Archivo de la etiqueta: Ecuaciones Diferenciales

Ecuaciones Diferenciales I – Videos: Campo de pendientes asociado a una ecuación diferencial, curvas integrales y método de las isoclinas

Por Eduardo Vera Rosales

Introducción

Hola, bienvenidos a una nueva entrada del curso de Ecuaciones Diferenciales I. En la entrada anterior definimos a las soluciones de una ecuación diferencial ordinaria. Así que ahora veremos un poco de la geometría de soluciones a ecuaciones diferenciales de primer orden, en particular de la forma \begin{align*}\frac{dy}{dt}=f(t,y(t)).\end{align*}

Comenzaremos asociando un campo de pendientes a una ecuación diferencial, definiremos posteriormente el concepto de curvas integrales, y estudiaremos la relación que existe con las soluciones a la ecuación asociada.

Posteriormente revisaremos el método de las isoclinas el cual sirve para encontrar y dibujar las soluciones a una ecuación diferencial usando las curvas de nivel de $\frac{dy}{dt}=f(t,y(t))$, vista como una función $f:\mathbb{R}^{2} \rightarrow \mathbb{R}$.

Manos a la obra!

Campo de pendientes asociado a una ecuación diferencial y relación con sus soluciones

En el primer video, vemos cómo asociar un campo de pendientes a una ecuación de la forma $\frac{dy}{dt}=f(t,y(t))$ y revisamos un par de ejemplos.

Una vez que asociamos un campo de pendientes, en los siguientes dos videos definimos a las curvas integrales y estudiamos la relación que guardan con las soluciones a la ecuación diferencial.

Método de las isoclinas

Estudiamos un método bastante sencillo, llamado de las isoclinas, para conocer el comportamiento de las soluciones a una ecuación diferencial, mediante las curvas de nivel de la función $f:\mathbb{R}^{2} \rightarrow \mathbb{R}$ que define a la ecuación y el campo de pendientes asociado que definimos en los videos de la sección anterior.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Esboza el campo de pendientes asociado a la ecuación $\frac{dy}{dt}=y$.
  • Dibuja las curvas integrales del campo de pendientes asociado a la ecuación $\frac{dy}{dt}=y$.
  • Prueba que si $\phi: (a,b) \rightarrow \mathbb{R}$ es una curva integral del campo de pendientes asociado a la ecuación $\frac{dy}{dt}=f(t,y(t))$ entonces $\phi(t)$ es solución a la ecuación diferencial.
  • Esboza las soluciones de la ecuación $\frac{dy}{dt}=-\frac{t}{y}$, con base en la información obtenida en el segundo ejemplo del último video. Analiza qué sucede con los puntos sobre el eje $t$, ¿forman parte de alguna solución a la ecuación?
  • En el último video hablamos acerca de las ventajas del método de las isoclinas. ¿Cuáles son las desventajas de usar este método para encontrar las soluciones a una ecuación?
  • Utiliza el método de las isoclinas para encontrar las soluciones a la ecuación $\frac{dy}{dt}=\frac{y}{t}$.

Más adelante

En la próxima entrada continuaremos analizando soluciones de una ecuación diferencial de primer orden desde un punto de vista geométrico. En esta ocasión nos enfocaremos en el caso particular de las ecuaciones del tipo $\frac{dy}{dt}=f(y)$.

Para esto analizaremos los puntos de equilibrio de la función $f(y)$ y haremos un diagrama bastante sencillo de dibujar que nos servirá para hacer un esbozo de las soluciones a la ecuación.

Nos vemos en la próxima ocasión.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Introducción a las Ecuaciones Diferenciales

Por Omar González Franco

La vida es buena por sólo dos cosas, descubrir y enseñar las matemáticas.
– Simeon Poisson

Introducción

Bienvenidos a la primera clase del curso, en esta entrada conoceremos qué son las ecuaciones diferenciales, cómo clasificarlas y presentaremos una parte de la terminología elemental que usaremos a lo largo del curso.

