argumento principal de un número complejo $z\neq 0$, es decir $\operatorname{Arg} z \in (-\pi, \pi]$.

Definición 13.3. (Argumento principal.)
Sea $U = \mathbb{C}\setminus{0}$. Definimos a la función compleja {\bf argumento principal} como la función $f: U \to (-\pi, \pi]$, denotada como $f(z) = \operatorname{Arg}(z)$, dada por: \begin{equation*} \operatorname{Arg}(z) = \left\{ \begin{array}{lcc} \text{arctan}\left(\frac{y}{x}\right) & \text{si} & x>0,\\ \text{arctan}\left(\frac{y}{x}\right) + \pi & \text{si} & x<0 \quad \text{y} \quad y\geq 0,\\ \text{arctan}\left(\frac{y}{x}\right) – \pi & \text{si} & x<0 \quad \text{y} \quad y<0,\\ \frac{\pi}{2} & \text{si} & x=0 \quad \text{y} \quad y>0,\\ -\frac{\pi}{2} & \text{si} & x=0 \quad \text{y} \quad y<0,\\ \text{No definido} & \text{si} & x=0 \quad \text{y} \quad y=0. \end{array} \right. \end{equation*}

Notemos que tanto la función multivaluada $F(z) = \operatorname{arg}(z)$ como la función univaluada $f(z) = \operatorname{Arg}(z)$ están definidas en $\mathbb{C}\setminus\{0\}$ y toman valores en intervalos reales de la forma $\left((2n-1)\pi, (2n+1)\pi\right]$, con $n\in\mathbb{Z}$, por lo que su gráfica tiene lugar en $\mathbb{R}^3$. Podemos visualizar estas gráficas en el siguiente Applet de GeoGebra: https://www.geogebra.org/m/cwt5ctuf.

Procedemos a deducir una nueva expresión para obtener el argumento principal de un número complejo que nos será de utilidad más adelante.

Proposición 13.1.
Sea $z = x+iy \in \mathbb{C}\setminus\{0\}$, entonces: \begin{equation*} \operatorname{Arg}(z) = \left\{ \begin{array}{lcc} 2 \operatorname{arc tan}\left(\dfrac{y}{|\,z\,| + x}\right) & \text{si} & z\not\in \mathbb{R}^{-},\\ \pi & \text{si} & z\in \mathbb{R}^{-},\ \end{array} \right. \end{equation*} donde $\mathbb{R}^{-} = (-\infty, 0)$.

Demostración. Sea $z = x+iy \in \mathbb{C}\setminus{0}$.

Supongamos que $z\in \mathbb{R}^{-}$, entonces: \begin{equation*} z = -|\,z\,| = |\,z\,| \left[\operatorname{cos}(\pi) + i \operatorname{sen}(\pi)\right] = |\,z\,| \operatorname{cis}(\pi), \end{equation*} por lo que $\operatorname{Arg}(z) = \pi \in \operatorname{arg} z$ y claramente $\pi \in (-\pi,\pi]$.

Supongamos ahora que $z\not\in \mathbb{R}^{-}$, consideremos a: \begin{equation*} \theta_0:= 2 \operatorname{arc tan}\left(\dfrac{y}{|\,z\,| + x}\right). \end{equation*}

Como $z\neq 0$, entonces tenemos que: \begin{align*} \theta_0 & = 2 \operatorname{arc tan}\left(\dfrac{y}{|\,z\,| + x}\right)\\ & = 2 \operatorname{arc tan}\left(\dfrac{\dfrac{y}{|\,z\,|}}{\dfrac{|\,z\,| + x}{|\,z\,|}}\right)\\ & = 2 \operatorname{arc tan}\left(\dfrac{\dfrac{y}{|\,z\,|}}{1 + \dfrac{x}{|\,z\,|}}\right)\\ & := 2 \operatorname{arc tan}\left(\dfrac{b}{1 + a}\right), \end{align*}

de donde: \begin{equation*} \tan\left(\frac{\theta_0}{2}\right) = \dfrac{b}{1 + a}. \end{equation*}

Recordemos que se cumplen las siguientes identidades trigonométricas: \begin{equation*} \tan\left(\frac{\theta_0}{2}\right) = \dfrac{\operatorname{sen}(\theta_0)}{1 + \operatorname{cos}(\theta_0)}, \quad \tan^2\left(\frac{\theta_0}{2}\right) = \dfrac{1 – \operatorname{cos}(\theta_0)}{1 + \operatorname{cos}(\theta_0)}, \quad \tan\left(\frac{\theta_0}{2}\right) = \dfrac{2 \operatorname{tan}\left(\frac{\theta_0}{2}\right)}{1 – \tan^2\left(\frac{\theta_0}{2}\right)}, \end{equation*} por lo que: \begin{equation*} \operatorname{sen}(\theta_0) = \dfrac{2 \operatorname{tan}\left(\frac{\theta_0}{2}\right)}{1 + \tan^2\left(\frac{\theta_0}{2}\right)} = b, \end{equation*} \begin{equation*} \operatorname{cos}(\theta_0) = \dfrac{1 – \tan^2\left(\frac{\theta_0}{2}\right)}{1 + \tan^2\left(\frac{\theta_0}{2}\right)} = a. \end{equation*}

Más aún, dado que $z\neq 0$ y $z\not\in \mathbb{R}^{-}$, es decir $z\not\in (-\infty, 0] = \left\{z = x+iy : x\leq 0, y =0\right\}$, para $z=x+iy$ se cumple que $x>0$ ó $y\neq 0$, por lo que $|\,z\,| + x >0$, entonces: \begin{equation*} \operatorname{arc tan}\left(\dfrac{y}{|\,z\,| + x}\right) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \end{equation*} de donde $\theta_0 \in (-\pi, \pi)$ y: \begin{equation*} z = |\,z\,| \left[\operatorname{cos}(\theta_0) + i \operatorname{sen}(\theta_0)\right] = |\,z\,| \operatorname{cis}(\theta_0). \end{equation*} Por lo tanto, $\theta_0 = \operatorname{Arg}(z)$.

$\blacksquare$

Observación 13.6.
De acuerdo con los resultados de la entrada 4, Unidad I, sabemos que para $z_1,z_2\in\mathbb{C}\setminus\{0\}$, se cumple que: \begin{equation*} \operatorname{arg} z_1 z_2 = \operatorname{arg} z_1 + \operatorname{arg} z_2 = \operatorname{Arg} z_1 + \operatorname{Arg} z_2 + 2\pi n, \quad n\in\mathbb{Z}, \end{equation*} \begin{equation*} \operatorname{arg} \frac{z_1}{z_2} = \operatorname{arg} z_1 – \operatorname{arg} z_2 = \operatorname{Arg} z_1 – \operatorname{Arg} z_2 + 2\pi n, \quad n\in\mathbb{Z}, \end{equation*} \begin{equation*} \operatorname{arg} z_1^k = k \operatorname{arg} z_1 = k \operatorname{Arg} z_1 + 2\pi n, \quad k, n\in\mathbb{Z}, \end{equation*} donde $\operatorname{Arg} z \in (-\pi, \pi]$.

Es importante recordar que estas igualdades son entre conjuntos. Sin embargo, considerando la definición de función multivaluada es claro que estas propiedades se heredan a la función multivaluada $G(z) = \operatorname{arg}(z)$, para $z\neq 0$.

Más aún, de nuestros cursos de Cálculo sabemos que la función $f(x) = [x]$, llamada parte entera, determina el mayor entero menor o igual a $x$. Para $x\in\mathbb{R}$ y $n\in\mathbb{Z}$ dicha función cumple que: \begin{equation*} [x] = n \quad \Longleftrightarrow \quad x-1 < n \leq x \quad \Longleftrightarrow \quad n \leq x < n+1. \end{equation*}

Notemos que mediante esta función podemos obtener una expresión para determinar el argumento principal de un número complejo a través de cualquier elemento del conjunto de argumentos, es decir, para $z\in\mathbb{C}$, con $z\neq 0$, sabemos que: \begin{equation*} \operatorname{arg} z = \operatorname{Arg} z + 2\pi k, \quad k\in\mathbb{Z}, \end{equation*} de donde: \begin{equation*} \operatorname{Arg} z = \operatorname{arg} z + 2\pi n, \quad n=-k\in\mathbb{Z}. \end{equation*}

Puesto que $\operatorname{Arg} z \in (-\pi, \pi]$, entonces: \begin{equation*} -\pi < \operatorname{arg} z + 2\pi n \leq \pi \quad \Longleftrightarrow \quad \frac{1}{2} – \frac{\operatorname{arg} z}{2\pi} – 1 < n \leq \frac{1}{2} – \frac{\operatorname{arg} z}{2\pi}, \end{equation*} es decir: \begin{equation*} \operatorname{Arg} z = \operatorname{arg} z + 2\pi \left[ \frac{1}{2} – \frac{\operatorname{arg} z}{2\pi}\right], \end{equation*} donde $[\,x\,]$ corresponde con la función parte entera y $\operatorname{arg} z$ es un argumento $\theta$ cualquiera que satisface (13.1).

De acuerdo con observación anterior, no es difícil verificar que la función argumento principal definida antes, satisface las siguientes propiedades.

Proposición 13.2. (Propiedades argumento principal.)
Sean $z_1, z_2 \in \mathbb{C}\setminus\{0\}$, entonces:

  1. $\operatorname{Arg}(z_1 z_2) = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) + 2\pi N_{+}$,
  2. $\operatorname{Arg}\left(\dfrac{z_1}{z_2}\right) = \operatorname{Arg}(z_1) – \operatorname{Arg}(z_2) + 2\pi N_{-}$, donde $N_{\pm}$ son números enteros dados por: \begin{equation*} N_{\pm} = \left\{ \begin{array}{lcc} -1 & \text{si} & \operatorname{Arg}(z_1) \pm \operatorname{Arg}(z_2) > \pi, \\ 0 & \text{si} & -\pi < \operatorname{Arg}(z_1) \pm \operatorname{Arg}(z_2) \leq \pi, \\ 1 & \text{si} & \operatorname{Arg}(z_1) \pm \operatorname{Arg}(z_2) \leq -\pi. \end{array} \right. \end{equation*}
  3. \begin{equation*}
    \operatorname{Arg}\left(z_1^{-1}\right) = \operatorname{Arg}\left(\overline{z_1}\right) = \left\{ \begin{array}{lcc} \operatorname{Arg}\left(z_1\right) & \text{si} & \operatorname{Im}(z_1) =0 \, \, \, \, \text{y} \,\,\,\, z_1\neq 0,\\ -\operatorname{Arg}\left(z_1\right) & \text{si} & \operatorname{Im}(z_1) \neq 0. \end{array} \right. \end{equation*}
  4. Para todo $n\in\mathbb{Z}$ se cumple que: \begin{equation*} \operatorname{Arg}\left(z_1^n\right) = n\, \operatorname{Arg}\left(z_1\right) + 2\pi N_{n}, \end{equation*} donde $N_n$ es un número entero dado por: \begin{equation*} N_n = \left[ \frac{1}{2} – \frac{n}{2\pi}\operatorname{Arg}(z_1)\right], \end{equation*} con $[\, x \,]$ la función parte entera de $x$.

Demostración. Sean $z_1, z_2 \in \mathbb{C}\setminus\{0\}$.

  1. Sean $\theta_1 = \operatorname{Arg}(z_1)$ y $\theta_1 = \operatorname{Arg}(z_2)$, entonces $\theta_1, \theta_2 \in (-\pi, \pi]$, por lo que: \begin{equation*} -2\pi < \theta_1 + \theta_2 \leq 2\pi \quad \Longleftrightarrow \quad -2\pi \leq -\left(\theta_1 + \theta_2\right) < 2\pi. \end{equation*} De acuerdo con la observación 13.6 es claro que: \begin{equation*} \operatorname{Arg}(z_1 z_2) = \theta_1 + \theta_2 + 2\pi N_{+}, \end{equation*} donde $N_{+} = \left[ \dfrac{1}{2} – \dfrac{\theta_1 + \theta_2}{2\pi}\right] \in \mathbb{Z}$.

    Entonces: \begin{equation*} -\dfrac{1}{2} – \frac{2\pi}{2\pi} \leq -\dfrac{1}{2} – \dfrac{\theta_1 + \theta_2}{2\pi} < N_{+} \leq \dfrac{1}{2} – \dfrac{\theta_1 + \theta_2}{2\pi} < \dfrac{1}{2} + \dfrac{2\pi}{2\pi}, \end{equation*} es decir $-\dfrac{3}{2} < N_{+} < \dfrac{3}{2}$, por lo que $N_{+} \in \left\{-1, 0, 1\right\}$.

    Dado que $ \operatorname{Arg}(z_1 z_2) \in (-\pi, \pi]$, entonces: \begin{equation*} -\pi < \theta_1 + \theta_2 +2\pi N_{+} \leq \pi. \end{equation*} Si $ -2\pi < \theta_1 + \theta_2 \leq -\pi$, entonces $N_{+} = 1$. Mientras que si $ \pi < \theta_1 + \theta_2 \leq 2\pi$, entonces $N_{+} = -1$.
  2. Se deja como ejercicio al lector.
  3. Se deja como ejercicio al lector.
  4. Se sigue de la observación 13.6.

$\blacksquare$

Ejemplo 13.3.
Sean $z_1 = i$ y $z_2 = -1$. Calcular:

a) $\operatorname{Arg}(z_1 z_2)$.

Solución. Tenemos que $z_1 z_2 = -i$, por lo que $\operatorname{Arg}\left(z_1 z_2\right) = -\dfrac{\pi}{2}$.

Por otra parte, tenemos que $\operatorname{Arg}\left(z_1\right) = \dfrac{\pi}{2}$ y $\operatorname{Arg}\left(z_2\right) = \pi$, por lo que: \begin{equation*} \operatorname{Arg}\left(z_1\right) + \operatorname{Arg}\left(z_2\right) = \dfrac{\pi}{2} + \pi = \frac{3\pi}{2}. \end{equation*} De acuerdo con la propiedad 1, como $\operatorname{Arg}\left(z_1\right) + \operatorname{Arg}\left(z_2\right) > \pi$, entonces: \begin{equation*} \operatorname{Arg}(z_1 z_2) = -\frac{\pi}{2} = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) -2\pi. \end{equation*} b) $\operatorname{Arg}\left(z_2^{-1}\right)$.

Solución. Como $\operatorname{Im}(z_2) = 0$ y $z_2\neq 0$, entonces por la propiedad 3 tenemos que: \begin{equation*} \operatorname{Arg}\left(z_2^{-1}\right) = \operatorname{Arg}(z_2) = \pi. \end{equation*} c) $\operatorname{Arg}(z_1^2)$.

Solución. Dado que $\operatorname{Arg}\left(z_1\right) = \dfrac{\pi}{2}$, entonces considerando la propiedad 4 tenemos que: \begin{align*} \operatorname{Arg}\left(z_1^2\right) & = 2 \left(\dfrac{\pi}{2}\right) + 2\pi \left[ \frac{1}{2} – \frac{2}{2\pi} \left(\dfrac{\pi}{2}\right)\right]\\ & = \pi + 2\pi(0)\\ & = \pi. \end{align*}

Observación 13.7.
De nuestros cursos de Cálculo sabemos que las funciones reales seno y coseno son continuas en $\mathbb{R}$ y que para todo $x\in\mathbb{R}$ se cumple que: \begin{equation*} -1 \leq \operatorname{sen}(x) \leq 1 \quad \text{y} \quad -1 \leq \operatorname{cos}(x) \leq 1. \end{equation*}

Por lo que, si $r,s \in [-1,1]$, entonces existen $x,y\in\mathbb{R}$ tales que: \begin{equation*} \operatorname{sen}(y) = s \quad \text{y} \quad \operatorname{cos}(x) = r. \end{equation*}

Si imponemos la condición $r^2 + s^2 = 1$, es decir que $(r,s)$ cae en la circunferencia unitaria de $\mathbb{R}^2$, entonces se cumple que: \begin{equation*} \operatorname{sen}(y) = \pm \operatorname{sen}(x) = \operatorname{sen}\left(\pm x\right). \end{equation*}

Dado que $\operatorname{cos}\left( \pm x\right) = \operatorname{cos}(x)$, entonces existe $\theta\in\mathbb{R}$ tal que: \begin{equation*} s = \operatorname{sen}\left(\theta\right) \quad \text{y} \quad r = \operatorname{cos}\left(\theta\right). \end{equation*}

Observación 13.8.
Sea $x\in\mathbb{R}$. Definimos: \begin{equation*} x^*:= x – 2\left[\frac{x}{2\pi}\right] \pi. \end{equation*}

De acuerdo con la observación 13.6 sabemos que $\left[\frac{x}{2\pi}\right] \leq \frac{x}{2\pi} < \left[\frac{x}{2\pi}\right] + 1$, entonces $ 0\leq x^* < 2\pi$ y: \begin{equation*} \operatorname{sen}(x^*) = \operatorname{sen}(x), \quad \operatorname{cos}(x^*) = \operatorname{cos}(x). \end{equation*}

En general, para $\alpha, x\in\mathbb{R}$ definimos: \begin{equation*} x^{**} := \left\{ \begin{array}{lcc} x^* + 2\left( \left[\frac{\alpha}{2\pi}\right] + 1\right) \pi & \text{si} & x^* + 2\left[\frac{\alpha}{2\pi}\right]\pi < \alpha, \\ x^* + 2 \left[\frac{\alpha}{2\pi}\right] \pi & \text{si} & x^* + 2\left[\frac{\alpha}{2\pi}\right]\pi \geq \alpha. \end{array} \right. \end{equation*}

Entonces $ \alpha \leq x^{**} < \alpha + 2\pi$ y: \begin{equation*} \operatorname{sen}(x^{**}) = \operatorname{sen}(x), \quad \operatorname{cos}(x^{**}) = \operatorname{cos}(x). \end{equation*}

De las observaciones 13.7 y 13.8 tenemos que si $r,s\in\mathbb{R}$, con $r^2+s^2 = 1$, entonces dado $\alpha\in\mathbb{R}$ existe $\theta \in [\alpha, \alpha+2\pi)$ tal que:
\begin{equation*} s = \operatorname{sen}\left(\theta\right) \quad \text{y} \quad r = \operatorname{cos}\left(\theta\right). \end{equation*}

Notemos que dicho $\theta$ es único. Supongamos que existen $\theta, \theta’ \in [\alpha, \alpha+2\pi)$ tales que: \begin{equation*} \operatorname{sen}\left(\theta\right) = s = \operatorname{sen}\left(\theta’\right) \quad \text{y} \quad \operatorname{cos}\left(\theta\right) = r = \operatorname{cos}\left(\theta’\right), \end{equation*} entonces $\operatorname{cos}(\theta-\theta’) = \operatorname{sen}^2\left(\theta\right) + \operatorname{cos}^2\left(\theta\right) = 1$, pero lo anterior solo es posible si y solo si $\theta – \theta’ = 2k\pi$ para algún $k\in\mathbb{Z}$.

Puesto que $\theta, \theta’ \in [\alpha, \alpha+2\pi)$ y $\theta = \theta’ + 2k\pi$, para algún $k\in\mathbb{Z}$, entonces $k = 0$ y por tanto $\theta = \theta’$.

Más aún, dado que para todo $\alpha\in\mathbb{R}$ se cumple que: \begin{equation*} \operatorname{sen}(\alpha + 2\pi) = \operatorname{sen}(\alpha) \quad \text{y} \quad \operatorname{cos}(\alpha + 2\pi) = \operatorname{cos}(\alpha), \end{equation*} entonces existe un único $\theta’ \in (\alpha, \alpha + 2\pi]$ tal que: \begin{equation*} s = \operatorname{sen}\left(\theta’\right) \quad \text{y} \quad r = \operatorname{cos}\left(\theta’\right). \end{equation*}

Considerando lo anterior, podemos definir una rama arbitraria de la función multivaluada $F(z) = \operatorname{arg}(z)$.

Definición 13.4. (Rama del argumento en un intervalo $I$.)
Sean $\alpha\in\mathbb{R}$, $z\in\mathbb{C}\setminus\{0\}$ y sea $I\subset\mathbb{R}$ un intervalo semiabierto de longitud $2\pi$, es decir de la forma $[\alpha, \alpha + 2\pi)$ ó $(\alpha, \alpha + 2\pi]$. Al único número real $\theta\in I$ tal que: \begin{equation*} \text{sen}(\theta) = \frac{\text{Re}(z)}{|\, z \,|} \quad \text{y} \quad \text{cos}(\theta) = \frac{\text{Im}(z)}{|\, z \,|}, \end{equation*} lo llamaremos el argumento de $z$ en $I$ y lo denotaremos como $\operatorname{Arg}_{I} z$.

La utilidad de la definición 13.4 la veremos cuando definamos al logaritmo complejo, pues en ocasiones el trabajar con ramas distintas de la principal nos permitirá hablar de ciertas funciones en las que tengamos que estudiar algunas de sus propiedades como la continuidad y la analicidad.

Considerando la definición 13.4, es posible definir a la función $\operatorname{Arg}_{I}: \mathbb{C}\setminus\{0\} \to I$ como $\operatorname{Arg}_{I}(z) = $ el único valor de $\operatorname{arg} z$ que pertenece a $I$.

Observación 13.9.
En general la función $\operatorname{Arg}_{I}(z)$ será una rama, de acuerdo con la definición 13.2, siempre que se defina sobre el dominio $\mathbb{C}\setminus L\alpha$, con $L_\alpha = \{r\operatorname{cis}(\alpha) : r\geq 0\}$, figura 60, es decir todo el plano complejo menos la semirrecta que parte desde el origen y que forma un ángulo $\alpha$ con respecto al eje real positivo, pues en dicha semirrecta la función no es continua, como veremos en el ejemplo 15.6 de la entrada 15.

Figura 60: Semirrecta $L_\alpha$ que parte desde el origen, con $\alpha\in\mathbb{R}$.

Observación 13.10.
Notemos que si $\alpha=-\pi$ e $I = (\alpha, \alpha + 2\pi]$, entonces para $z\neq 0$ se cumple que $\operatorname{Arg}(z) = \operatorname{Arg}_{(-\pi, \pi]}(z)$, es decir obtenemos la rama principal o el argumento principal. Mientras que si consideramos a $\alpha=0$ e $I = [\alpha, \alpha + 2\pi)$, entonces para $z\neq 0$ obtenemos $\operatorname{Arg}_{[0, 2\pi)}(z)$ que suele llamarse el argumento natural de $z$.

Podemos deducir que el argumento principal y el argumento natural de un número complejo $z\neq 0$ están relacionados como sigue: \begin{equation*} \operatorname{Arg}(z) = \left\{ \begin{array}{lcc} \operatorname{Arg}_{[0, 2\pi)}(z) & \text{si} & 0 \leq \operatorname{Arg}_{[0, 2\pi)}(z) \leq \pi, \\ \operatorname{Arg}_{[0, 2\pi)}(z) – 2\pi & \text{si} & \pi < \operatorname{Arg}_{[0, 2\pi)}(z) < 2 \pi. \end{array} \right. \end{equation*} \begin{equation*} \operatorname{Arg}_{[0, 2\pi)}(z) = \left\{ \begin{array}{lcc} \operatorname{Arg}(z) & \text{si} & 0 \leq \operatorname{Arg}(z) \leq \pi, \\ \operatorname{Arg}(z) + 2\pi & \text{si} & -\pi < \operatorname{Arg}(z) < 0. \end{array} \right. \end{equation*}

Gráficamente podemos ver dónde toman valores el argumento principal y el argumento natural de un número complejo $z\neq 0$, figura 61.

Figura 61: Argumento principal y argumento natural de un número complejo $z\neq 0$.

Ejemplo 13.4.
Si consideramos $\alpha=-\pi$ e $I = (\alpha, \alpha + 2\pi]$, entonces para $z=-1-i$ tenemos que: \begin{equation*} \operatorname{Arg}_{(-\pi, \pi]}(z) = -\frac{3\pi}{4}. \end{equation*}

Por otra parte si consideramos $\alpha=0$ e $I = [\alpha, \alpha + 2\pi)$, entonces para $z=-1-i$ tenemos que: \begin{equation*} \quad \operatorname{Arg}_{[0, 2\pi)}(z) = \frac{5\pi}{4}. \end{equation*}

Procedemos a establecer un resultado que relacione a la función $\operatorname{Arg}_{I}(z)$ con las funciones $\operatorname{Arg}(z)$ y $\operatorname{Arg}{[0, 2\pi)}(z)$.

Proposición 13.3.
Sean $z\neq 0$, $\alpha\in\mathbb{R}$ y sea $I\subset\mathbb{R}$ un intervalo semiabierto de longitud $2\pi$, es decir de la forma $[\alpha, \alpha + 2\pi)$ ó $(\alpha, \alpha + 2\pi]$.

  1. Si $I= [\alpha, \alpha + 2\pi)$, entonces: $\operatorname{Arg}_{I}(z) = \operatorname{Arg}_{[0,2\pi)}\left(z \operatorname{cis}(-\alpha)\right) + \alpha$.
  2. Si $I= (\alpha, \alpha + 2\pi]$, entonces: $\operatorname{Arg}_{I}(z) = \operatorname{Arg}\left(-z \operatorname{cis}(-\alpha)\right) + \alpha + \pi$.

Demostración. Dadas las hipótesis, primero notemos que para cualesquiera $\theta,\alpha\in\mathbb{R}$ se cumple que: \begin{align*} \operatorname{cis}(\theta-\alpha) & = \operatorname{cos}(\theta – \alpha) + i \operatorname{sen}(\theta – \alpha)\\ & = \operatorname{cos}(\theta) \operatorname{cos}(\alpha) + \operatorname{sen}(\theta) \operatorname{sen}(\alpha)\\ & \quad \quad + i \left[ \operatorname{sen}(\theta) \operatorname{cos}(\alpha) – \operatorname{sen}(\alpha) \operatorname{cos}(\theta) \right]\\ & = \operatorname{cos}(\alpha) \left[ \operatorname{cos}(\theta) + i \operatorname{sen}(\theta) \right] – i \operatorname{sen}(\alpha) \left[ \operatorname{cos}(\theta) + i \operatorname{sen}(\theta) \right]\\ & = \operatorname{cis}(\theta) \left[ \operatorname{cos}(-\alpha) + i \operatorname{sen}(-\alpha) \right] \\ & = \operatorname{cis}(\theta) \operatorname{cis}(-\alpha). \end{align*}

  1. Sea $I= [\alpha, \alpha + 2\pi)$. Si $\theta \in I$ y $\theta = \operatorname{Arg}_{I}(z)$ entonces $z = |\,z\,| \operatorname{cis}(\theta)$ y: \begin{equation*} \alpha \leq \theta < \alpha + 2\pi \quad \Longleftrightarrow \quad 0 \leq \theta – \alpha < 2\pi, \end{equation*} por lo que: \begin{align*} \theta – \alpha & = \operatorname{Arg}_{[0,2\pi)}\left( \operatorname{cis}(\theta -\alpha)\right)\\ & = \operatorname{Arg}_{[0,2\pi)}\left( \operatorname{cis}(\theta) \operatorname{cis}(-\alpha)\right)\\ & = \operatorname{Arg}_{[0,2\pi)}\left( \frac{z}{|\,z\,|} \operatorname{cis}(-\alpha)\right)\\ & = \operatorname{Arg}_{[0,2\pi)}\left( z \operatorname{cis}(-\alpha)\right), \end{align*} de donde: \begin{equation*} \theta = \operatorname{Arg}_{I}(z) = \operatorname{Arg}_{[0,2\pi)}\left(z \operatorname{cis} (-\alpha)\right) + \alpha. \end{equation*}
  2. Sea $I= (\alpha, \alpha + 2\pi]$. Si $\theta \in I$ y $\theta = \operatorname{Arg}_{I}(z)$ entonces $z = |\,z\,| \operatorname{cis}(\theta)$ y: \begin{equation*} \alpha < \theta \leq \alpha + 2\pi \quad \Longleftrightarrow \quad -\pi < \theta – \alpha -\pi \leq \pi, \end{equation*} por lo que: \begin{align*} \operatorname{cis}(\theta – \alpha – \pi) & = \operatorname{cos}(\theta – \alpha – \pi) + i \operatorname{sen}(\theta – \alpha – \pi)\\ & = \operatorname{cos}(\pi) \left [\operatorname{cos}(\theta – \alpha) + i \operatorname{sen}(\theta – \alpha) \right]\\ & = – \operatorname{cis}(\theta) \operatorname{cis}(-\alpha). \end{align*} Entonces: \begin{align*} \theta – \alpha – \pi & = \operatorname{Arg}\left( \operatorname{cis}(\theta -\alpha – \pi)\right)\\ & = \operatorname{Arg}\left( -\operatorname{cis}(\theta) \operatorname{cis}(-\alpha)\right)\\ & = \operatorname{Arg}\left( \frac{z}{|\,z\,|} \operatorname{cis}(-\alpha)\right)\\ & = \operatorname{Arg}\left(-z \operatorname{cis}(-\alpha)\right), \end{align*} de donde: \begin{equation*} \theta = \operatorname{Arg}_{I}(z) = \operatorname{Arg}\left(-z \operatorname{cis} (-\alpha) \right) + \alpha + \pi. \end{equation*}

$\blacksquare$

Ejemplo 13.5.
Sea $\alpha=3\pi/2$. Si $I = [\alpha, \alpha + 2\pi)$, entonces: \begin{equation*} I = \left[\frac{3\pi}{2}, \frac{7\pi}{2}\right). \end{equation*}

Sabemos que: \begin{equation*} \operatorname{cis} \left(-\frac{3\pi}{2}\right) = \operatorname{cos} \left(-\frac{3\pi}{2}\right) + i \operatorname{sen} \left(-\frac{3\pi}{2}\right) = 0 + i(1) = i. \end{equation*}

Notemos que si $z\in \mathbb{R}^+$, es decir $z>0$, entonces: \begin{align*} \operatorname{Arg}_{\left[\frac{3\pi}{2}, \frac{7\pi}{2}\right)}(z) & = \operatorname{Arg}_{[0,2\pi)}\left(z \operatorname{cis} \left(-\frac{3\pi}{2}\right)\right) + \frac{3\pi}{2}\\ & = \operatorname{Arg}_{[0,2\pi)}\left(z i\right) + \frac{3\pi}{2}\\ & = \frac{\pi}{2} + \frac{3\pi}{2}\\ & = 2\pi. \end{align*}

Por otra parte, para $z=i$ tenemos que: \begin{equation*} i \, \operatorname{cis} \left(-\frac{3\pi}{2}\right) = i^2 = -1, \end{equation*} por lo que: \begin{align*} \operatorname{Arg}_{\left[\frac{3\pi}{2}, \frac{7\pi}{2}\right)}(i) & = \operatorname{Arg}_{[0,2\pi)}\left(i \operatorname{cis} \left(-\frac{3\pi}{2}\right)\right) + \frac{3\pi}{2}\\ & = \operatorname{Arg}_{[0,2\pi)}\left(-1\right) + \frac{3\pi}{2}\\ & = \pi + \frac{3\pi}{2}\\ & = \frac{5\pi}{2}. \end{align*}

Ejemplo 13.6.
Sea $\alpha=3\pi/2$. Si $I = (\alpha, \alpha + 2\pi]$, entonces: \begin{equation*} I = \left(\frac{3\pi}{2}, \frac{7\pi}{2}\right]. \end{equation*}

Para $z=i$ tenemos que: \begin{equation*} -i \, \operatorname{cis} \left(-\frac{3\pi}{2}\right) = – i^2 = 1, \end{equation*}

por lo que: \begin{align*} \operatorname{Arg}_{\left(\frac{3\pi}{2}, \frac{7\pi}{2}\right]}(i) & = \operatorname{Arg}\left(- i \operatorname{cis} \left(-\frac{3\pi}{2}\right)\right) + \frac{3\pi}{2} + \pi\\ & = \operatorname{Arg}\left(1\right) + \frac{5\pi}{2}\\ & = 0 + \frac{5\pi}{2}\\ & = \frac{5\pi}{2}. \end{align*}

Observación 13.11.
En el caso real para garantizar la existencia de la inversa de la función $f(x) = x^2$, bastaba con restringir el dominio de $f$ al intervalo $[0, \infty )$. Sin embargo, dado que en $\mathbb{C}$ el orden inducido en $\mathbb{R}$, bajo la relación «$>0$», no es válido y considerando el hecho de que nuestro candidato para ser la inversa de la función $f(z) = z^2$, es decir la función $F(z) = z^{1/2}$ es una función multivaluada, entonces para el caso complejo debemos ser aún más minuciosos en la elección del dominio al que debemos restringir a la función $f(z) = z^2$ para que sea inyectiva y por tanto invertible.

Ejemplo 13.7.
En el ejemplo 12.7(a) vimos que la función compleja $f(z) = z^2$ no es inyectiva, por lo que no es biyectiva y de acuerdo con la definición 12.4 no podemos hablar de su función inversa. Veamos que si restringimos el dominio de esta función es posible garantizar que $f$ es inyectiva.

Solución. De acuerdo con la observación 13.1 tenemos que para $n=2$ y $z\neq 0$, la función $f(z) = z^2$ tiene dos raíces, las cuales están dadas por: \begin{equation*} w_k = \sqrt{r} \left[\operatorname{cos}\left(\frac{\theta + 2k\pi}{2}\right) + i \operatorname{sen}\left( \frac{\theta + 2k\pi}{2} \right)\right], \tag{13.2} \end{equation*} donde $k=0, 1$.

Definimos el siguiente dominio: \begin{equation*} D= \left\{z\in\mathbb{C} : -\frac{\pi}{2} < \operatorname{arg} z \leq \frac{\pi}{2}\right\}. \tag{13.3} \end{equation*}

Veamos que $f$ es inyectiva en $D$. Sean $z_1, z_2 \in D$, con $z_1 = r_1 \operatorname{cis}(\theta_1)$ y $z_2 = r_2 \operatorname{cis}(\theta_2)$ ambos distintos de cero, entonces $\theta_1, \theta_2 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Supongamos que $f(z_1) = f(z_2)$, entonces por la fórmula de De Moivre tenemos que: \begin{equation*} r_1^2 \operatorname{cis}(2\theta_1) = r_2^2 \operatorname{cis}(2\theta_2), \end{equation*} de donde es claro que los números complejos $z_1^2$ y $z_2^2$ tienen el mismo módulo y el mismo argumento principal, es decir: \begin{equation*} r_1^2=r_2^2 \quad \text{y} \quad \operatorname{Arg} z_1^2 = \operatorname{Arg} z_2^2. \end{equation*}

Dado que $r_1, r_2>0$, entonces $r_1 = r_2$. Por otra parte, como $\theta_1, \theta_2 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$, entonces: \begin{equation*} -\pi < 2\theta_1 \leq \pi \quad \text{y} \quad -\pi < 2\theta_2 \leq \pi, \end{equation*} por lo que $\operatorname{Arg} z_1^2 = 2\theta_1$ y $\operatorname{Arg} z_2^2 = 2\theta_2$, es decir $2\theta_1 = 2\theta_2$, entonces $\theta_1 = \theta_2$. Por lo tanto, como $z_1$ y $z_2$ tienen el mismo módulo y el mismo argumento principal, concluimos que $z_1 = z_2$.

Así, $f$ restringida al dominio $D$, dado en (13.3), es inyectiva.

En general, para la función compleja $f(z) = z^n$, con $n\geq 2$, el planteamiento dado en este último ejemplo puede utilizarse para garantizar que dicha función es inyectiva, solo habría que modificar el dominio dado en (13.3) por: \begin{equation*} D_n = \left\{z\in\mathbb{C} : -\frac{\pi}{n} < \operatorname{arg} z \leq \frac{\pi}{n}\right\}. \tag{13.4} \end{equation*}

Observación 13.12.
No es difícil verificar que el dominio dado por (13.4) es mapeado bajo la función $f(z) = z^n$ en el conjunto $\mathbb{C}\setminus\{0\}$, para más detalle de este hecho se puede consultar la entrada 26 de esta unidad.

Notemos que si hacemos $k=0$ y $\theta = \operatorname{Arg}(z)$ en (13.2), entonces obtenemos una función que a cada $z\neq 0$ asigna únicamente una raíz cuadrada, la raíz principal.

Definición 13.5. (Raíz cuadrada principal.)
Sea $z\neq 0$. Definimos a la función raíz cuadrada principal como: \begin{equation*} f(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} donde $r = |\,z\,|$ y $\theta = \operatorname{Arg}(z)$.

Debe ser claro que al tomar $\theta = \operatorname{Arg}(z)$ en la definición anterior estamos garantizando que los valores que tomará la función raíz cuadrada principal, es decir su imagen, serán los $z\neq 0$ tales que $-\pi < \operatorname{Arg}(z) \leq \pi$, el cual es un conjunto más grande que el dominio $D$ dado en (13.3.).

Ejemplo 13.8.
Obtengamos el valor de la raíz cuadrada principal de los puntos: $z_1 = -i$, $z_2 = -\sqrt{3}+i$ y $z_3 = 9$.

Solución.

a) Para $z_1 = -i$ tenemos que $|\,z_1\,| = 1$ y $\operatorname{Arg}(z_1) = -\frac{\pi}{2}$, por lo que: \begin{equation*} f(-i) = \sqrt{1} \operatorname{cis}\left(\frac{-\frac{\pi}{2}}{2}\right) = \operatorname{cos}\left(-\frac{\pi}{4}\right) + i \operatorname{cos}\left(-\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\left(1-i\right). \end{equation*} b) Para $z_2 = -\sqrt{3}+i$ tenemos que $|\,z_1\,| = 1$ y: \begin{equation*} \operatorname{Arg}(z_2) = \operatorname{arctan}\left(-\frac{1}{\sqrt{3}}\right) + \pi = \frac{5\pi}{6}, \end{equation*} por lo que: \begin{equation*} f\left(-\sqrt{3}+i\right) = \sqrt{2} \operatorname{cis}\left(\frac{\frac{5\pi}{6}}{2}\right) = \sqrt{2} \left[\operatorname{cos}\left(\frac{5\pi}{12}\right) + i \operatorname{sen}\left(\frac{5\pi}{12}\right)\right] = \frac{\sqrt{3} – 1}{2} + i \frac{\sqrt{3} + 1}{2}. \end{equation*} c) Para $z_1 = 9$ tenemos que $|\,z_3\,| = 9$ y $\operatorname{Arg}(z_1) = 0$, por lo que: \begin{equation*} f(9) = \sqrt{9} \operatorname{cis}\left(0\right) = 3\left[ \operatorname{cos}\left(0\right) + i \operatorname{sen}\left(0\right) \right] = 3. \end{equation*}

Ejemplo 13.9.
Veamos que la función $g(z) = z^{1/2}$, con $g$ la raíz cuadrada principal, es una inversa de la función $f(z) = z^2$ siempre que restrinjamos el dominio de $f$ al dominio $D$ dado por (13.3).

Solución. De acuerdo con el ejemplo 13.7 sabemos que la función $f(z) = z^2$ es inyectiva en el dominio $D$ dado por los $z\neq 0$ tales que $-\pi/2 < \operatorname{Arg}(z) \leq \pi/2$ y por la observación 13.12 tenemos que $f$ es biyectiva en $D$ y por tanto existe $f^{-1}$.

Procedemos ahora a verificar que $g(z) = z^{1/2}$, con $g$ la raíz cuadrada principal, es una inversa de $f$. Sean $z,w\neq 0$ y supongamos que $f^{-1}(z) = w$. Escribiendo a $z$ y $w$ en su forma polar tenemos que: \begin{equation*} z = r\operatorname{cis}(\theta), \quad w = \rho \operatorname{cis}(\alpha), \end{equation*} donde $r=|\,z\,|$, $\rho=|\,w\,|$, $\operatorname{Arg}(z) = \theta$ y $\operatorname{Arg}(w) = \alpha$.