Las leyes del universo están escritas en el lenguaje de las matemáticas. Muchos de los fenómenos naturales que ocurren en el universo involucran cambios y si logramos crear modelos matemáticos que los describan, sin duda, la derivada será una herramienta fundamental que estará presente. Sabemos que la derivada $\dfrac{dy}{dx} = f'(x)$ de la función $f$ es la razón a la cual la cantidad $y = f(x)$ está cambiando respecto de la variable independiente $x$, es natural, entonces, que las ecuaciones que involucran derivadas se usen frecuentemente para describir el universo cambiante. Una ecuación que relacione una función desconocida con una o más de sus derivadas se llama ecuación diferencial.

Ecuaciones diferenciales

Al tratarse de un curso introductorio, sólo trabajaremos con ecuaciones diferenciales que contienen sólo una variable independiente, estas ecuaciones tienen un nombre particular.

El reto al que nos enfrentamos con las ecuaciones diferenciales es hallar la función involucrada que depende de la variable independiente. Supongamos que tenemos la función

$$y = f(x) = 2e^{x^{2}}$$

Esta función es derivable en todo $\mathbb{R}$, si la derivamos obtenemos otra función dada de la siguiente forma.

$$\dfrac{dy}{dx} = f'(x) = 4xe^{x^{2}}$$

Este resultado se puede reescribir como

$$\dfrac{dy}{dx} = 2x(2e^{x^{2}})$$

Podemos observar que lo que está entre paréntesis es de nuevo la función $y = 2e^{x^{2}}$ , si la sustituimos obtenemos como resultado la siguiente ecuación.

$$\dfrac{dy}{dx} = 2xy$$

Este resultado corresponde a una ecuación diferencial ordinaria, pues contiene la derivada de la variable dependiente $y$ con respecto a la variable independiente $x$, esto es $\dfrac{dy}{dx}$.

Ahora imagina que lo primero que vemos es la ecuación diferencial $\dfrac{dy}{dx} = 2xy$ y lo que debemos de hacer es obtener la función $f(x) = y$. ¿Cómo la obtendrías?. ¡Este es el reto!.

Básicamente el objetivo del curso será desarrollar distintos métodos para resolver los diferentes tipos de ecuaciones diferenciales ordinarias que se puedan presentar, analizaremos las circunstancias en las que aparecen y la forma en que surgen con el fin de describir o modelar fenómenos físicos en términos matemáticos.

Notación

En la mayor parte del curso utilizaremos la notación de Leibniz.

$$\dfrac{dy}{dx}, \hspace{0.4cm} \dfrac{d^{2}y}{dx^{2}}, \hspace{0.4cm} \dfrac{d^{3}y}{dx^{3}}, \hspace{0.4cm} \cdots,$$

En este caso la expresión $\dfrac{d}{dx}$ sirve como un operador que indica una derivación de la variable dependiente $y$ con respecto a la variable independiente $x$.

En ocasiones para ser más compactos utilizaremos la notación prima o también conocida como notación de Lagrange.

$$y^{\prime}, \hspace{0.4cm} y^{\prime \prime}, \hspace{0.4cm} y^{\prime \prime\prime}, \hspace{0.4cm} \cdots$$

En el caso de esta notación, a partir de la cuarta derivada ya no se colocan primas, sino números entre paréntesis, dicho número indica el grado de la derivada.

$$y^{(4)}, \hspace{0.4cm} y^{(5)}, \hspace{0.4cm} \cdots, \hspace{0.4cm} y^{(n)}$$

En este curso haremos mayor uso de la notación de Leibniz debido a que indica con claridad las variables independientes y dependientes. Por ejemplo, en la ecuación

$$\dfrac{dx}{dt} + 8x = 0$$

se observa de forma inmediata que el símbolo $x$ representa a la variable dependiente, mientras que $t$ a la variable independiente.

Cuando se trata de resolver problemas en contextos del mundo real relacionados con Física o ingeniería por ejemplo, es común utilizar la notación de Newton.

$$\dot{y}, \hspace{0.4cm} \ddot{y}, \hspace{0.4cm} \dddot{y}, \hspace{0.4cm} \cdots$$

Es común utilizar esta notación cuando la variable independiente corresponde al tiempo $t$.

$$\dfrac{dy}{dt} = \dot{y}(t)$$

Clasificación de las ecuaciones diferenciales

Para comenzar será importante clasificar a las ecuaciones diferenciales por tipo, orden y linealidad.