Dado que el rango de $f^{-1}$ es el dominio de $f$, entonces el argumento principal de $w$, es decir $\alpha$, cumple que: \begin{equation*} -\frac{\pi}{2} < \alpha \leq \frac{\pi}{2}. \end{equation*}

Además, como $f(w) = w^2 = z$, entonces $w$ debe ser una de las dos raíces cuadradas dadas por (13.2), es decir $w = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right)$ ó $w = \sqrt{r} \operatorname{cis}\left(\frac{\theta + 2\pi}{2}\right)$.

Por reducción al absurdo supongamos que: \begin{equation*} w = f^{-1}(z) = \sqrt{r} \operatorname{cis}\left(\frac{\theta + 2\pi}{2}\right). \tag{13.5} \end{equation*}

Como $\operatorname{Arg}(z) = \theta$, entonces $-\pi < \theta \leq \pi$, por lo que:
\begin{equation*} \frac{\pi}{2} < \frac{\theta + 2\pi}{2} \leq \frac{3\pi}{2}. \tag{13.6} \end{equation*}

Tenemos que $\operatorname{Arg}(w) = \alpha$, entonces $\alpha \in (-\pi,\pi]$. Mientras que de (13.5) y (13.6) se sigue que $\pi/2 < \alpha \leq 3\pi/2$, por lo que $\pi/2 < \alpha \leq \pi$ ó $-\pi < \alpha \leq -\pi/2$. Sin embargo ninguna de estas condiciones se cumple desde $-\frac{\pi}{2} < \alpha \leq \frac{\pi}{2}$, por lo que nuestro supuesto en (13.5) es falso, entonces: \begin{equation*} w = f^{-1}(z) = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} la cual corresponde con la función $g(z) = z^{1/2}$ dada en la definición 13.5.

En general, considerando la observación 13.1, podemos definir una función que asigne una sola raíz, en particular la raíz $n$-ésima principal a cada $z\neq 0$, con $n\geq 2$.

Definición 13.6. (Raíz $n$-ésima principal.)
Sea $z\neq 0$. Para $n\geq 2$ definimos a la función raíz $n$-ésima principal como:
\begin{equation*} f(z) = z^{1/n} = \sqrt[n]{r} \operatorname{cis}\left(\frac{\theta}{n}\right), \end{equation*} donde $r = |\,z\,|$ y $\theta = \operatorname{Arg}(z)$.

Ejemplo 13.10.
De acuerdo con el ejemplo 13.1 sabemos que para la función multivaluada $F(z) = z^{1/3}$ se cumple que: \begin{equation*} F(1) = \left\{ 1, \frac{-1 + i\sqrt{3}}{2}, \frac{-1 – i\sqrt{3}}{2} \right\}. \end{equation*}

Mientras que si consideramos a la función raíz cúbica principal $f(z) = z^{1/3}$, entonces: $f(1) = 1$.

Observación 13.13.
De nueva cuenta, es importante mencionar que aunque la función raíz $n$-ésima principal, con $n\geq 2$, es una función univaluda, no necesariamente es una rama de la función multivaluada $F(z) = z^{1/n}$, pues como veremos en el ejemplo 15.7 de la entrada 15, la función raíz cuadrada principal $f(z)=z^{1/2}$ es discontinua en todo el eje real negativo desde que la función argumento principal es discontinua en dicho conjunto, el cual es un subconjunto del dominio $\mathbb{C}\setminus\{0\}$, correspondiente con el dominio de definición de dicha función.

De acuerdo con las observaciones 13.10 y 13.13 es interesante notar que podemos definir ramas de la función multivaluada $F(z) = z^{1/n}$, $n\geq 2$, de acuerdo con la definición 13.2, considerando ramas de la función multivaluada $G(z) = \operatorname{arg}(z)$, para ello solo debemos hacer uso de la definición 13.4. Más aún, dado un dominio donde esté definida la función $F$, entonces tendremos exactamente $n$ ramas diferentes para dicha función.

Para mostrar esto consideremos el siguiente:

Ejemplo 13.11.
Sea $ I = \left(\frac{3\pi}{2}, \frac{7\pi}{2}\right]$. Entonces, para $z\in\mathbb{C}\setminus L_{\frac{3\pi}{2}} = \left\{ z\in\mathbb{C} : |z|>0, \,\, \frac{3\pi}{2} <\operatorname{arg}(z)<\frac{7\pi}{2}\right\}$, podemos definir una rama de la función multivaluada $F(z) = z^{1/2}$, como: \begin{equation*} f_1(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} donde $r = |\,z\,|$, $\theta = \operatorname{Arg}_I(z)$ y $L_{\frac{3\pi}{2}} = \left\{-ir : r\geq 0\right\}$, es decir la semirrecta imaginaria negativa que parte del origen.

Por el ejemplo 13.6 sabemos que para $z=i$ se tiene que: \begin{equation*} \operatorname{Arg}_{\left(\frac{3\pi}{2}, \frac{7\pi}{2}\right]}(i) = \frac{5\pi}{2}. \end{equation*}

Entonces: \begin{equation*} f_1(i) = \sqrt{1} \operatorname{cis}\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} -i\frac{\sqrt{2}}{2}. \end{equation*}

Por otra parte, si utilizamos la función raíz cuadrada principal restringida al dominio $\mathbb{C}\setminus(-\infty, 0]$, es decir considerando el intervalo $I = (-\pi, \pi]$, tenemos: \begin{equation*} f_0(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\beta}{2}\right), \quad -\pi < \beta < \pi, \end{equation*} donde $r = |\,z\,|$, $\beta = \operatorname{Arg}(z)$ y $L{-\pi} = \left\{-r : r\geq 0\right\}$, la cual es llamada la rama principal.

Entonces para $z=i$ tenemos que $\operatorname{Arg}(z) = \frac{\pi}{2}$, por lo que:
\begin{equation*} f_0(i) = \sqrt{1} \operatorname{cis}\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}. \end{equation*}

Es claro que $f_0(i) \neq f_1(i)$, por lo que $f_0$ y $f_1$ son dos ramas diferentes de la función multivaluada $F(z) = z^{1/2}$.

Más aún, si tomamos $ I = \left(\pi, 3\pi\right]$, para para $z \in\mathbb{C}\setminus L_{\frac{3\pi}{2}} = \left\{ z\in\mathbb{C} : |z|>0, \,\, \pi <\operatorname{arg}(z)<3\pi\right\}$, podemos definir una tercera rama de la función multivaluada $F(z) = z^{1/2}$, como: \begin{equation*} f_2(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} donde $r = |\,z\,|$, $\theta = \operatorname{Arg}_I(z)$ y $L{\pi} = \left\{-r : r\geq 0\right\}$.

Notemos que tanto $f_0$ como $f_2$ comparten el dominio $\mathbb{C}\setminus L_{\pi} = \mathbb{C}\setminus(-\infty, 0]$.

Para $z=i$ tenemos que $|\,i\,|=1$ y: \begin{equation*} \operatorname{Arg}_{(\pi, 3\pi]}(i) = \operatorname{Arg}\left(-i\operatorname{cis}(\pi)\right) + \pi + \pi = \operatorname{Arg}(i) + 2\pi = \frac{5\pi}{2}. \end{equation*}

Por lo que: \begin{equation*} f_2(i) = \sqrt{i} \operatorname{cis}\left(\frac{\frac{5\pi}{2}}{2}\right) = \operatorname{cis}\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} -i\frac{\sqrt{2}}{2}. \end{equation*}

Desde que $f_0(i) \neq f_2(i)$, es claro que $f_0$ y $f_2$ son dos ramas diferentes de la función multivaluada $F(z) = z^{1/2}$. Sin embargo, puesto que $f_0$ y $f_2$ están definidas sobre el mismo dominio podemos obtener la siguiente relación.

Primeramente, procediendo como en la prueba de la proposición 13.3 es fácil verificar que: \begin{equation*} \operatorname{cis}\left(\theta+\beta\right) = \operatorname{cis}\left(\theta\right) \operatorname{cis}\left(\beta\right), \quad \forall \theta, \beta\in\mathbb{R}. \tag{13.7} \end{equation*}

Dado que $\theta\in (\pi, 3\pi)$ y $\beta \in (-\pi, \pi)$, entonces: \begin{equation*} \pi< \theta < 3\pi \quad \Longleftrightarrow \quad -\pi< \theta – 2\pi < \pi, \end{equation*} por lo que tomando $\beta= \theta – 2\pi$ tenemos que $\theta = \beta + 2\pi$.

Entonces, por (13.7) tenemos que: \begin{align*} f_2(z) &= \sqrt{r} \operatorname{cis}\left(\frac{\beta+2\pi}{2}\right)\\ & = \sqrt{r} \operatorname{cis}\left(\frac{\beta}{2} + \pi \right)\\ & = \sqrt{r} \operatorname{cis}\left(\frac{\beta}{2} \right) \operatorname{cis}\left(\pi \right)\\ & = – \sqrt{r} \operatorname{cis}\left(\frac{\beta}{2} \right),\quad -\pi< \beta < \pi, \end{align*} de donde se sigue que $f_0 = -f_2$.

Haciendo una analogía con el caso real, en el que hablábamos de la raíz positiva y la raíz negativa de un número real positivo, podemos pensar a las ramas $f_0$ y $f_2$, de la función multivaluada $F(z) = z^{1/2}$, como la raíz positiva y negativa de un número complejo.

Observación 13.14.
De acuerdo con lo anterior, debe ser claro que la función multivaluada $F(z)=z^{1/2}$ está completamente determinada por sus dos ramas, es decir, una vez elegida una rama del argumento, entonces $F$ está dada por sus ramas positiva y negativa.

Sea $z=r\operatorname{cis}(\theta) \neq 0$, con $r=|z|>0$ y $\theta = \operatorname{arg}(z) = \theta_I + 2\pi n$, para $n\in\mathbb{Z}$, $\theta_I = \operatorname{Arg}_{I}(z) \in I$ e $I$ un intervalo de longitud $2\pi$, definición 13.4. Entonces: \begin{align*} F(z) = z^{1/2} & = \left(r\operatorname{cis}(\theta)\right)^{1/2}\\ & = \sqrt{r}\operatorname{cis}\left(\frac{\theta}{2}\right)\\ & = \sqrt{r}\operatorname{cis}\left(\frac{\theta_I}{2} + \pi n\right)\\ & = \sqrt{r}\operatorname{cis}\left(\frac{\theta_I}{2} \right) \operatorname{cis}\left(\pi n\right), \quad n\in\mathbb{Z}. \end{align*}

Considerando los resultados de la entrada 5, sabemos que únicamente $n=0$ y $n=1$ determinan valores distintos para $F$, ya que si $n$ es par obtenemos el mismo valor que $n=0$ y si $n$ es impar obtenemos el mismo valor que $n=1$, es decir que para otros valores enteros de $n$ obtenemos los mismos valores para $F$ que los dados por $n=0$ y $n=1$. Entonces: \begin{equation*} F(x)= \left\{ \begin{array}{lcc} \sqrt{r}\operatorname{cis}\left(\frac{\theta_I}{2} \right) & \text{si} & n=0,\\ \\- \sqrt{r}\operatorname{cis}\left(\frac{\theta_I}{2} \right) & \text{si} & n=1, \end{array} \right. \end{equation*} con $\theta_I \in I$. Es decir, estos dos valores distintos de $F$ determinan sus dos ramas.

Por ejemplo si elegimos a la rama principal del argumento, es decir $\theta_I = \operatorname{Arg}(z)$ con $I = (-\pi, \pi]$, entonces para $z=r\operatorname{cis}\left(\theta_I\right) \neq 0$ tenemos que: \begin{equation*} F(z) = f_{\pm}(z) = \pm \sqrt{r} \operatorname{cis}\left(\frac{\theta_I}{2}\right), \quad -\pi < \theta_I < \pi. \end{equation*}

Cerraremos esta entrada con dos nuevos conceptos que también juegan un papel importante al trabajar con funciones multivaluadas, los cuales utilizaremos más adelante.

Definición 13.6.(Punto de ramificación.)
Sea $F(z)$ una función multivaluada definida en un dominio $D\subset\mathbb{C}$ y sea $z_0 \in \mathbb{C}$. Decimos que $z_0$ es un punto de ramificación de $F$ si una vuelta alrededor de $z_0$ (y suficientemente cerca a $z_0$) produce un cambio de rama de la función.

Si $n$ es el menor número natural tal que $n$ vueltas alrededor de $z_0$ llevan cada rama sobre sí misma, decimos que $z_0$ es un punto de ramificación de orden $n-1$. Si nunca vuelve a la rama original, diremos que es de orden $\infty$. El punto al infinito $z_\infty = \infty$ es un punto de ramificación de $F(z)$ si una vuelta alrededor de una circunferencia suficientemente grande provoca un cambio de rama. Equivalentemente, $z_\infty = \infty$ es un punto de ramificación de $F(z)$ si $z = 0$ es un punto de ramificación de la función $F(1/z)$.

Ejemplo 13.12.
Consideremos a la función multivaluada $F(z) = z^{1/2}$. Veamos que $z_0=0$ y $z_\infty = \infty$ son puntos de ramificación de $F$.

Solución. Es claro que la función $F$ no está definida para $z=0$, por lo que no es casualidad que dicho punto sea una punto de ramificación de $F$. Sea $C(z_0,\varepsilon)$ una circunferencia con centro en $z_0=0$ y radio $\varepsilon>0$, con $\varepsilon$ arbitrariamente pequeño. Sabemos que un punto $z\in C(z_0,\varepsilon)$ en su forma polar está dado por: \begin{equation*} z = \varepsilon \operatorname{cis}(\theta), \quad -\pi < \theta \leq \pi, \end{equation*} donde $\theta = \operatorname{Arg}(z)$ y $\varepsilon = |\,z\,|$.

De acuerdo con la observación 13.14, sabemos que la función multivaluada $F(z) = z^{1/2}$ tienes dos ramas diferentes, su rama positiva y su rama negativa, es decir $f_{+}$ y $f_{-}$. Supongamos que a $z_1 \in C(z_0,\varepsilon)$ le hemos aplicado $F$, entonces tenemos que: \begin{equation*} F(z_1) = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right) = f_+(z_1), \quad -\pi < \theta <\pi. \end{equation*}

Si consideramos que $z_1$ ha dado una vuelta completa sobre la circunferencia $C(z_0,\varepsilon)$, en el sentido contrario al de las manecillas del reloj, es decir que $\theta$ aumento $2\pi$, entonces tenemos que: \begin{align*} F(z_1) & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta+2\pi}{2}\right)\\ & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right) \operatorname{cis}\left(\pi\right)\\ &= – \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right), \quad -\pi < \theta <\pi,\ & = – f_+(z_1)\\ & = f_{-}(z_1), \end{align*} es decir, al partir de un punto arbitrario sobre la circunferencia $C(z_0,\varepsilon)$ y dar una vuelta completa sobre dicha circunferencia la función multivaluada $F(z)=z^{1/2}$ cambio de rama, por lo que $z_0 =0$ es un punto de ramificación de dicha función, figura 62.

Figura 62: $z_0 =0 $ punto de ramificación de la función multivaluada $F(z)=z^{1/2}$.

Notemos que si $z_1$ da dos vueltas completas sobre la circunferencia $C(z_0,\varepsilon)$, es decir $ 3\pi < \theta + 4\pi < 5\pi$, entonces: \begin{align*} F(z_1) & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta+4\pi}{2}\right)\\ & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right) \operatorname{cis}(2\pi)\\ & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right), \quad -\pi<\theta<\pi,\\ & = f_+(z_1), \end{align*} por lo que, después de dos vueltas completas alrededor del punto $z_0 = 0$ el valor de la función multivaluada $F$ regresa al valor de la rama principal $f_0$, es decir a su rama positiva, entonces $z_0 = 0$ es un punto de ramificación de orden $1$.

Recordemos que en la esfera de Riemann el punto al infinito $z_\infty=\infty$ corresponde con el polo norte $N$. Por lo que una circunfernecia alrededor de $N$, de radio arbitrariamente pequeño sobre la esfera de Riemann, determina una circunferencia de radio muy grande en el plano complejo. Esta curva rodea, necesariamente, a $z_0=0$. Por lo tanto, una vuelta completa sobre esta circunferencia causará un cambio de rama de la función multivaluada $F(z) = z^{1/2}$.

Procediendo como antes, podemos concluir fácilmente que $z_\infty = \infty$ también es un punto de ramificación de orden $1$ de $F$.

Sea $z = r\operatorname{cis}(\theta) \neq 0$, con $\theta = \operatorname{Arg}(z)$ y $r=|\,z\,|$. Notemos que $F(1/z) = \left(z^{-1}\right)^{1/2} = z^{-1/2}$, entonces: \begin{align*} F\left(\frac{1}{z}\right) & = \left(z\right)^{-1/2}\\ & = \left(\sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right)\right)^{-1}\\ & = r^{-1/2} \operatorname{cis}\left(-\frac{\theta}{2}\right), \quad -\pi<\theta<\pi,\\ & = f_{+}\left(\frac{1}{z}\right). \end{align*}

Tomemos un punto $z$ sobre la circunferencia $C(z_0,\varepsilon)$, con $z_0 =0$ y $\varepsilon>0$ arbitrariamente pequeño. Si $z$ da una vuelta completa alrededor de $z_0$ tendremos que $\theta$ habrá aumentado $2\pi$, por lo que: \begin{align*} F\left(\frac{1}{z}\right) & = r^{-1/2} \operatorname{cis}\left(\frac{-\theta + 2\pi}{2}\right)\\ & = r^{-1/2} \operatorname{cis}\left(-\frac{\theta}{2}\right) \operatorname{cis}\left(\pi\right)\\ & = r^{-1/2} \operatorname{cis}\left(-\frac{\theta}{2}\right) \operatorname{cis}\left(\pi\right)\\ & = -r^{-1/2} \operatorname{cis}\left(-\frac{\theta}{2}\right), \quad -\pi<\theta<\pi,\\ & = f_{-}\left(\frac{1}{z}\right). \end{align*}

Entonces, después de una vuelta alrededor del punto $z_0=0$, la función multivaluada $F(1/z)$ cambio de rama, por lo que $z=0$ es un punto de ramificación de $F(1/z)$ y por tanto $z_\infty = \infty$ es un punto de ramificación de $F(z)$.

De manera análoga, si $z$ da dos vueltas alrededor de $z_0 = 0$, entonces $F$ vuelve a tomar el valor de la rama principal, es decir que con dos vueltas la rama principal regresa a sí misma, por tanto $z_0$ es un un punto de ramificación de orden $2-1 = 1$ de $F(1/z)$.

Definición 13.6.(Corte de rama.)
Un corte de rama es una línea (habitualmente recta) que separa dos ramas de una misma función multivaluada. Equivalentemente, es la línea en la que una rama se hace discontinua.

Observación 13.15.
Los cortes de rama son, en realidad, curvas por las que hacemos discontinuas las ramas y que impiden que podamos dar una vuelta completa alrededor de un punto de ramificación. Es muy importante hacer notar que los cortes de rama no son únicos y podemos elegirlos según nos convenga.

Ejemplo 13.13.
Consideremos a la función multivaluada $F(z) = z^{1/2}$. De acuerdo con el ejemplo 13.11, tenemos que para las ramas $f_0, f_1$ y $f_2$ sus cortes de ramas son, respectivamente, las semirrectas: \begin{align*} L_{-\pi} = \left\{-r : r\geq 0\right\} = (-\infty,0],\\ L_{\frac{3\pi}{2}} = \left\{-ir : r\geq 0\right\},\\ L_{\pi} = \left\{-r : r\geq 0\right\} = (-\infty,0], \end{align*} pues en dichos conjuntos cada una de las ramas no son continuas.

Ejemplo 13.14.
Consideremos a \begin{equation*} I = \left(\frac{3\pi}{2}, \frac{7\pi}{2}\right]. \end{equation*}

La función $\operatorname{Arg}_I(z)$ es discontinua en: \begin{equation*} L_{\frac{3\pi}{2}} = \left\{-ir : r\geq 0\right\}, \end{equation*} por lo que dicha semirrecta corresponde con su corte de rama.

Por otra parte, para la función $\operatorname{Arg}(z)$ se tiene que su corte de rama es la semirrecta: \begin{equation*} L_{-\pi} = \left\{-r : r\geq 0\right\} = (-\infty,0], \end{equation*} pues en dicho conjunto la función es discontinua.

Figura 63: Dominios $\mathbb{C}\setminus(-\infty,0]$ y $\mathbb{C}\setminus[0,\infty)$ de las ramas principal y natural del argumento.

Ejemplo 13.15.
Considerando las ramas principal y natural del argumento determina los corte de rama para la función multivaluada $F(z) = \sqrt{z^2-1}$. ¿Cuáles son los puntos de ramificación de $F$?

Solución. Sabemos que para la función multivaluada $F(w)=\sqrt{w}$, se tiene que $w=0$ y $w=\infty$ son ambos puntos de ramificación de orden 1, por lo que si $w=z^2-1$, entonces un primer candidato a ser punto de ramificación es $w=0$, es decir, $z^2-1=(z-1)(z+1) = 0$, de donde inferimos que $z=1$ y $z=-1$ son ambos puntos de ramificación.

Sean:
\begin{equation*}
z-1=r_1 \operatorname{cis}(\alpha_1), \quad r_1 = |\,z-1\,|, \,\, \operatorname{arg}(z-1) = \alpha_1,
\end{equation*}
\begin{equation*}
z+1=r_2 \operatorname{cis}(\alpha_2), \quad r_2 = |\,z+1\,|, \,\, \operatorname{arg}(z+1) = \alpha_2,
\end{equation*}donde $\alpha_1 = \theta_1 +2\pi n_1$, $\alpha_2 = \theta_2 +2\pi n_2$ con $\theta_1 = \operatorname{Arg}(z-1)$, $\theta_2 = \operatorname{Arg}(z+1)$ y $n_1, n_2 \in \mathbb{Z}$.

Entonces, considerando la proposición 13.2 tenemos que:
\begin{align*}
z^2-1 = (z-1)(z+1) & = r_1 r_2\operatorname{cis}\left(\alpha_1 + \alpha_2\right)\\
& = r_1 r_2\operatorname{cis}\left(\theta_1 + \theta_2 + 2n\pi\right), \quad n = n_1+n_2 + N_{+}\in\mathbb{Z},
\end{align*}con $N_{+} \in \{-1, 0, 1\}$.

Por lo que:
\begin{align*}
F(z) = \sqrt{(z-1)(z+1)} & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1 + \theta_2}{2} + n\pi\right)\\
& = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1 + \theta_2}{2}\right)\operatorname{cis}\left(n\pi\right), \quad n\in\mathbb{Z}.
\end{align*}

De acuerdo con la observación 3.14, es claro que las dos ramas diferentes de $F$ están dadas para los valores enteros $n=0$ y $n=1$.

Para $n=0$ tenemos:
\begin{equation*}
f_{+}(z) = \sqrt{z^2 -1} = \sqrt{(z-1)(z+1)} = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right).
\end{equation*}

Y para $n=1$ tenemos:
\begin{equation*}
f_{-}(z) = \sqrt{z^2 -1} = \sqrt{(z-1)(z+1)} = -\sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right).
\end{equation*}

En ambos casos $r_1, r_2 >0$ y $-\pi < \theta_1, \theta_2 <\pi$.

Si elegimos la rama principal del argumento, entonces tenemos que:
\begin{equation*}
-\pi < \operatorname{Arg}(w)\leq \pi \quad \Longleftrightarrow \quad \left\{w\in\mathbb{C} : \operatorname{Re}(w)\leq 0, \operatorname{Im}(w) = 0 \right\}.
\end{equation*}

Por lo que, tomando $z=x+iy\in\mathbb{C}$ y $w = z^2-1$, con $x,y\in\mathbb{R}$, tenemos que el corte de rama de la rama principal $f_0(z) = \sqrt{z^2-1}$ está dado por las siguientes condiciones:
\begin{equation*}
\left\{ \begin{array}{l}
\operatorname{Re}(z^2-1) = x^2 – y^2 -1 \leq 0,\\
\\ \operatorname{Im}(z^2-1) = 2xy = 0.
\end{array}
\right.
\end{equation*}

De la segunda condición es claro que puede sucder que $x=0$ ó $y=0$. Si $x=0$, entonces de la primera condición se sigue que $y^2 +1 \geq 0$, lo cual se cumple para todo $y\in\mathbb{R}$.

Por otra parte, si $y=0$, entonces de la primera condición se sigue que $x^2 \leq 1$, lo cual se cumple para todo $x\in\mathbb{R}$ tal que $|\,x\,| \leq 1$.

Entonces, considerando la rama principal del argumento, tenemos que el corte de rama de $f_0$ es:
\begin{equation*}
L_P = \left\{z =x+iy\in\mathbb{C} : x=0, y \in\mathbb{R} \right\} \cup \left\{z =x+iy\in\mathbb{C} : |\,x\,| \leq 1, y = 0 \right\}.
\end{equation*}

El conjunto anterior corresponde con todo el eje imaginario y el intervalo real $[-1,1]$, sin embargo, geométricamente podemos notar que el primer conjunto de discontinuidades para la rama principal $f_0$ se puede omitir desde que dicho conjunto ya se considera si definimos a dicha rama como:
\begin{equation*}
f_0(z) = \sqrt{z^2-1} = \left\{ \begin{array}{lcc}
f_+(z) & \text{si} & \operatorname{Re}(z)>0,\\
\\ f_-(z) & \text{si} & \operatorname{Re}(z)<0,
\end{array}
\right.
\end{equation*}cuyo corte de rama, para cada función, es respectivamente:
\begin{equation*}
\left\{z =x+iy\in\mathbb{C} : y=0, 0<x\leq 1 \right\} \quad \text{y} \quad \left\{z =x+iy\in\mathbb{C} : y=0, -1 \leq x <0 \right\}.
\end{equation*}

Por tal motivo, resulta completamente innecesario mencionar a las discontinuidades del eje imaginario, pues están implícitas en la definición de la rama principal dada antes, por ello, al hablar del corte de rama para esta función bastará con mencionar al intervalo real $[-1,1]$, es decir:
\begin{equation*}
L_P = \left\{z =x+iy\in\mathbb{C} : |\,x\,| \leq 1, y = 0 \right\}.
\end{equation*}

Por otra parte, si elegimos la rama natural del argumento entonces tenemos que:
\begin{equation*}
0 \leq \operatorname{Arg}(w) < 2\pi \quad \Longleftrightarrow \quad \left\{w\in\mathbb{C} : \operatorname{Re}(w)\geq 0, \operatorname{Im}(w) = 0 \right\}.
\end{equation*}

Por lo que, tomando $w = z^2-1$ y $z=x+iy$, con $x,y\in\mathbb{R}$, tenemos que el corte de rama de la rama $f(z) = \sqrt{z^2-1}$ está dado por las condiciones:
\begin{equation*}
\left\{ \begin{array}{l}
\operatorname{Re}(z^2-1) = x^2 – y^2 -1 \geq 0,\\
\\ \operatorname{Im}(z^2-1) = 2xy = 0.
\end{array}
\right.
\end{equation*}

De manera análoga concluimos que $x\neq 0$, por lo que de la segunda condición se sigue que $y=0$, entonces $x^2\geq 1$, es decir $|\,x\,| \geq 1$.

Entonces, considerando la rama natural del argumento, tenemos que el corte de rama de $f$ son dos semirrectas dadas por:
\begin{equation*}
L_N = \left\{z =x+iy\in\mathbb{C} : |\,x\,| \geq 1, y = 0 \right\}.
\end{equation*}

Figura 64: Cortes de rama de la función multivaluada $F(z) = \sqrt{z^2-1}$ considerando las ramas principal y natural del argumento.

De lo anterior es claro que los puntos $z=1$ y $z=-1$ aparecen en ambos cortes de rama, por lo que procedemos a verificar que son puntos de ramificación de la función multivaluada $\sqrt{z^2-1}$.

Consideremos una circunferencia con centro en $1$ y radio suficientemente pequeño para que el punto $z=-1$ sea un punto exterior a ella, figura 65, y tomemos a un punto cualquiera $z$ sobre ella, entonces:
\begin{equation*}
F(z) = \sqrt{z^2 -1} = \sqrt{(z-1)(z+1)} = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right) = f_{+}(z).
\end{equation*}

Notemos que si damos una vuelta alrededor del punto $z=1$, considerando el punto $z$ sobre la circunferencia dada, entonces solo el argumento de $z-1$ se verá afectado, es decir:
\begin{align*}
F(z) & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\left(\theta_1 + 2\pi\right) +\theta_2}{2}\right)\\
& = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right) \operatorname{cis}\left(\pi\right)\\
& = – \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1 +\theta_2}{2}\right)\\
& = f_{-}(z)\\
& \neq f_{+}(z),
\end{align*}por lo que, después de una vuelta alrededor del punto $z=1$, la función $F$ cambió de rama, es decir que $z=1$ es un punto de ramificación de orden $1$.

Figura 65: El punto $z$ da una vuelta completa alrededor del punto $z=1$ y se modifica el argumento de $z-1$, por tanto $z=1$ es un punto de ramificación.

De manera similar, si tomamos un punto $z$ sobre una circunferencia con centro en el punto $z=-1$ y radio suficientemente pequeño de tal forma que el punto $z=1$ sea un punto exterior a ella, figura 66, entonces el argumento de $z+1$ se verá modificado en $2\pi$, es decir: \begin{align*} F(z) & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\left(\theta_2 + 2\pi\right) +\theta_1}{2}\right)\\ & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right) \operatorname{cis}\left(\pi\right)\\ & = – \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1 +\theta_2}{2}\right)\\ & = f_1(z)\\ & \neq f_0(z), \end{align*} por lo que, de nueva cuenta la función $F$ cambio de rama, entonces $z=-1$ también es un punto de ramificación de orden $1$.

Figura 66: El punto $z$ da una vuelta completa alrededor del punto $z=-1$ y se modifica el argumento de $z+1$, por tanto $z=-1$ es un punto de ramificación.

Por último, tomemos a un punto $z_0\in\mathbb{C}$, con $z_0 \neq 1, -1$, y tracemos una circunferencia con centro en $z_0$ y radio suficientemente pequeño, de tal forma que $1$ y $-1$ sean puntos exteriores a ella, figura 67. Notemos que si un punto $z$ da una vuelta completa sobre dicha circunferencia, entonces los argumentos de $z-1$ y $z+1$ no se ven modificados, por lo que la función $F$ no cambia de rama, es decir que $z_0$ no es un punto de ramificación, por lo que $z=1$ y $z=-1$ son los únicos puntos de ramificación.

Figura 67: El punto $z$ da una vuelta completa alrededor del punto $z_0$, con $z_0$ distinto de $1$ y $-1$, y al no modificarse el argumento de $z-1$ ni de $z+1$, concluimos que $z_0$ no es un punto de ramificación.

Más aún, si tomamos una circunferencia que encierre a ambos puntos de ramificación, al dar una vuelta completa sobre dicha circunferencia tendremos que tanto el argumento de $z-1$ como el de $z+1$ se verán modificados, es decir: \begin{align*} F(z) & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\left(\theta_1 + 2\pi\right) + \left(\theta_2 + 2\pi\right)}{2}\right)\\ & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right) \operatorname{cis}\left(2\pi\right)\\ & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1 +\theta_2}{2}\right), \end{align*} de donde se sigue que $z=\infty$ no es un punto de ramificación.

Es sencillo verificar esto último considerando a la función $F(1/z)$, por lo que se deja como ejercicio al lector.

Gráficamente, los cortes de rama dados en la figura 64 nos aseguran que una rama definida en un dominio que excluya a dichos conjuntos en efecto será una función continua univaluada, es decir, solo nos determinará un único valor para cada $z$ en dicho dominio.

Tarea moral

  1. Verifica que se cumple la observación 13.3.
  2. Demuestra la proposición 13.2.
  3. Obtén, en las regiones apropiadas, las funciones inversas $z=g(w)$ de:
    a) $w = f(z) = z^3$.
    b) $w = f(z) = (z-1)^4+i$.
    c) $w = f(z) = z^7+1+i$.
    d) $w = f(z) = 2z^2+iz-i+1$.
  4. Verifica que se cumple (13.7).
  5. Considera a la función multivaluada $F(z) = z^{1/3}$ dada por sus tres ramas $f_0, f_1$ y $f_2$ siguientes: \begin{equation*} F(z) = \left\{ \begin{array}{lcc} f_0(z) = \sqrt[3]{r}\operatorname{cis}\left(\frac{\theta}{3}\right) & \text{si} & 0 \leq \theta < 2\pi, \\ f_1(z) = \sqrt[3]{r}\operatorname{cis}\left(\frac{\theta}{3}\right) & \text{si} & 2\pi \leq \theta < 4\pi, \\ f_2(z) = \sqrt[3]{r}\operatorname{cis}\left(\frac{\theta}{3}\right) & \text{si} & 4\pi \leq \theta < 6\pi, \end{array} \right. \end{equation*} donde $\theta = \operatorname{Arg}_{[0,2\pi)}(z)$ y $r=|\,z\,|$.
    Prueba que $z_0 = 0$ y $z_\infty = \infty$ son puntos de ramificación de $F$, ambos de orden $2$.
  6. Muestra que los puntos dados son los puntos de ramificación de las siguientes funciones multivaluadas.
    a) $z=0$, $z=\infty$ ambos de orden $n-1$ para $F(z) = \sqrt[n]{z}$, $n\geq 2$. Recuerda que para esta función existen exactamente $n$ ramas distintas.
    b) $z=5$, $z=i$ y $z=2i-3$, los tres de orden $1$ para $F(z) = \sqrt{(z-5)(z-i)(z-2i+3)}$.
  7. Prueba que el corte de rama de la función $f(z) = \operatorname{Arg}(iz-1)$ es la semirrecta: \begin{equation*} L = \left\{z=x+iy\in\mathbb{C} : x=0, y\geq 0\right\} \end{equation*} Hint: Observa que $-\pi < \operatorname{Arg}(w) \leq \pi \quad \Longleftrightarrow \quad \left\{w\in\mathbb{C} : \operatorname{Re}(w)\leq 0, \operatorname{Im}(w)=0\right\}$.
  8. Sean $\alpha\in\mathbb{R}$ e $I = (\alpha, \alpha+2\pi]$. Define: \begin{equation*} \alpha^* = \alpha – 2\pi\left(\left\lceil\frac{\alpha}{2\pi}\right\rceil – 1 \right). \end{equation*} Muestra que: \begin{equation*} \operatorname{Arg}_I(z) = \left\{ \begin{array}{lcc} \operatorname{Arg}(z) + 2\pi\left( \left\lceil\frac{\alpha}{2\pi}\right\rceil – 1\right) & \text{si} & \alpha^*< \operatorname{Arg}(z) \leq \pi, \\ \operatorname{Arg}(z) + 2\pi \left\lceil\frac{\alpha}{2\pi}\right\rceil & \text{si} & \alpha^*< \operatorname{Arg}(z) \leq \pi, \end{array} \right. \end{equation*} donde $\lceil x \rceil = n \quad \Longleftrightarrow \quad n-1<x\leq n \quad \Longleftrightarrow \quad x \leq n < x+1$, para $n\in\mathbb{Z}$.

Más adelante…

En esta entrada introducimos de manera formal el concepto de función multivaluada y vimos algunos ejemplos puntuales de funciones de este tipo considerando algunos resultados que habíamos obtenido a lo largo de la unidad anterior.

En resumen, una función multivaluada puede pensarse como una colección de funciones univaluadas a las cuales llamamos ramas de la función. Más aún, las funciones multivaluadas pueden caracterizarse por sus puntos de ramificación y sus cortes de ramas. Los cortes de ramas, nos definen una rama de la función multivaluada, de acuerdo con la definición 13.2, la cual es una función discontinua sobre los puntos del corte ramal.

Dado que cada corte de rama impone una restricción en los valores del argumento, los cuales están limitados a un intervalo de longitud $2\pi$, y a su vez cada rama del argumento implica un corte en el plano complejo, entonces no existe una única forma de definir un corte de rama, esto dependerá en esencia de las necesidades del cálculo en cierto problema.

En las siguientes entradas estaremos trabajando con más ejemplos de funciones multivaluadas, como el logaritmo y las funciones inversas de las funciones trigonométricas e hiperbpolicas, que resultan ser de las funciones más elementales para el caso complejo, por lo que es importante familiarizarnos con este nuevo concepto y con las propiedades que lo definen.

La siguientes dos entradas veremos dos conceptos fundamentales en la teoría de las funciones, el del límite y continuidad. Como vimos en nuestros cursos de Cálculo, es posible estudiar y caracterizar a una función real a través del límite y la continuidad en un punto de la misma. Nuestro objetivo en las siguientes entradas consistirá en trabajar dichos conceptos pero desde la perspectiva de la variable compleja.

Entradas relacionadas

Variable Compleja I: Consecuencias de las ecuaciones de Cauchy-Riemann

Por Pedro Rivera Herrera

Introducción

En las entradas anteriores hemos determinado condiciones necesarias y suficientes para garantizar la analicidad de una función compleja. En particular hemos deducido las ecuaciones de C-R y hemos visto que dichas condiciones nos permiten caracterizar por completo la diferenciabilidad en el sentido complejo. Además, a través de dichas ecuaciones hemos probado que la diferenciabilidad en el sentido real de una función vectorial de dos variables no es equivalente a la diferenciabilidad de una función compleja, por lo que debe ser claro que no toda función vectorial de dos variables resultará ser una función analítica.

En esta entrada abordaremos algunos resultados que son consecuencia directa de las ecuaciones de C-R y veremos que es posible extender algunas resultados vistos en nuestros cursos de Cálculo para las funciones complejas a través de las funciones reales correspondientes con las partes real e imaginaria de una función compleja.

Observación 19.1.
De nuestros cursos de Cálculo sabemos que para una función $u:U \to \mathbb{R}$ de clase $C^1$, con $U\subset\mathbb{R}^2$ una región, se cumple que $u$ no depende de la variable $x$ si y solo si $\partial u/ \partial x = 0$ para todo punto en $U$. Análogamente para la variable $y$. Más aún, tenemos que: \begin{align*} \frac{\partial}{\partial x} x = 1, \quad \frac{\partial}{\partial y} x = 0,\\ \frac{\partial}{\partial x} y = 0, \quad \frac{\partial}{\partial y} y = 1. \end{align*}

Para motivar los siguientes planteamientos consideremos el siguiente:

Ejemplo 19.1.
Determinemos si la función compleja $f(z) = 2xy + i(y^2-x^2)$ es analítica o no.

Solución. Es claro que podemos estudiar la analicidad de esta función a través de los resultados de la entrada anterior, sin embargo notemos que operando un poco a la función, para $z=x+iy\in \mathbb{C}$, tenemos que: \begin{align*} f(z) & = 2xy + i(y^2-x^2)\\ & = -i(i2xy) + i(y^2-x^2)\\ & = -i \left[-(y^2-x^2) + i2xy \right]\\ & = -i \left(x^2 -y^2 + i2xy \right)\\ & = – i\left(x+iy\right)^2\\ & = -i z^2, \end{align*} es decir que para todo $z\in \mathbb{C}$ se tiene que $f(z) = -iz^2$, la cual es una función polinómica y por tanto analítica en todo $\mathbb{C}$. Es importante notar que en la función anterior no aparecen términos que dependan del conjugado de $z$.

Debe ser claro que el conjugado de un número complejo $z$, es decir $\overline{z}$, resulta ser una función compleja de la variable $z$. En el ejemplo 17.2, de la entrada 17, hemos visto que la función $f(z)=\overline{z}$ no es analítica en $\mathbb{C}$ desde que no se cumplen las ecuaciones de C-R en ningún punto. Sin embargo, esta función en particular cumple que $u_x = – v_y$ y $u_y = v_x$ para todo $z=x+iy\in \mathbb{C}$.

De acuerdo con la observación 12.5 de la entrada 12, estamos interesados en caracterizar a las funciones complejas que solo dependen de la variable $z$, es decir que no tienen términos que dependan de su conjugado.

Lo anterior nos motiva a considerar a $\overline{z} = x-iy$ como una variable «independiente» de $z=x+iy$. Entonces, nuestro objetivo es determinar un criterio similar al de la observación 19.1 para garantizar la analicidad de una función compleja $f$ cuando esta dependa únicamente de la variable $z$. Tenemos que si $z$ y $\overline{z}$ son variables independientes, entonces: \begin{align*} \frac{\partial}{\partial z} z = 1, \quad \frac{\partial}{\partial \overline{z}} z = 0,\\ \frac{\partial}{\partial z} \overline{z} = 0, \quad \frac{\partial}{\partial \overline{z}} \overline{z} = 1. \end{align*}

Como para todo $z=x+iy\in\mathbb{C}$ se cumple que: \begin{equation*} x = \frac{z+\overline{z}}{2}, \quad y = \frac{z-\overline{z}}{2i}, \tag{19.1} \end{equation*} entonces, dada una función compleja $f(z)=u(x,y) + iv(x,y)$ definida en un conjunto abierto $U\subset \mathbb{C}$ de clase $C^1$, podemos pensarla como una función de las variables independientes $x$ e $y$ o bien de las variables «independientes» $z$ y $\overline{z}$, y así definir: \begin{equation*} g(z,\overline{z}) = \hat{f}(x,y):= f(z) = u\left( \frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}\right) + i v\left( \frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}\right). \end{equation*}

Lo anterior resulta de gran utilidad al considerar a $z$ y $\overline{z}$ como variables independientes, ya que bajo este supuesto podemos obtener a las derivadas parciales complejas $g_z$ y $g_{\overline{z}}$ mediante la regla de la cadena como sigue: \begin{align*} g_{z} = \frac{\partial g}{\partial z} = \frac{\partial g}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial g}{\partial y} \frac{\partial y}{\partial z} = \frac{1}{2}\left(\frac{\partial g}{\partial x} – i \frac{\partial g}{\partial y} \right),\\ g_{\overline{z}} = \frac{\partial g}{\partial \overline{z}} = \frac{\partial g}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial g}{\partial y} \frac{\partial y}{\partial \overline{z}} = \frac{1}{2}\left(\frac{\partial g}{\partial x} + i \frac{\partial g}{\partial y} \right). \end{align*}

De lo anterior obtenemos la siguiente:

Definición 19.1. (Operadores diferenciales complejos de Wirtinger.)
Sea $U\subset \mathbb{C}$ un conjunto abierto y $f(z)=u(x,y)+iv(x,y)$ una función compleja definida en $U$ de clase $C^1$. Definimos los operadores direrenciales complejos de Wirtinger como: \begin{align*} f_z := \frac{\partial f}{\partial z} = \frac{1}{2}\left(\frac{\partial f}{\partial x} – i \frac{\partial f}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u }{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x} – \frac{\partial u}{\partial y} \right),\\ f_{\overline{z}} := \frac{\partial f}{\partial \overline{z}} = \frac{1}{2}\left(\frac{\partial f}{\partial x} + i \frac{\partial f }{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u }{\partial x} – \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x} + \frac{\partial u}{\partial y} \right). \end{align*}

Observación 19.2.
Notemos que la condición $\dfrac{\partial f}{\partial \overline{z}} =0$, intuitivamente nos dice que la función $f$ no depende de la variable $\overline{z}$ como lo planteamos inicialmente. Más aún, considerando la definición anterior se tiene el siguiente:

Lema 19.1.
Sean $U \subset \mathbb{C}$ un conjunto abierto y $f(z) = u(x,y) + iv(x,y)$ una función definida en $U$ de clase $C^1$. Entonces $u$ y $v$ satisfacen las ecuaciones de C-R en $U$ si y solo si $\dfrac{\partial f}{\partial \overline{z}} =0$ para todo $z=x+iy\in U$.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 19.2.
Sea $z\in\mathbb{C}$. Consideremos a la función $f(z) = |\,z\,|$. Determinemos a la función $g(z,\overline{z})$ y a las derivadas parciales $f_z$ y $f_{\overline{z}}$.

Solución. Tenemos que $f(z) = |\,z\,| = \left(z \overline{z}\right)^{1/2}$, por lo que $g(z,\overline{z}) = \left(z \overline{z}\right)^{1/2}$.

Por otra parte, si $z\neq 0$, entonces: \begin{align*} f_z(z) = \frac{\partial g}{\partial z}(z,\overline{z}) = \frac{1}{2}\left(z \overline{z}\right)^{-1/2} \overline{z} = \frac{\overline{z}}{2|\,z\,|},\\ f_{\overline{z}}(z) = \frac{\partial g}{\partial \overline{z}}(z,\overline{z}) = \frac{1}{2}\left(z \overline{z}\right)^{-1/2} z = \frac{z}{2|\,z\,|}. \end{align*}

Observación 19.2.
De acuerdo con el ejercicio 7 de la entrada 16, sabemos que la función $f(z)=|\,z\,|$ no es analítica en ningún punto de $\mathbb{C}$. Podemos analizar esto mediante el lema anterior.

Para $z = 0$ es claro que $f$ no es diferenciable en dicho punto desde que no existe: \begin{equation*} \lim_{h \to 0 } \frac{f(0+h) – f(0)}{h} = \lim_{h \to 0 } \frac{|h|}{h}. \end{equation*}

Por otra parte, para $z\neq 0$ se tiene que: \begin{equation*} \frac{\partial f}{\partial \overline{z}} = 0 \quad \Longleftrightarrow \quad \frac{z}{2|\,z\,|} = 0 \quad \Longleftrightarrow \quad z = 0, \end{equation*} lo cual claramente no es posible, por lo que no se satisfacen las ecuaciones de C-R para ningún $z\neq 0$, es decir que $f$ no es analítica en ningún punto de $\mathbb{C}$.

El ejemplo anterior motiva la siguiente:

Proposición 19.1.
Sean $U\subset \mathbb{C}$ un conjunto abierto y $f(z)=u(x,y)+iv(x,y)$ una función definida en $U$ de clase $C^1$. Las siguientes condiciones son equivalentes:

  1. $f$ es analítica en $U$.
  2. $\dfrac{\partial f}{\partial \overline{z}} = 0$ para todo $z_0\in U$. En tal caso: \begin{equation*} f'(z_0) = \frac{\partial f}{\partial z} (z_0) = \frac{\partial f}{\partial x} (z_0) = -i\frac{\partial f}{\partial y} (z_0), \quad z_0 \in U. \end{equation*}

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Observación 19.3.
La trascendencia de este resultado radica en que podemos pensar a las funciones analíticas como «auténticas funciones complejas» en el sentido de que si $f(z) = u(x,y) + iv(x,y)$ es una función analítica, entonces al sustituir a las variables $x$ e $y$ por $\dfrac{z+\overline{z}}{2}$ y $\dfrac{z-\overline{z}}{2i}$ respectivamente, dicha función no depende de la variable $\overline{z}$ como mencionamos en la observación 19.2.

Ejemplo 19.3.
Consideremos a la función compleja $f(z) = |\,z\,|^2 + \dfrac{z}{\overline{z}}$. Veamos que $f$ no es analítica en ningún punto en $\mathbb{C}$, determinemos dónde $f$ es al menos diferenciable y obtengamos a las derivadas parciales $f_z$ y $f_{\overline{z}}$.

Solución. La función $f$ está definida en el dominio $U = \mathbb{C}\setminus\{0\}$. Para $z=x+iy \in U$ tenemos que: \begin{align*} f(z) & = |\,z\,|^2 + \frac{z}{\overline{z}}\\ & = |\,z\,|^2 + \frac{z^2}{|\,z\,|^2}\\ & = x^2 + y^2 + \frac{x^2+2ixy -y^2}{x^2 + y^2}\\ & = \left(x^2 + y^2 + \frac{x^2 -y^2}{x^2 + y^2}\right) + i \left(\frac{2xy}{x^2 + y^2}\right)\\ & := u(x,y) + i v(x,y). \end{align*}

Para mostrar la utilidad de obtener las derivadas parciales complejas pensando a $f$ como una función $g$ de las variables $z$ y $\overline{z}$, primeramente procedemos a obtener las derivadas parciales $f_z$ y $f_{\overline{z}}$ mediante la definición 19.1.

Derivamos parcialmente a las funciones $u$ y $v$. Sea $z = x+iy \neq 0$, entonces:
\begin{align*} \frac{\partial u}{\partial x} = \frac{2x^5 + 4x^3y^2 + 2xy^4 + 4xy^2}{(x^2+y^2)^2},\\ \frac{\partial u}{\partial y} = \frac{2y^5 + 4y^3x^2 + 2yx^4 – 4yx^2}{(x^2+y^2)^2}, \end{align*} \begin{align*} \frac{\partial v}{\partial x} = \frac{2y^3-2yx^2}{(x^2+y^2)^2},\\ \frac{\partial v}{\partial y} = \frac{2x^3 – 2xy^2}{(x^2+y^2)^2}. \end{align*}

Por tanto, para $z\neq 0$ tenemos que: \begin{align*} \frac{\partial f}{\partial z} & = \frac{1}{2} \left(\frac{\partial u }{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x} – \frac{\partial u}{\partial y} \right),\\ & = \left(x + \frac{x}{x^2+y^2}\right) – i \left(y – \frac{y}{x^2+y^2} \right), \end{align*} \begin{align*} \frac{\partial f}{\partial \overline{z}} &= \frac{1}{2} \left(\frac{\partial u }{\partial x} – \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x} + \frac{\partial u}{\partial y} \right)\\ & = \left(x + \frac{3xy^2 – x^3}{(x^2+y^2)^2}\right) + i \left(y – \frac{3x^2y – y^3}{(x^2+y^2)^2} \right). \end{align*}

Considerando las igualdades dadas en (19.1), tenemos que: \begin{equation*} f_z = \overline{z} + \frac{1}{\overline{z}}, \quad \text{y} \quad f_{\overline{z}} = z – \frac{z}{\overline{z}^2}. \end{equation*}

Notemos que podemos evitar todo el desarrollo anterior si consideramos que: \begin{align*} f(z) & = |\,z\,|^2 + \dfrac{z}{\overline{z}}\\ & = z \overline{z} + \dfrac{z}{\overline{z}}\\ & := g(z,\overline{z}), \quad \forall z \neq 0, \end{align*}

entonces para todo $z\neq 0$ existen las derivadas parciales complejas: \begin{align*} f_z = \frac{\partial g}{\partial z} = \overline{z} + \frac{1}{\overline{z}},\\ f_{\overline{z}} = \frac{\partial g}{\partial \overline{z}} = z – \frac{z}{\overline{z}^2}. \end{align*}

De estas últimas expresiones es claro que las funciones $f_z$ y $f_{\overline{z}}$ son continuas en $U = \mathbb{C}\setminus\{0\}$, por lo que lo son también las derivadas parciales $u_x$, $u_y$, $v_x$ y $v_y$ , es decir que $f$ es de clase $C^1(U)$.

Por otra parte, dado que: \begin{equation*} \frac{\partial f}{\partial \overline{z}} = 0 \quad \Longleftrightarrow \quad z – \frac{z}{\overline{z}^2} = 0 \quad \Longleftrightarrow \quad \overline{z}^2 = 1 \quad \Longleftrightarrow \quad z = \pm 1, \end{equation*} entonces $f$ solo es diferenciable en los puntos $z=1$ y $z=-1$. Puesto que no existe disco abierto alrededor de dichos puntos donde $f$ sea diferenciable, concluimos que $f$ no es analítica en ningún punto en $\mathbb{C}$.

Observación 19.4.
Debe ser claro que si tenemos una función compleja $f$ diferenciable en un punto $z_0$, entonces se cumple que $f_{\overline{z}}(z_0) = 0$. Sin embargo, debemos enfatizar en que la existencia de $f_{\overline{z}}(z_0)$ no garantiza la existencia de $f'(z_0)$, desde que las ecuaciones de C-R no son una condición suficiente para la diferenciabilidad en el sentido complejo.

Ejemplo 19.4.
Consideremos el ejercicio 6 de la entrada 17. Tenemos que la función: \begin{equation*} f(z)= \left\{\begin{array}{lcc} \dfrac{z^5}{|\,z\,|^4}& \text{si} & z\neq 0, \\ 0 & \text{si} & z = 0, \end{array} \right. \end{equation*} satisface las ecuaciones de C-R en $z=0$, pero $f'(0)$ no existe.

Notemos que para $z=x+iy \neq 0$ tenemos que: \begin{equation*} f(z) = \frac{x^5-10x^3y^2 + 5xy^4}{(x^2+y^2)^2} + i \left(\frac{x^4-10x^2y^3 + y^5}{(x^2+y^2)^2}\right), \end{equation*} por lo que: \begin{align*} \frac{\partial u }{\partial x}(0,0) = \lim_{h \to 0} \frac{u(h,0) – u(0,0)}{h} = 0\\ \frac{\partial u }{\partial y}(0,0) = \lim_{k \to 0} \frac{u(0,k) – u(0,0)}{k} = 0\\ \frac{\partial v}{\partial x}(0,0) = \lim_{h \to 0} \frac{v(h,0) – v(0,0)}{h} = 0\\ \frac{\partial v}{\partial y}(0,0) = \lim_{k \to 0} \frac{v(0,k) – u(0,0)}{k} = 0, \end{align*}

entonces, considerando la definición 19.1, tenemos que: \begin{align*} \frac{\partial f}{\partial z}(0,0) = \frac{1}{2} \left(\frac{\partial u }{\partial x}(0,0) + \frac{\partial v}{\partial y}(0,0) \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x}(0,0) – \frac{\partial u}{\partial y}(0,0) \right) = 0,\\ \frac{\partial f}{\partial \overline{z}} (0,0)= \frac{1}{2} \left(\frac{\partial u }{\partial x}(0,0) – \frac{\partial v}{\partial y}(0,0) \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x}(0,0) + \frac{\partial u}{\partial y}(0,0) \right) = 0, \end{align*}

es decir que $f_z(0,0) = f_{\overline{z}}(0,0) = 0$. Sin embargo, notemos que para $z\neq 0$ se tiene que: \begin{align*} \lim_{z\to 0} \frac{f(z) – f(0)}{z-0} & = \lim_{z\to 0} \frac{z^4}{|\,z\,|^4}\\ & = \lim_{z\to 0} \frac{z^2}{\overline{z}^2}, \end{align*} pero dicho límite no existe pues si nos aproximamos a $0$ a través de la recta $y=x$ tenemos que: \begin{align*} \lim_{z\to 0} \frac{f(z) – f(0)}{z-0} & = \lim_{x\to 0} \frac{x^2 \left(1+i\right)^2}{x^2 \left(1-i\right)^2}\ & = \left(\frac{ 1+i}{1-i}\right)^2 = -1, \end{align*}

mientras que si nos aproximamos a $0$ a través del eje $x$ tenemos que: \begin{equation*} \lim_{z\to 0} \frac{f(z) – f(0)}{z-0} = \lim_{x\to 0} \frac{\left(x + i0\right)^2}{\left(x-i0\right)^2} = 1, \end{equation*} por lo que $f'(0)$ no existe.

El resultado obtenido en este ejemplo no contradice el teorema 18.1 de la entrada anterior ni a la proposición 19.1 de esta entrada, sino que en ambos casos no se cumple la hipótesis de continuidad de las derivadas parciales de las funciones $u$ y $v$ que determinan a $f$.

Lema 19.2.
Sea $D\subset\mathbb{R}^2$ un conjunto abierto y conexo. Si $u:D\to\mathbb{R}$ es una función real tal que $u_x(z) = u_y(z) = 0$ para todo $z=(x,y)\in D$, entonces $u$ es una función constante en $D$.

Demostración. Dadas las hipótesis, tomemos a $z_0=(x_0,y_0)\in D$ fijo, entonces existe algún $r>0$ tal que $B(z_0,r)\subset D$. Sea $z=(x,y)\in B(z_0,r)$, procediendo como en la prueba del teorema 18.1 de la entrada anterior, concluimos, por el teorema del valor intermedio para funciones reales, que existen $\alpha, \beta\in(0,1)$, tales que:
\begin{align*} u(z)-u(z_0) & = u(x,y)-u(x_0,y_0)\\ & = (x-x_0) u_x(x_0+\alpha(x-x_0),y) + (y-y_0) u_y(x_0, y_0+\beta(y-y_0)).\tag{19.2} \end{align*}

Sean $\zeta_1 = (x_0+\alpha(x-x_0),y)$ y $\zeta_2 = (x_0,y_0+\beta(y-y_0))$, para algunos $\alpha, \beta\in(0,1)$. Es claro que, figura 75: \begin{equation*} \left| \zeta_1 – z_0 \right| \leq \left| z – z_0 \right|<r, \quad \left| \zeta_2 – z_0\right| \leq \left| z – z_0 \right|<r, \end{equation*} por lo que, la igualdad en (19.2) es equivalente a decir que existen $\zeta_1, \zeta_2 \in B(z_0,r)$ tales que: \begin{equation*} u(z)-u(z_0) = (x-x_0) u_x(\zeta_1) + (y-y_0) u_y(\zeta_2). \tag{19.3} \end{equation*}

Figura 75: $\zeta_1, \zeta_2 \in B(z_0,r)$ dados por el segmento de recta $[z_0, z]$ contenido en el disco abierto con centro en $z_0$ y radio $r>0$.

De acuerdo con la igualdad (19.3), como $\zeta_1, \zeta_2 \in D$, entonces por hipótesis se cumple que: \begin{equation*} u(z)-u(z_0) = (x-x_0) \cdot 0 + (y-y_0) \cdot 0 = 0, \end{equation*} por lo que para todo $z\in B(z_0, r)$ se cumple que $u(z) = u(z_0)$, es decir que $u$ es una función constante en todo disco abierto completamente contenido en $D$.

Para $z_0\in D$ un punto fijo, definimos los siguientes conjuntos: \begin{equation*} U=\{ z\in D : u(z) = u(z_0)\} \quad \text{y} \quad V=\{ z\in D : u(z) \neq u(z_0)\}. \end{equation*}

Probemos que $U$ y $V$ son conjuntos abiertos en $D$.

Sea $z\in U$, entonces $u(z) = u(z_0)$. Por otra parte, como $D$ es abierto entonces existe $r>0$ tal que $B(z,r) \subset D$. Veamos que $B(z,r) \subset U$.

De acuerdo con lo que probamos antes, es claro que para todo $z^* \in B(z,r)$ la función $u$ es constante en dicho disco, por lo que $u(z) = u(z^*)$, entonces para todo $z^* \in B(z,r)$ se cumple que $u(z^*) = u(z_0)$, es decir, $z^* \in U$, entonces: \begin{equation*} B(z,r) \subset U, \end{equation*} por lo que concluimos que $U$ es un conjunto abierto. De manera análoga se verifica que $V$ es un conjunto abierto, por lo que se deja como ejercicio al lector.

Tenemos entonces que $D = U \cup V$ y $U \cap V = \emptyset$, pero como $D$ es un conjunto conexo, entonces uno de los dos conjuntos $U$ o $V$ debe ser vacío. Por construcción es claro que $z_0\in U$, por lo que $V = \emptyset$, por lo tanto $D = U$, entonces para todo $z\in D$ se cumple que $u(z) = u(z_0)$, es decir que $u$ es una función constante en $D$.

$\blacksquare$

Proposición 19.2.
Sean $D\subset\mathbb{C}$ un dominio y $f:D\to\mathbb{C}$ una función analítica en $D$. Si $f'(z) = 0$ para todo $z\in D$, entonces $f$ es una función constante en $D$.

Demostración. Dadas las hipótesis, tomemos a $f(z) = u(x,y) + iv(x,y)$ definida en $D$. Como $f$ es una función analítica en $D$, entonces las funciones $u$ y $v$ satisfacen las ecuaciones de C-R en $D$ y se cumple que: \begin{equation*} f'(z) = u_x(z) + iv_x(z), \quad \forall z = x+iy \in D. \end{equation*}

Por hipótesis tenemos que: \begin{equation*} 0 = f'(z) = u_x(z) + iv_x(z) = v_y(z) – i u_y(z), \end{equation*} para todo $z \in D$, es decir que para todo punto en $D$ se cumple que: \begin{equation*} u_x(x,y) = u_y(x,y) = v_x(x,y) = v_y(x,y) = 0. \end{equation*}

Considerando el lema 19.2 concluimos que las funciones $u$ y $v$ son constantes en $D$ y por tanto que $f$ es una función constante en $D$.

$\blacksquare$

Corolario 19.1.
Sean $D\subset\mathbb{C}$ un dominio y $f,g\in \mathcal{F}(D)$ dos funciones analíticas en $D$. Si $f$ y $g$ coinciden en un punto y tienen la misma derivada en $D$, entonces $f$ y $g$ son idénticas.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Observación 19.5.
La propiedad de conexidad del dominio $D$ es necesaria. Notemos que en la prueba de la proposición 19.2, de manera implícita, usamos fuertemente el hecho de que $D$ era un conjunto conexo, pero si $D$ solo es un conjunto abierto el resultado no es válido.

Ejemplo 19.5.
Consideremos al conjunto $U = \{ z=x+iy\in\mathbb{C} : x \neq 0\}$, el cual es abierto en $\mathbb{C}$. Definimos a la función: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} 1 & \text{si} & \operatorname{Re}(z)>0, \\ 2 & \text{si} & \operatorname{Re}(z)<0. \end{array} \right. \end{equation*} Claramente la función $f(z)$ es analítica en $U$ y $f'(z) = 0$ para todo $z\in U$, sin embargo $f$ no es una función constante.

Procedemos ahora a probar un resultado en el cual podemos ver que la analicidad de una función compleja es una propiedad más restrictiva que la diferenciabilidad en el sentido real.

Proposición 19.3.
Sean $D\subset\mathbb{C}$ un dominio y $f(z) = u(x,y) + iv(x,y)$ una función analítica en $D$.

  1. Si $u$ ó $v$ son constantes en $D$, entonces $f$ también es una función constante en $D$.
  2. Si $|\,f\,|$ es constante en $D$, entonces $f$ también es una función constante en $D$.

Dadas las hipótesis, como $f$ es una función analítica en $D$, entonces las funciones $u$ y $v$ satisfacen las ecuaciones de C-R en $D$ y se tiene que: \begin{equation*} f'(z) = u_x(z) + iv_x(z) = v_y(z) – iu_y(z), \quad \forall z\in D\tag{19.4} \end{equation*}

  1. Probaremos el resultado considerando a la función $u$ como constante, el caso en el que la función $v$ es constante es completamente análogo.

Si suponemos que $u$ es una función constante en $D$, entonces se cumple que: \begin{equation*} u_x(z) = u_y(z) = 0, \quad \forall z=x+iy\in D. \end{equation*}

De acuerdo con (19.4) tenemos que: \begin{equation*} f'(z) = u_x(z) – iu_y(z) = 0, \end{equation*} para todo $z=x+iy\in D$, por lo que se sigue de la proposición 19.2 que $f$ es constante en $D$.

  1. Supongamos ahora que $|\,f\,|$ es una función constante en $D$, entonces tenemos que: \begin{equation*} |\,f(z)\,|^2 = u^2(x,y) + v^2(x,y) = c, \tag{19.5} \end{equation*} para todo $z=x+iy\in D$ y para alguna constante real $c\geq 0$.

Si $c = 0 $, entonces es claro que $f(z) = 0$ para todo $z=x+iy\in D$, por lo que en tal caso $f$ es constante.

Supongamos que $c > 0 $, entonces tomando derivadas parciales en (19.5), con respecto a $x$ e $y$, para todo $z=x+iy\in D$ tenemos que: \begin{align*} 2u(x,y) u_x(x,y) + 2 v(x,y) v_x(x,y) = 0,\\ 2u(x,y) u_y(x,y) + 2 v(x,y) v_y(x,y) = 0, \end{align*}

Por hipótesis sabemos que se cumplen las ecuaciones de C-R en $D$, por lo que para todo $z=x+iy \in D$ se tiene que: \begin{align*} u(x,y) u_x(x,y) – v(x,y) u_y(x,y) = 0,\\ u(x,y) u_y(x,y) + v(x,y) u_x(x,y) = 0. \end{align*}

Multiplicando por las funciones $u(x,y)$ y $v(x,y)$, respectivamente, en las igualdades anteriores, procedemos a sumarlas y restarlas, entonces para todo $z=x+iy\in D$ tenemos que: \begin{align*} u_x(x,y)\left(u^2(x,y) + v^2(x,y) \right) = 0,\\ u_y(x,y)\left(u^2(x,y) + v^2(x,y) \right) = 0, \end{align*} de donde $u_x(x,y) = u_y(x,y) = 0$ para todo $z=x+iy\in D$. De manera análoga podemos obtener que $v_x(x,y) = v_y(x,y) = 0$ en $D$. Considerando el lema 19.2 concluimos que $u$ es una función constante en $D$, por lo que, de acuerdo con la primera parte de la prueba, $f$ es una función constante en $D$.

Tarea moral

  1. Demuestra el lema 19.1 y la proposición 19.1.
  2. Sea $D\subset\mathbb{C}$ un dominio. Supón que $f$ y $|\,f\,|$ son funciones analíticas en $D$. Prueba que $f$ es una función constante en $D$.
  3. Obtén las derivadas parciales $f_z$ y $f_{\overline{z}}$ para las siguientes funciones complejas:
    a) $f(z) = 2x^3y^2 + i(x^2-y)$.
    b) $f(z) = \dfrac{x-1-iy}{(x-1)^2 + y^2}$.
    c) $f(z) = x^2+y^2+3x+1+i3y$.
    d) $f(z) = x^2-y^2+i3xy$.
    e) $f(z) = (x+iy)(x^2+y^2)$.
    ¿Son analíticas? ¿Son diferenciables?
  4. Sea $U\subset \mathbb{C}$ un conjunto abierto y $f:U\to\mathbb{C}$ una función de clase $C^1$. Muestra que para todo $z\in U$ se cumple que:
    a) $(\overline{f})_z = \overline{f_{\overline{z}}}$.
    b) $(\overline{f})_{\overline{z}} = \overline{f_z}$.
  5. Sean $D\subset\mathbb{C}$ un dominio y $f \in \mathcal{F}(D)$ una función analítica. Supón que existen $a,b,c\in\mathbb{R}$, constantes reales con $a^2 + b^2 > 0$, tales que: \begin{equation*} a \operatorname{Re} f(z) + b \operatorname{Im} f(z) = c, \quad \forall z \in D. \end{equation*} Prueba que la función $f$ es constante en $D$.
  6. Sea $f:\mathbb{C} \to \mathbb{C}$ un polinomio. Supón que: \begin{equation*} \frac{\partial f}{\partial z} = 0 = \frac{\partial f}{\partial \overline{z}}, \quad \forall z\in \mathbb{C}. \end{equation*} Prueba que la función $f$ es constante.
  7. Demuestra el corolario 19.1.
  8. Sea $U\subset \mathbb{C}$ un conjunto abierto y sean $f,g:U \to \mathbb{C}$ dos funciones de clase $C^1$. Muestra que para cualesquiera constantes $a,b\in\mathbb{C}$ se cumple que:
    a) $\dfrac{\partial}{\partial z}\left( a f + b g\right) = a \dfrac{\partial f}{\partial z} + b \dfrac{\partial g}{\partial z}$.
    b) $\dfrac{\partial}{\partial \overline{z}}\left( a f + b g\right) = a \dfrac{\partial f}{\partial \overline{z}} + b \dfrac{\partial g}{\partial \overline{z}}$.
    c) $\dfrac{\partial}{\partial z}\left( fg\right) = g \dfrac{\partial f}{\partial z} + f \dfrac{\partial g}{\partial z}$.
    d) $\dfrac{\partial}{\partial \overline{z}}\left( fg\right) = g \dfrac{\partial f}{\partial \overline{z}} + f \dfrac{\partial g}{\partial \overline{z}}$.
  9. Sean $U, V\subset \mathbb{C}$ dos conjuntos abiertos. Supón que $f:U \to \mathbb{C}$ y $g:V \to \mathbb{C}$ son dos funciones de clase $C^1$ y que $f(U) \subset V$. Muestra que: \begin{align*} \left(g\circ f\right)_z = \left(g_z \circ f\right)f_z + \left(g_{\overline{z}} \circ f\right)\left(\overline{f}\right)_z,\\ \left(g \circ f\right)_{\overline{z}} = \left(g_z\circ f\right)f_{\overline{z}} + \left(g_{\overline{z}} \circ f\right)\left(\overline{f}\right)_{\overline{z}}. \end{align*} Concluye que:
    a) Si $f$ es analítica en $U$, entonces: \begin{equation*} \left(g\circ f\right)_z = \left(g_z \circ f\right)f’, \quad \left(g \circ f\right)_{\overline{z}} = \left(g_{\overline{z}} \circ f\right)\overline{f’}. \end{equation*}
    b) Si $g$ es analítica en $V$, entonces: \begin{equation*} \left(g\circ f\right)_z = \left(g’ \circ f\right)f_z, \quad \left(g\circ f\right)_{\overline{z}} = \left(g’ \circ f\right)f_{\overline{z}}.\end{equation*}

Más adelante…

En esta entrada hemos deducido una serie de resultados que son consecuencia directa de las ecuaciones de C-R, además de caracterizar aún más a la diferenciabilidad compleja a través del concepto de analicidad de una función, que como vimos resulta ser un concepto más restrictivo que el de diferenciabilidad real. Mediante los resultados de esta entrada hemos concluido que las «genuinas» funciones complejas que resultan ser analíticas son aquellas que solo están dadas en términos de la variable compleja $z$, es decir que no dependen de $\overline{z}$.

La siguientes entradas definiremos algunas de las funciones complejas elementales para la teoría. Mediante estas funciones haremos una extensión de las funciones reales como la exponencial, el logaritmo y las funciones trigonométricas. Veremos que para el caso complejo muchas de las propiedades que satisfacen dichas funciones reales se seguirán cumpliendo, aunque como es de esperarse veremos que en el caso complejo estas funciones cumplen otras propiedades como la periodicidad y retomaremos nuevamente el concepto de funciones multivaludas.

Entradas relacionadas

Variable Compleja I: Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja.

Por Pedro Rivera Herrera

Introducción

En las entradas anteriores hemos definido y trabajado con los conceptos de diferenciabilidad y analicidad de una función compleja, en particular hemos visto que dichos conceptos no son equivalentes, desde que la analicidad de una función compleja en un punto $z_0$ implica la diferenciabilidad de la función en todo un $\varepsilon$-vecindario de $z_0$.

Como hemos visto a lo largo de la unidad 2, toda función compleja está totalmente definida a través de un par de funciones reales de dos variables, a las cuales hemos llamado su parte real e imaginaria. Más aún, hemos caracterizado algunos conceptos matemáticos importantes como el de límite y continuidad a través de dichas funciones, por lo que resulta natural cuestionarnos acerca de si es posible caracterizar la diferenciabilidad de una función compleja mediante estás funciones reales.

La entrada anterior deducimos las ecuaciones de Cauchy-Riemann y vimos que para una función compleja $f(z)=u(x,y) + iv(x,y)$ analítica en un conjunto abierto $U\subset\mathbb{C}$ las funciones $u$ y $v$, correspondientes con su parte real e imaginaria, deben satisfacer dichas ecuaciones. Sin embargo, vimos que dichas ecuaciones son solamente una condición necesaria, pero no suficiente, que las funciones $u$ y $v$ deben satisfacer. En esta entrada veremos que además de las ecuaciones de C-R, es necesario imponer unas condiciones extras sobre las funciones $u$ y $v$ para garantizar que una función compleja es analítica.

Recordemos la definición de diferenciabilidad de una función real de dos variables, vista en nuestros cursos de Cálculo.

Definición 18.1. (Diferenciabilidad de funciones reales de dos variables.)
Sea $U\subset\mathbb{R}^2$ un conjunto abierto. Una función real de dos variables $u:U \to \mathbb{R}$, es diferenciable en $(x_0,y_0) \in U$ si existen $A,B\in\mathbb{R}$ constantes tales que: \begin{equation*} \lim_{(x,y) \to (x_0, y_0)} \frac{u(x,y) – u(x_0, y_0) – A(x-x_0) – B(y-y_0)}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} = 0, \end{equation*} en tal caso $A = \dfrac{\partial u}{\partial x}(x_0, y_0)$ y $B = \dfrac{\partial u}{\partial y}(x_0, y_0)$.

Observación 18.1.
De acuerdo con la definición 18.1, tenemos que una función real de dos variables $u$, definida sobre un abierto $U\subset \mathbb{R}^2$, es diferenciable en $(x_0,y_0)\in U$ si puede escribirse de la forma: \begin{equation*} u(x,y) = u(x_0,y_0) + A(x-x_0) + B(y-y_0) + \varepsilon(x,y)\sqrt{(x-x_0)^2 + (y-y_0)^2}, \end{equation*} donde $A = \dfrac{\partial u}{\partial x}(x_0, y_0)$ y $B = \dfrac{\partial u}{\partial y}(x_0, y_0)$ son constantes reales y $\lim\limits_{(x,y) \to (x_0,y_0)}\varepsilon(x,y) = 0$.

Consideremos el siguiente resultado.

Proposición 18.1.
Sean $U\subset\mathbb{C}$ un conjunto abierto y $f:U\to\mathbb{C}$ una función. Entonces, $f$ es analítica en $z_0\in U$ si y solo si $f$ se puede escribir de la forma: \begin{equation*} f(z) = f(z_0) + c(z-z_0) + \varepsilon(z)(z-z_0), \tag{18.2} \end{equation*} donde $c\in\mathbb{C}$ es una constante, $\varepsilon: U \to \mathbb{C}$ es continua en $z_0$ y $\lim\limits_{z \to z_0} \varepsilon(z) = 0$. En tal caso se tiene que $f'(z_0) = c$.

Demostración. Dadas las hipótesis, tenemos lo siguiente.

$\Rightarrow)$
Supongamos que $f'(z_0)$ existe, entonces definimos la función: \begin{equation*} \varepsilon(z)= \left\{ \begin{array}{lcc} \dfrac{f(z)- f(z_0)}{z – z_0} – f'(z_0) & \text{si} & z\neq z_0, \\ 0 & \text{si} & z = z_0. \end{array} \right. \end{equation*} Es claro que dicha función satisface que $\lim_{z \to z_0} \varepsilon(z) = 0$ y además es una función continua en $z_0$.

$(\Leftarrow$
Supongamos que $f(z)$ se puede escribir como (18.2) con $c\in\mathbb{C}$ constante, entonces para $z\neq z_0$, tenemos que: \begin{equation*} \frac{f(z) – f(z_0)}{z – z_0} = c + \varepsilon(z), \end{equation*} por lo que, tomando límites en la igualdad anterior: \begin{equation*} \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z – z_0} = \lim_{z\to z_0} \left(c + \varepsilon(z)\right) = c, \end{equation*} de donde $f'(z_0) = c$.

$\blacksquare$

La proposición anterior establece que la diferenciabilidad de una función compleja $f(z)$ en $z_0$ es equivalente a que dicha función se puede aproximar en $z_0$ por la función lineal $f(z_0) + c(z-z_0)$, con $c\in\mathbb{C}$ constante, en el sentido que cuando $z$ está cerca de $z_0$ la diferencia entre $f(z)$ y $f(z_0) + c(z-z_0)$ es pequeña comparada con $|\,z-z_0\,|$.

Procedemos ahora a responder nuestra pregunta sobre cuáles son las condiciones suficientes que se deben imponer sobre las funciones $u$ y $v$, correspondientes con la parte real e imaginaria de una función compleja, además de las ecuaciones de C-R, para garantizar la analicidad de una función compleja.

Teorema 18.1.
Una función compleja $f(z) = u(x,y) + iv(x,y)$ es analítica en un conjunto abierto $U\subset\mathbb{C}$ si las cuatro derivadas parciales $u_x, v_x, u_y$ y $v_y$ existen y son continuas en todo punto de $U$ (es decir $u$ y $v$ son funciones de clase $C^1$) y satisfacen las ecuaciones de C-R en todo punto de $U$. En tal caso, para todo $z_0=x_0+iy_0\in U$ se tiene que: \begin{equation*} f'(z_0) = \frac{\partial u}{\partial x}(x_0,y_0) + i \frac{\partial v}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0) – i \frac{\partial u}{\partial y}(x_0,y_0). \tag{18.3} \end{equation*}

Demostración. Dadas las hipótesis, tomemos a $z_0 = x_0 + iy_0 \in U$ fijo, entonces existe $r>0$ tal que $B(z_0, r) \subset U$. Sea $z \in B(z_0, r)$ y supongamos que $z \neq z_0$, entonces tenemos que el segmento de recta que une a $z_0$ con $z$, es decir $[z_0, z]$, está totalmente contenido en $B(z_0, r)$ (¿por qué?). Sin perdida de generalidad supongamos que $x>x_0$ y $y>y_0$ (los casos restantes son completamente análogos), figura 74, por lo que: \begin{equation*} u(x,y) – u(x_0, y_0) = u(x,y) – u(x_0, y) + u(x_0, y) – u(x_0, y_0). \end{equation*}

Figura 74: Segmento de recta $[z_0, z]$ contenido en el disco abierto con centro en $z_0$ y radio $r>0$. Caso $x>x_0$ y $y>y_0$.

Definimos $h = x – x_0 > 0$ y $k = y – y_0 > 0$. Sean $g_1 : [0,h] \to \mathbb{R}$ y $g_2 : [0,k] \to \mathbb{R}$ dadas por: \begin{equation*} g_1(t) = u(x_0 + t,y) \quad \text{y} \quad g_2(t) = u(x_0,y_0 + t). \end{equation*}

Tenemos que: \begin{align*} g_1′(t) & = \lim_{h\to 0} \frac{g_1(t+h)-g_1(t)}{h}\\ & = \lim_{h\to 0} \frac{u(x_0 + t + h,y)-u(x_0 + t,y)}{h}\\ & = \frac{\partial u}{\partial x}(x_0 + t,y), \end{align*} \begin{align*} g_2′(t) & = \lim_{k\to 0} \frac{g_2(t+k)-g_2(t)}{k}\\ & = \lim_{k\to 0} \frac{u(x_0,y_0 + t + k)-u(x_0,y_0 + t)}{k}\\ & = \frac{\partial u}{\partial y}(x_0,y_0+t). \end{align*}

Como $u_x$ y $u_y$ existen en $U$, entonces para $y$ fijo tenemos que $g_1$ es una función diferenciable en $[0,h]$ y para $x_0$ fijo tenemos que $g_2$ también es una función diferenciable en $[0,k]$, por lo que $g_1$ y $g_2$ son funciones continuas en $[0,h]$ y $[0,k]$ respectivamente.

Por el teorema del valor medio para funciones reales, tenemos que existen $c_1\in(0,h)$ y $c_2\in(0,k)$ tales que: \begin{align*} g_1(h) – g_1(0) = g_1′(c_1) (h – 0),\\ g_2(h) – g_2(0) = g_2′(c_2) (k – 0), \end{align*} o equivalentemente que existen $\alpha_1, \beta_1 \in (0,1)$, tales que: \begin{align*} g_1(h) – g_1(0) = h \, g_1′(h\alpha_1),\\ g_2(h) – g_2(0) = k \, g_2′(k\beta_1), \end{align*} es decir: \begin{align*} u(x, y) – u(x_0, y) & = u(x_0 + h, y_0 + k) – u(x_0, y_0 + k)\\ & = h \, u_x(x_0 +\alpha_1 h, y_0 + k), \end{align*} \begin{align*} u(x_0, y) – u(x_0, y_0) & = u(x_0, y_0 + k) – u(x_0, y_0)\\ & = k \, u_y(x_0, y_0 + \beta_1 k). \end{align*} Por lo que: \begin{equation*} u(x,y) – u(x_0, y_0) = h \, u_x(x_0 +\alpha_1 h, y_0 + k) + k \, u_y(x_0, y_0 + \beta_1 k). \end{equation*}

De manera análoga concluimos que existen $\alpha_2, \beta_2 \in (0,1)$ tales que: \begin{align*} v(x_0 + h, y_0 + k) – v(x_0, y_0 + k) = h \, v_x(x_0 +\alpha_2 h, y_0 + k),\\ v(x_0, y_0 + k) – v(x_0, y_0) = k \, v_y(x_0, y_0 + \beta_2 k), \end{align*} donde $h = x – x_0 > 0$ y $k = y – y_0 > 0$.

Por lo que: \begin{equation*} v(x,y) – v(x_0, y_0) = h \, v_x(x_0 +\alpha_2 h, y_0 + k) + k \, v_y(x_0, y_0 + \beta_2 k). \end{equation*} Entonces, para $z\neq z_0$ tenemos que: \begin{align*} \frac{f(z) – f(z_0)}{z-z_0} & = \frac{u(x,y) + iv(x,y) – \left[ u(x_0,y_0) + iv(x_0,y_0)\right]}{(x – x_0) + i (y-y_0)}\\ & = \frac{u(x,y) – u(x_0,y_0)}{h + i k} + i \left[ \frac{v(x,y) – v(x_0,y_0)}{h + i k}\right]\\ & = \frac{h \, u_x(x_0 +\alpha_1 h, y_0 + k) + k \, u_y(x_0, y_0 + \beta_1 k)}{h + i k}\\ & \quad + i \left[ \frac{h \, v_x(x_0 +\alpha_2 h, y_0 + k) + k \, v_y(x_0, y_0 + \beta_2 k)}{h + i k}\right]\\ & = \frac{h}{h+ik}\left[u_x(x_0 +\alpha_1 h, y_0 + k) + i v_x(x_0 +\alpha_2 h, y_0 + k)\right]\\ & \quad + \frac{k}{h+ik} \left[u_y(x_0, y_0 + \beta_1 k) + i v_y(x_0, y_0 + \beta_2 k)\right], \end{align*} donde $h = x – x_0 > 0$, $k = y – y_0 > 0$ y $\alpha_i, \beta_i \in (0,1)$ para $i=1,2$. Además la igualdad anterior se cumple aún si $x = x_0$ o $y = y_0$.

Dado que $u_x, u_y, v_x$ y $v_y$ son continuas en $U$, entonces tenemos que: \begin{align*} \lim_{(h,k) \to (0,0)} u_x(x_0 +\alpha_1 h, y_0 + k) = u_x(x_0, y_0),\\ \lim_{(h,k) \to (0,0)} v_x(x_0 +\alpha_2 h, y_0 + k) = v_x(x_0, y_0),\\ \lim_{(h,k) \to (0,0)} u_y(x_0, y_0 + \beta_1 k) = u_y(x_0, y_0),\\ \lim_{(h,k) \to (0,0)} v_y(x_0, y_0 + \beta_2 k) = v_y(x_0, y_0). \end{align*} Por lo que: \begin{align*} \frac{f(z) – f(z_0)}{z-z_0} & = \frac{h}{h+ik}\left[u_x(x_0, y_0) + i v_x(x_0, y_0) + \varepsilon_1 \right]\\ & \quad + \frac{k}{h+ik} \left[u_y(x_0, y_0) + i v_y(x_0, y_0) + \varepsilon_2 \right], \end{align*} donde $\varepsilon_1, \varepsilon_2 \to 0$ si $(h,k) \to (0,0)$ o equivalentemente si $z \to z_0$.

Como se cumplen las ecuaciones de C-R, tenemos que: \begin{align*} u_x(x_0, y_0) = A = v_y(x_0, y_0),\\ u_y(x_0, y_0) = B = – v_x(x_0, y_0), \end{align*} para algunos $A$ y $B$ números reales.

Entonces: \begin{align*} \frac{f(z) – f(z_0)}{z-z_0} & = \frac{h}{h+ik}\left(A – i B\right) + \frac{k}{h+ik} \left(B + i A\right) + \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik}\\ & = \frac{A\left(h + i k\right)}{h+ik} -i \frac{B\left(h + ik\right)}{h+ik} + \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik}\\ & = A -iB + \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik}\\ & = u_x(x_0, y_0) +iv_x(x_0,y_0) + \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik}, \end{align*} donde $\varepsilon_1, \varepsilon_2 \to 0$ si $z \to z_0$.

Dado que para todo $z\in\mathbb{C}$ se cumple que $|\,\operatorname{Re}(z)\,| \leq |\,z\,|$ e $|\,\operatorname{Im}(z)\,| \leq |\,z\,|$, entonces: \begin{align*} 0<|\,h\,| \leq |\,h+ik\,| \quad \Longrightarrow \frac{|\,h\,|}{|\,h+ik\,|} \leq 1,\\ 0<|\,k\,| \leq |\,h+ik\,| \quad \Longrightarrow \frac{|\,k\,|}{|\,h+ik\,|} \leq 1. \end{align*} Por lo que: \begin{align*} \left| \, \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik} \, \right| & \leq \left|\, \frac{h \varepsilon_1}{h+ik} \,\right| + \left|\, \frac{k \varepsilon_2}{h+ik} \,\right|\\ & = \frac{\left|\, h \,\right|}{\left|\, h+ik\,\right|} \left|\,\varepsilon_1 \,\right| + \frac{\left|\, k \,\right|}{\left|\,h+ik\,\right|} \left|\,\varepsilon_2 \,\right|\\ & \leq \left|\,\varepsilon_1 \,\right| + \left|\,\varepsilon_2 \,\right|, \end{align*} tomando límites en la desigualdad anterior concluimos que: \begin{equation*} \lim_{(h,k) \to (0,0)} \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik} = \lim_{z \to z_0} \frac{(x-x_0) \varepsilon_1 + (y-y_0) \varepsilon_2}{(x-x_0)+i(y-y_0)} = 0. \end{equation*} Por tanto, tenemos que: \begin{align*} \lim_{z \to z_0} \frac{f(z) – f(z_0)}{z-z_0} & =\lim_{z \to z_0} \left( u_x(x_0, y_0) +iv_x(x_0,y_0) + \frac{(x-x_0) \varepsilon_1 + (y-y_0) \varepsilon_2}{(x-x_0)+i(y-y_0)} \right)\\ & =\lim_{z \to z_0} u_x(x_0, y_0) + \lim_{z \to z_0} iv_x(x_0,y_0) + \lim_{z \to z_0} \frac{(x-x_0) \varepsilon_1 + (y-y_0) \varepsilon_2}{(x-x_0)+i(y-y_0)}\\ & = u_x(x_0, y_0) +iv_x(x_0,y_0). \end{align*}

Entonces $f$ es analítica en $z_0 =x_0+iy_0 \in U$ y su derivada está dada por (18.3).

Dado que $z_0 = x_0 + iy_0\in U$ era arbitrario, entonces el resultado se cumple para todo punto en $U$.

$\blacksquare$

El resultado anterior es un primer recíproco parcial del teorema 17.1 de la entrada anterior, en el cual vimos que las ecuaciones de C-R son solo una condición necesaria, pero no suficiente, para la analicidad de una función compleja.

Observación 18.2.
Es importante recordar que los conceptos de diferenciabilidad y analicidad de una función no son intercambiables, por lo que puede suceder que una función sea diferenciable en un punto, pero no analítica en dicho punto. Considerando el resultado anterior podemos determinar a través de las ecuaciones de C-R dónde una función sí puede ser al menos diferenciable.

Ejemplo 18.1.
Sea $z=x+iy \in \mathbb{C}$. Consideremos a la función $f(z)=x^2+y^2+2ixy$. Veamos que $f$ no es analítica en ningún punto, pero es diferenciable en todo el eje real. Más aún, veamos que en dicho conjunto de puntos se tiene que $f'(z) = 2x$.

Solución. Considerando a la función $f$ tenemos que: \begin{equation*} u(x,y) = x^2 + y^2 \quad \quad \text{y} \quad \quad v(x,y) = 2xy. \end{equation*} Claramente ambas funciones están definidas sobre todo $\mathbb{C}$, por lo que $f$ está definida en $\mathbb{C}$.

Tenemos que: \begin{align*} \frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = 2y,\\ \frac{\partial v}{\partial x} = 2y, \quad \frac{\partial v}{\partial y} = 2x. \end{align*} Es claro que las derivadas parciales existen y son continuas para todo $z = x+iy \in \mathbb{C}$.

Notemos que $u_x = v_y$, pero $u_y \neq -v_x$. Sin embargo: \begin{align*} \frac{\partial u}{\partial y} = – \frac{\partial v}{\partial x} \quad & \Longleftrightarrow \quad y = 0\\ & \Longleftrightarrow \quad z = \operatorname{Re}(z) = x. \end{align*}

Por lo que, por el teorema 18.1, concluimos que $f$ únicamente es diferenciable para todo $z$ en el eje real y su derivada en dicho conjunto de puntos es: \begin{equation*} f'(z) = f'(x) = \frac{\partial u}{\partial x}(x,0) + i \frac{\partial v}{\partial x}(x,0) = 2x. \end{equation*}

Dado que para todo $z_0=x_0+i0$ en el eje real y para todo $\delta>0$, existe $z_\delta=x_0 + i\frac{\delta}{2} \in B(z_0, \delta)$ un punto en donde $f$ no es diferenciable, entonces no existe un disco abierto alrededor de $z_0$ en el cual $f$ sea diferenciable y por tanto no es analítica en ningún punto sobre el eje real y en general en ningún punto en $\mathbb{C}$.

Ejemplo 18.2.
Sea $f:\mathbb{C} \to \mathbb{C}$ dada por $f(z)=x^2 – y^3 + i(x-y)$. Mostremos que $f$ no es analítica en $\mathbb{C}$ y determinemos el conjunto de puntos donde es diferenciable y hallemos su derivada en dicho conjunto.

Solución. De acuerdo con la definición de $f$ tenemos que: \begin{equation*} u(x,y) = x^2 – y^3 \quad \quad \text{y} \quad \quad v(x,y) = x-y. \end{equation*}

Tanto $u$ como $v$ son funciones reales diferenciables en todo punto en $\mathbb{R}^2$ y: \begin{align*} \frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = -3y^2,\\ \frac{\partial v}{\partial x} = 1, \quad \frac{\partial v}{\partial y} = -1, \end{align*} las cuales existen y son continuas para todo punto en $\mathbb{R}^2$.

Es claro que $u_x \neq v_y$ y $u_y \neq -v_x$. Procedemos a determinar en qué puntos de $\mathbb{C}$ se satisfacen las igualdades: \begin{align*} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad & \Longleftrightarrow \quad 2x = -1\\ & \Longleftrightarrow \quad x = -\frac{1}{2}. \end{align*} \begin{align*} \frac{\partial u}{\partial y} = – \frac{\partial v}{\partial x} \quad & \Longleftrightarrow \quad -3y^2 = -1\\ & \Longleftrightarrow \quad y = \pm \frac{1}{\sqrt{3}}. \end{align*}

Sea $S = \left\{-\frac{1}{2}+i\frac{\sqrt{3}}{3}, -\frac{1}{2}-i\frac{\sqrt{3}}{3} \right\}$.

Entonces, por el teorema 18.1, concluimos que $f$ únicamente es diferenciable para $z_0 \in S$ y su derivada en dicho conjunto de puntos es: \begin{align*} f’\left(z_0\right) & = \frac{\partial u}{\partial x}\left(-\frac{1}{2},\pm \frac{\sqrt{3}}{3}\right) + i \frac{\partial v}{\partial x}\left(-\frac{1}{2},\pm \frac{\sqrt{3}}{3}\right)\\ & = -1 + i. \end{align*}

Notemos que para todo $z_0\in S$ y para todo $\delta>0$, existe $z_\delta=z_0 + \frac{\delta}{2} \in B(z_0, \delta)$ un punto en donde $f$ no es diferenciable, entonces no existe un disco abierto alrededor de $z_0$ en el cual $f$ sea diferenciable y por tanto no es analítica en ningún punto en $S$ y en general en ningún punto en $\mathbb{C}$.

Definición 18.2. (Dominio de analicidad.)
Un conjunto $U \subset \mathbb{C}$ es llamado un dominio de analicidad de una función compleja $f$ si $U$ es el mayor conjunto abierto en el cual $f$ es analítica.

Ejemplo 18.3
Para las funciones $f(z) = 1/z$ y $g(z) = \overline{z}$ tenemos que sus dominios de analicidad son los conjuntos $U = \mathbb{C} \setminus \{0\}$ y $G = \emptyset$ respectivamente.

Considerando la proposición 18.1 y la observación 18.1, planteamos el siguiente resultado en el cual establecemos cuales son las condiciones necesarias y suficientes que deben satisfacer las funciones reales $u$ y $v$, correspondientes con la parte real e imaginaria de una función compleja, para garantizar la analicidad de dicha función en un conjunto abierto $U\subset\mathbb{C}$.

Teorema 18.2.
Una función compleja $f(z) = u(x,y) + iv(x,y)$ es una función analítica en un conjunto abierto $U\subset\mathbb{C}$ si y solo si las funciones reales de dos variables $u$ y $v$ son diferenciables en $U$ y satisfacen las ecuaciones de C-R en todo punto de $U$. En tal caso, para todo $z_0=x_0+iy_0\in U$ se tiene que: \begin{equation*} f'(z_0) = \frac{\partial u}{\partial x}(x_0,y_0) + i \frac{\partial v}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0) – i \frac{\partial u}{\partial y}(x_0,y_0). \tag{18.3.} \end{equation*}

Demostración. Sea $f(z) = u(x,y) + iv(x,y)$ una función compleja definida sobre un conjunto abierto $U\subset \mathbb{C}$ y sea $z = x+iy\in U$.

$\Rightarrow)$
Supongamos que $f$ es analítica en $U$ y sea $z_0 = x_0 +i y_0 \in U$ fijo. De acuerdo con la proposición 18.1, como la función $f$ es analítica en $z_0 \in U$, entonces puede escribirse como en (18.2), es decir de la forma: \begin{equation*} f(z) – f(z_0) = c(z-z_0) + \varepsilon(z)(z-z_0), \end{equation*} donde $c = f'(z_0) \in \mathbb{C}$ es constante y $\lim\limits_{z \to z_0} \varepsilon(z) = 0$.

Sea $c = f'(z_0) = A+iB\in\mathbb{C}$ para algunos $A$ y $B$ números reales. Entonces podemos reescribir esta última igualdad como: \begin{equation*} u(x,y) + iv(x,y) – \left[u(x_0,y_0) + iv(x_0,y_0)\right] = (A+iB)\left[(x-x_0) + i(y-y_0)\right] + \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right]. \end{equation*} Separando en la parte real e imaginaria de la igualdad anterior obtenemos: \begin{align*} u(x,y) – u(x_0,y_0) = A(x-x_0) – B(y-y_0) + \operatorname{Re}\left( \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \right),\\ v(x,y) – v(x_0,y_0) = B(x-x_0) + A(y-y_0) + \operatorname{Im}\left( \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \right). \end{align*} Tenemos que: \begin{align*} \operatorname{Re}\left( \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \right) & = \bigg(\operatorname{Re}\bigg[ \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \bigg]\bigg) \frac{\sqrt{(x-x_0)^2 + (y-y_0)^2}}{\sqrt{(x-x_0)^2 + (y-y_0)^2}}\\ & = \bigg(\operatorname{Re}\bigg[\frac{\varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right]}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} \bigg]\bigg) \sqrt{(x-x_0)^2 + (y-y_0)^2}\\ & =:\varepsilon_1(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}, \end{align*} y de manera análoga obtenemos que: \begin{equation*} \operatorname{Im}\left( \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \right) =: \varepsilon_2(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}. \end{equation*} Por tanto: \begin{align*} u(x,y) – u(x_0,y_0) = A(x-x_0) – B(y-y_0) + \varepsilon_1(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2},\\ v(x,y) – v(x_0,y_0) = B(x-x_0) + A(y-y_0) + \varepsilon_2(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}. \tag{18.4} \end{align*} Notemos que: \begin{equation*} |\, \varepsilon_1(x,y)\,| \leq |\, \varepsilon(z)\,| \quad \text{y} \quad |\, \varepsilon_2(x,y)\,| \leq |\, \varepsilon(z)\,|. \end{equation*} Dado que $\lim\limits_{z \to z_0} \varepsilon(z) = 0$, entonces tomando límites en estas dos desigualdades concluimos que: \begin{equation*} \lim_{(x,y) \to (x_0,y_0)} \varepsilon_1(x,y) = 0 \quad \text{y} \lim_{(x,y) \to (x_0,y_0)} \varepsilon_2(x,y) = 0. \tag{18.5} \end{equation*} Por lo tanto, considerando (18.4) y (18.5), se sigue de la observación 18.1 que $u$ y $v$ son funciones diferenciables en $(x_0,y_0)\in U$ y se cumple que: \begin{align*} \frac{\partial u}{ \partial x}(x_0,y_0) = A =\frac{\partial v}{ \partial y}(x_0,y_0),\\ \frac{\partial v}{ \partial x}(x_0,y_0) = B = -\frac{\partial u}{ \partial y}(x_0,y_0), \end{align*} es decir que se satisfacen las ecuaciones de C-R en $z_0 = x_0 + iy_0 \in U$. Dado que dicho punto era arbitrario entonces el resultado es válido para todo punto en $U$.

$(\Leftarrow$
Supongamos ahora que las funciones reales de dos variables $u$ y $v$ son diferenciables en un punto $(x_0, y_0) \in U$ y satisfacen las ecuaciones de C-R en dicho punto, entonces: \begin{align*} \frac{\partial u}{ \partial x}(x_0,y_0) = A =\frac{\partial v}{ \partial y}(x_0,y_0),\\ \frac{\partial v}{ \partial x}(x_0,y_0) = B = -\frac{\partial u}{ \partial y}(x_0,y_0) \end{align*} para algunos $A$ y $B$ números reales.

Por la observación 18.1 y considerando las igualdades anteriores tenemos que $u$ y $v$ se pueden escribir de la forma: \begin{align*} u(x,y) – u(x_0,y_0) = A(x-x_0) – B(y-y_0) + \varepsilon_1(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2},\\ v(x,y) – v(x_0,y_0) = B(x-x_0) + A(y-y_0) + \varepsilon_2(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}, \end{align*} donde $\varepsilon_1(x,y) \to 0$ y $\varepsilon_2(x,y) \to 0$ si $(x,y) \to (x_0,y_0)$.

Considerando a la función $f(z) = u(x,y) + iv(x,y)$, tenemos que: \begin{align*} f(z) – f(z_0) & = u(x,y) + iv(x,y) – \left[u(x_0,y_0) + iv(x_0,y_0)\right]\\ & = u(x,y) – u(x_0,y_0) + i\left[ v(x,y) – v(x_0,y_0)\right]\\ & = A(x-x_0) – B(y-y_0) + \varepsilon_1(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}\\ & \quad \quad + i \left[ B(x-x_0) + A(y-y_0) + \varepsilon_2(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}\right]\\ & = (A+iB)\left[(x-x_0)+i(y-y_0)\right] + \sqrt{(x-x_0)^2 + (y-y_0)^2} \left[ \varepsilon_1(x,y) + i\varepsilon_2(x,y) \right]. \end{align*} Tomando: \begin{equation*} \varepsilon(x+iy) : = \frac{\sqrt{(x-x_0)^2 + (y-y_0)^2}}{(x-x_0) +i (y-y_0)}\left[ \varepsilon_1(x,y) + i\varepsilon_2(x,y) \right], \end{equation*} entonces: \begin{align*} f(z) – f(z_0) & = (A+iB)\left[(x-x_0)+i(y-y_0)\right] + \varepsilon(x+iy) \left[(x-x_0) +i (y-y_0)\right]\\ & = (A+iB)\left(z – z_0\right) + \varepsilon(z) \left( z- z_0\right). \tag{18.6} \end{align*} Claramente: \begin{equation*} |\, \varepsilon(z)\,| \leq |\, \varepsilon_1(x,y)\,| + |\, \varepsilon_2(x,y)\,|. \end{equation*} Como $\varepsilon_1(x,y) \to 0$ y $\varepsilon_2(x,y) \to 0$ si $(x,y) \to (x_0,y_0)$, entonces tomando límites en esta última desigualdad concluimos que: \begin{equation*} \lim\limits_{z \to z_0} \varepsilon(z) = 0. \tag{18.7} \end{equation*} Por lo tanto, considerando (18.6) y (18.7), se sigue de la proposición 18.1 que $f$ es analítica en $z_0 \in U$.

Más aún, tenemos que: \begin{equation*} f'(z_0) = A+iB = \frac{\partial u}{ \partial x}(x_0,y_0) + i \frac{\partial v}{ \partial x}(x_0,y_0) = \frac{\partial v}{ \partial y}(x_0,y_0) – i \frac{\partial u}{ \partial y}(x_0,y_0), \end{equation*} por lo que se cumple (18.3).

Dado que $z_0 = x_0 + iy_0\in U$ era arbitrario, entonces el resultado se cumple para todo punto en $U$.

$\blacksquare$

Observación 18.3.
Recordemos que hemos construido a $\mathbb{C}$ a través de $\mathbb{R}^2$, por lo que si pensamos a una función compleja $f$ como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$ podemos preguntarnos acerca de la relación entre la diferenciabilidad compleja y la diferenciabilidad real de $f$.

Definición 18.3. (Diferenciabilidad de una función vectorial de dos variables.)
Sean $U\subset\mathbb{R}^2$ un conjunto abierto, $z_0 =(x_0,y_0) \in U$ y $f: U\to\mathbb{R}^2$ una función. Decimos que $f$ es diferenciable en $z_0$ (en el sentido real) si y solo si existe una transformación lineal $D_{f(z_0)} : \mathbb{R}^2 \to \mathbb{R}^2$ tal que: \begin{equation*}\lim_{z \to z_0}\frac{\|f(z)-f(z_0)-D_{f(z_0)}\left(z-z_0\right)\|}{\left\| z-z_0 \right\|} = 0, \tag{18.8} \end{equation*} donde $\|\cdot\|$ denota la norma usual en $\mathbb{R}^2$.

Por nuestros cursos de Cálculo sabemos que si una función vectorial de dos variables $f:U\to\mathbb{R}^2$, dada por $f(x,y) = (f_1(x,y),f_2(x,y))$, es diferenciable en un punto $z_0\in U\subset\mathbb{R}^2$, es decir existe el límite (18.8), entonces existen todas las derivadas parciales (de primer orden) en el punto $z_0$, de las funciones componentes de $f$ y al considerar la base canónica de $\mathbb{R}^2$, la matriz de $2\times2$ que representa a la transformación lineal $D_{f(z_0)}$ está formada por dichas derivadas parciales y recibe el nombre de la matriz Jacobiana, es decir: \begin{equation*} J_{f}(z_0) = \left(\begin{matrix} \frac{\partial f_1}{\partial x}(z_0) & \frac{\partial f_1}{\partial y}(z_0)\\ \\ \frac{\partial f_2}{\partial x}(z_0) & \frac{\partial f_2}{\partial y}(z_0) \end{matrix} \right). \tag{18.9} \end{equation*} Más aún, se prueba que $f$ es diferenciable en $U$ si y solo si $f_i: U \to \mathbb{R}$, con $i=1,2$, son funciones diferenciables en $U$.

De acuerdo con lo anterior podemos hacer algunas observaciones importantes. Notemos que la norma usal en $\mathbb{R}^2$ coincide con el módulo complejo en $\mathbb{C}$. Además, para una función compleja $f(z) = u(x,y) + iv(x,y)$, al considerarla como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$, se tiene que las funciones componentes de $f$ son: \begin{equation*} f_1(x,y) = u(x,y), \quad f_2(x,y) = v(x,y). \tag{18.10} \end{equation*}

Considerando a un número complejo $\lambda = a+ib$ fijo y $z=x+iy\in\mathbb{C}$, tenemos que su producto es: \begin{equation*} \lambda z = (a+ib)(x+iy) = (ax -by) + i(ay + bx). \end{equation*}

Por lo que, a través del producto de dos números complejos es posible definir una trasnformación lineal de $\mathbb{R}^2$ a $\mathbb{R}^2$, como sigue. Sean $\lambda=(a,b)\in\mathbb{R}^2$ constante y $z=(x,y)\in\mathbb{R}^2$, entonces: \begin{equation*} M_{\lambda} : \mathbb{R}^2 \to \mathbb{R}^2, \quad M_{\lambda}(z) = \begin{pmatrix} ax-by\\ ay+bx \end{pmatrix} = \begin{pmatrix} a & -b\\ b & a \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}, \tag{18.11} \end{equation*} de donde es claro que la matriz $A = \begin{pmatrix} a & -b\\ b & a \end{pmatrix}$ representa, en la base canónica de $\mathbb{R}^2$, a la transformación $M_\lambda$ correspondiente con la multiplicación de dos números complejos.

Procedamos ahora a analizar la definición de diferenciabilidad compleja dada en la entrada 16. De acuerdo con la definición 16.1, sabemos que para $U\subset\mathbb{C}$ un conjunto abierto y $f:U \to \mathbb{C}$ una función, decimos que $f$ es diferenciable en $z_0\in U$ si existe el límite: \begin{equation*} \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z-z_0}, \end{equation*} lo cual es equivalente a que exista un número complejo $\lambda = a+ib\in\mathbb{C}$ tal que: \begin{align*} \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z-z_0} = \lambda \quad & \Longleftrightarrow \quad \lim_{z\to z_0} \frac{f(z) – f(z_0) – \lambda(z-z_0)}{z-z_0} = 0\\ & \Longleftrightarrow \quad \lim_{z\to z_0} \frac{| \, f(z) – f(z_0) – \lambda(z-z_0)\,|}{|\,z-z_0\,|} = 0, \tag{18.12} \end{align*} en cuyo caso $\lambda = f'(z_0)$.

De acuerdo con todo lo anterior, tenemos que la existencia de los límites dados en (18.8) y (18.12), así como el cumplimiento de las ecuaciones de C-R, nos deja ver que hay una estrecha relación entre las definiciones de diferenciabilidad real, para una función vectorial de dos variables, y de diferenciabilidad compleja.

Sean $U\subset\mathbb{C}$ un conjunto abierto y $f(z)=u(x,y)+iv(x,y)$ una función definida en $U$ y consideremos que $z=x+iy=(x,y)\in U$.

Si $f$ es una función analítica en $z_0\in U$, entonces existe $\lambda=a+ib\in\mathbb{C}$ tal que se cumple (18.12). Notemos que: \begin{align*} \lambda(z-z_0) &= (a+ib)\left[(x-x_0)+i(y-y_0)\right]\\ & = \left[a(x-x_0) – b(y-y_0)\right] + i \left[b(x-x_0) + a(y-y_0)\right], \end{align*} por lo que, considerando la transformación lineal dada por (18.11), tenemos que: \begin{equation*} M_\lambda(z-z_0) = \left(a(x-x_0) – b(y-y_0), b(x-x_0) + a(y-y_0)\right), \end{equation*} entonces: \begin{align*} 0 & = \lim_{z\to z_0} \frac{| \, f(z) – f(z_0) – \lambda(z-z_0)\,|}{|\,z-z_0\,|}\\ & = \lim_{z \to z_0} \frac{\left\| f(z) – f(z_0) – M_\lambda(z-z_0) \right\|}{\left\| z-z_0 \right\|}, \end{align*} por lo que $f$ es diferenciable, en el sentido real como función de $\mathbb{R}^2$ a $\mathbb{R}^2$. Más aún, la matriz $A$ que representa a la transformación lineal $M_\lambda$, en la base canónica de $\mathbb{R}^2$, debe ser igual a la matriz Jacobiana de $f$ en $z_0$, entonces considerando (18.10) tenemos que: \begin{equation*} \begin{pmatrix} a & -b\\ b & a \end{pmatrix} = \left(\begin{matrix} u_x(z_0) & u_y(z_0)\\ \\ v_x(z_0) & v_y(z_0) \end{matrix} \right), \end{equation*} de donde se siguen las ecuaciones de C-R y se cumple que $\lambda = f'(z_0) = u_x(z_0) + iv_x(z_0) = v_y(z_0) – i u_x(z_0)$.

Si suponemos ahora que $f$, como función de $\mathbb{R}^2$ a $\mathbb{R}^2$, es diferenciable en el sentido real y que se satisfacen las ecuaciones de C-R, entonces tenemos que se cumple (18.8).

Considerando a la matriz Jacobiana que representa a la transformación lineal $D_{f(z_0)}$, dada en (18.8), como se cumplen las ecuaciones de C-R, tenemos que dicha matriz es de la forma: \begin{equation*} \left(\begin{matrix} u_x(z_0) & -u_y(z_0)\\ \\ u_y(z_0) & u_x(z_0) \end{matrix} \right) = \begin{pmatrix} a & -b\\ b & a \end{pmatrix}, \end{equation*} para algunos $a,b\in\mathbb{R}$.

Dado que la transformación lineal $D_{f(z_0)}$ es única y la matriz que la representa es igual a la de la transformación dada en (18.11), entonces debe suceder que $D_{f(z_0)} = M_\lambda$, para $\lambda = a+ib\in\mathbb{C}$, es decir que se trata de la multiplicación por el número complejo $\lambda$, entonces: \begin{align*} 0 & = \lim_{z \to z_0} \frac{\| f(z) – f(z_0) – D_{f(z_0)}(z-z_0)\|}{\left\| z-z_0 \right\|}\\ & = \lim_{z\to z_0} \frac{| \, f(z) – f(z_0) – \lambda(z-z_0)\,|}{|\,z-z_0\,|}\ \end{align*}

Con lo anterior hemos probado el siguiente resultado.

Teorema 18.3.
Sean $U\subset\mathbb{C}$ un conjunto abierto y $f(z) = u(x,y) + iv(x,y)$ una función compleja definida en $U$. Las siguientes condiciones son equivalentes:

  1. $f$ es diferenciable en $z_0\in U$, en el sentido complejo.
  2. $f$ es diferenciable en $z_0=(x_0,y_0) \in U$, en el sentido real, pensada como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$, y se satisfacen las ecuaciones de C-R en $z_0$.

$\blacksquare$

Ejemplo 18.4.
Sea $z=x+iy\in\mathbb{C}$ y sea $f:\mathbb{C} \to \mathbb{C}$ una función compleja dada por $f(z)=x^2-y^2+i2xy$. Veamos que $f$ es analítica en $\mathbb{C}$.

Solución. Si consideramos a $f$ como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$ tenemos que $f(x,y) = (x^2 – y^2, 2xy)$, de donde se sigue que sus funciones componentes son: \begin{equation*} f_1(x,y)=u(x,y) = x^2-y^2, \quad f_2(x,y)=v(x,y) = 2xy. \end{equation*}

Dado que: \begin{align*} \frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = -2y,\\ \frac{\partial v}{\partial x} = 2y, \quad \frac{\partial v}{\partial y} = 2x, \end{align*} existen y son continuas para todo $z=(x,y)\in\mathbb{R}^2$, entonces $f$ es una función diferenciable, en el sentido real, en $\mathbb{R}^2$.

Es claro que $u_x = v_y$ y $u_y = – v_x$ para todo $z=(x,y)\in\mathbb{R}^2$, por lo que de acuerdo con el teorema 18.3, concluimos que $f$ es diferenciable en todo $\mathbb{C}$ y por tanto analítica en todo punto.

Por último, tenemos que la matriz Jacobiana de dicha función compleja es: \begin{equation*} J_f = \begin{pmatrix} u_x & u_y\\ v_x & v_y \end{pmatrix} = \begin{pmatrix} u_x & -v_x\\ v_x & u_x \end{pmatrix} = \begin{pmatrix} 2x & -2y\\ 2y & 2x \end{pmatrix}, \end{equation*} para todo $z=x+iy\in\mathbb{C}$.

Entonces, para $z_0=x_0+iy_0\in\mathbb{C}$ se tiene que: \begin{equation*} f'(z_0) = u_x(x_0,y_0) + i v_x(x_0,y_0) = 2x_0 + i2y_0 = 2z_0, \end{equation*} lo cual era de esperarse ya que $f(z) = z^2 = x^2 – y^2 + i2xy$.

Observación 18.4.
Es importante notar que el resultado anterior es solo una reformulación del teorema 18.3, desde que la diferenciabilidad, en el sentido real, de una función $f:U\subset\mathbb{R}^2 \to \mathbb{R}^2$ es equivalente a la diferenciabilidad de sus funciones componentes. Sin embargo, la importancia de este resultado radica en que ahora que conocemos la matriz Jacobiana de una función analítica, pensada como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$, es claro, por el ejercicio 3 de la entrada 12, que dicha matriz corresponde con la derivada compleja de una función analítica en cualquier punto. Además veremos que a través de esta representación matricial de la derivada es posible establecer algunos resultados de las funciones analíticas que veremos en la siguiente entrada.

Por otra parte, estos últimos resultados nos dejan ver que la diferenciabilidad compleja es más fuerte que la diferenciabilidad real, lo cual resulta sorprendente, pues a diferencia de algunos conceptos como el límite y la continuidad para los cuales vimos que podemos caracterizarlos a través de dos funciones reales, correspondientes con la parte real e imaginaria de la función, en el caso de la diferenciabilidad es claro que no bastará la diferenciabilidad en el sentido real de dichas funciones o de la diferenciabilidad en el sentido real de la función vectorial conformada por dichas funciones reales. Esto resulta de suma importancia pues nos permite diferenciar a las funciones complejas de las funciones vectoriales de dos variables, desde que la diferenciabilidad de las primeras implica la diferenciabilidad de las segundas, pero el recíproco no es cierto ya que se deben cumplir también las ecuaciones de C-R, que como probamos antes resultan ser una condición necesaria para la diferenciabilidad compleja y por ende para la analicidad de una función compleja.

Para convencernos de esto último, basta con considerar a la función $f(z)=\overline{z} = x-iy$. Es claro que está función no es diferenciable en el sentido complejo desde que las ecuaciones de C-R no se satisfacen en ningún punto en $\mathbb{C}$ y por tanto tampoco es analítica. Sin embargo, si la consideramos como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$ es claro que dicha función sí es diferenciable en el sentido real.

Tanto el teorema 18.1 como el teorema 18.2 nos dejan ver que además de las ecuaciones de C-R, es necesario imponer una serie de hipótesis extras sobre las funciones reales $u$ y $v$, que caracterizan a una función compleja $f(z)=u(x,y)+iv(x,y)$, para garantizar la analicidad de dicha función. Cerraremos esta entrada con un notable resultado que nos muestra que la condición de continuidad de las derivadas parciales en el teorema 18.1 resulta superfluo. No daremos una prueba de este, pero puede consultarse en algún texto como Complex Analysis in One Variable de Raghavan Narasimhan e Yves Nievergelt.

Teorema 18.4. (Teorema de Looman-Menchoff.)
Sean $U\subset$ un conjunto abierto y $f(z)=u(x,y) = iv(x,y)$ una función definida en $U$. Si las funciones reales $u$ y $v$ son continuas en $U$ (es decir que $f$ es continua en $U$), las cuatro derivadas parciales $u_x$, $u_y$, $v_x$ y $v_y$ existen en $U$ y se satisfacen las ecuaciones de C-R en $U$, entonces $f$ es analítica en $U$.

Tarea moral

  1. Muestra que las siguientes funciones son diferenciables solo en los conjuntos dados y determina su derivada.
    a) $f(z) = x – iy^2$ en $S=\{z\in\mathbb{C} : \operatorname{Im}(z) = -1/2\}$.
    b) $f(z) = x^2 + iy^2$ en $S=\{z\in\mathbb{C} : \operatorname{Re}(z) = \operatorname{Im}(z)\}$.
    c) $f(z) = yx + iy^2$ en $S=\{z\in\mathbb{C} : \operatorname{Re}(z) = \operatorname{Im}(z) = 0 \}$.
    d) $f(z) = x^3+i(1-y)^3$ en $S=\{z\in\mathbb{C} : \operatorname{Re}(z) = 0 \,\, \text{y} \,\, \operatorname{Im}(z) = 1\}$.
  2. Para cada una de las siguientes funciones complejas determina el conjunto donde $f$ es diferenciable y el dominio de analicidad de $f$. Donde exista, determina su derivada.
    a) $f(z) = (x^3 + 3xy^2 – 3x) + i(y^3 + 3x^2y – 3y)$.
    b) $f(z) = 6\overline{z}^2 – 2\overline{z} – 4i|\,z\,|^2$.
    c) $f(z) = (3x^2 + 2x – 3y^2 -1) + i(6xy + 2y)$.
    d) $f(z) = \dfrac{2z^2 + 6}{z(z^2 + 4)}$.
  3. Determina el dominio de analicidad de las siguientes funciones.
    a) $f(z) = 4x^2+5x-4y^2+9+i(8xy+5y-1)$.
    b) $f(z) = 5r\operatorname{cos}(\theta) + r^4\operatorname{cos}(4 \theta) + i(5r\operatorname{sen}(\theta) + r^4 \operatorname{sen}(4 \theta))$.
    c) $f(z) = \dfrac{x^3+xy^2+x}{x^2+y^2} + i \dfrac{y^3+x^2y-y}{x^2+y^2}$.
    d) $f(z) = \dfrac{\operatorname{cos}(\theta)}{r} – i \dfrac{\operatorname{sen}(\theta)}{r}$.
    e) $f(z) = \dfrac{x-1}{(x-1)^2+y^2} – i \dfrac{y}{(x-1)^2+y^2}$.
  4. ¿Cuál debe ser el valor de las constantes reales $a,b,c$ y $d$ para que las siguientes funciones sean analíticas?
    a) $f(z) = 3x-y+5+i(ax+by-3)$.
    b) $f(z) = x^2 + axy+by^2+i(cx^2+dxy+y^2)$.
  5. Supón que $f$ es una función analítica en un conjunto abierto $U\subset\mathbb{C}$. Prueba que el determinante de su matriz Jacobiana es igual a $|f'(z)|^2$ para todo $z\in U$.
  6. Sean $f(z) = z^3$, $z_1 = 1$ y $z_2 = i$. Prueba que no existe un punto $z_0$ en el segmento de recta que une a $z_1$ y $z_2$, es decir $[z_1,z_2]$, tal que: \begin{equation*} f(z_2) – f(z_1) = f'(z_0) (z_2 – z_1). \end{equation*} Concluye que el teorema del valor medio para funciones reales no se extiende para funciones complejas.
  7. Sea $f$ una función analítica en un conjunto abierto $U\subset\mathbb{C}$. Prueba que la función $g(z)=\overline{f(\overline{z})}$ es analítica en el conjunto $U^*=\{\overline{z} : z\in U\}$.

Más adelante…

En esta entrada vimos bajo que condiciones es posible garantizar la analicidad de una función compleja $f(z)=u(x,y) + i v(x,y)$ sobre un conjunto abierto $U\subset\mathbb{C}$. Para ello recurrimos nuevamente a analizar las funciones reales $u$ y $v$, concluyendo que, además de las ecuaciones de C-R, es necesario imponer algunas condiciones extras sobre dichas funciones.

El objetivo de esta entrada fue dar algunos recíprocos parciales para el Teorema 17.1 de la entrada anterior. Es interesante notar que es posible relajar algunas condiciones sobre las funciones $u$ y $v$ para garantizar la analicidad de una función compleja, como es el caso del teorema de Looman-Menchoff.

La siguiente entrada abordaremos algunos resultados interesantes que son consecuencia directa de las ecuaciones de Cauchy-Riemann y que nos permitirán caracterizar aún más a las funciones complejas a través de su parte real e imaginaria, extendiendo algunos resultados obtenidos en nuestros cursos de Cálculo.

Entradas relacionadas