  • Clasificación por tipo

Un primer tipo de ecuaciones diferenciales son las Ecuaciones Diferenciales Ordinarias (EDO) que, como se definieron anteriormente, son aquellas que relacionan una función desconocida de una variable independiente con sus derivadas. Algunos ejemplos de ecuaciones diferenciales ordinarias son:

$$\dfrac{dy}{dx} + 5y = e^{x}, \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} + 6y = 0 \hspace{1cm} y \hspace{1cm} \dfrac{dx}{dt} + \dfrac{dy}{dt} = 2x + y$$

Otro tipo de ecuaciones diferenciales son las Ecuaciones Diferenciales Parciales (EDP), estas ecuaciones presentan las derivadas parciales de una o más variables dependientes de dos o más variables independientes. Algunos ejemplos de ecuaciones diferenciales parciales son:

$$\dfrac{\partial^{2}z}{\partial x^{2}} + \dfrac{\partial^{2}z}{\partial y^{2}} = 0, \hspace{1cm} \dfrac{\partial^{2}z}{\partial x^{2}} = \dfrac{\partial^{2}z}{\partial t^{2}} -2\dfrac{\partial z}{\partial t} \hspace{1cm} y \hspace{1cm} \dfrac{\partial u}{\partial y} = – \dfrac{\partial v}{\partial x}$$

En este curso no estudiaremos a las ecuaciones diferenciales parciales.

  • Clasificación por orden

El orden de una ecuación diferencial representa el orden de la derivada más alta presente en la ecuación. Así, la ecuación

$$\dfrac{d^{2} y}{dx^{2}} + 5 \left( \dfrac{dy}{dx}\right) ^{3} -4y = e^{x}$$

es una ecuación diferencial ordinaria de segundo orden. Importante, no confundir orden de la derivada con el grado o potencia de las derivadas.

Una EDO de $n$-ésimo orden se puede expresar como una variable dependiente empleando la forma general

$$F(x, y, y^{\prime}, \cdots , y^{(n)}) = 0 \tag{1} \label{1}$$

Donde $F$ es una función con valores reales de $n + 2$ variables. Por motivos teóricos debemos suponer que es posible resolver la EDO anterior únicamente para la derivada de mayor grado $y^{(n)}$ en términos de las $n + 1$ variables restantes, es decir, suponemos que se puede resolver la siguiente ecuación.

$$\dfrac{d^{n}y}{dx^{n}} = f(x, y, y^{\prime}, \cdots , y^{(n – 1)}) \tag{2} \label{2}$$

Donde $f$ es una función continua con valores reales. A la ecuación (\ref{2}) se le denomina forma normal de (\ref{1}). En ocasiones será útil utilizar las formas normales

$$\dfrac{dy}{dx} = f(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = f(x, y, y^{\prime})$$

para representar ecuaciones diferenciales ordinarias de primer y segundo orden, respectivamente.

Por ejemplo, la forma normal de la ecuación diferencial de primer orden

$$4x \dfrac{dy}{dx} + y = x$$

es

$$\dfrac{dy}{dx} = \dfrac{x -y}{4x}$$

Para $x \neq 0$. En este caso la función $f$ sería

$$f(x, y) = \dfrac{x -y}{4x}$$

Mientras que la forma general de la misma ecuación es

$$F \left( x, y , \dfrac{dy}{dx} \right) = 4x \dfrac{dy}{dx} + y -x = 0$$

Las ecuaciones diferenciales ordinarias de primer orden ocasionalmente se escriben en lo que se conoce como la forma diferencial.

$$M(x, y) dx + N(x, y) dy = 0 \tag{3} \label{3}$$

Anteriormente vimos que la forma normal de la ecuación diferencial dada es

$$\dfrac{dy}{dx} = \dfrac{x -y}{4x}$$

Haciendo de un abuso de notación podemos escribir a esta ecuación como

$$4x dy = (x -y) dx$$

O bien,

$$(y -x) dx + 4x dy = 0$$

Esta es la correspondiente forma diferencial, en este caso

$$M(x, y) = y -x \hspace{1cm} y \hspace{1cm} N(x, y) = 4x$$

Con este ejemplo encontramos tres formas distintas de representar a la misma ecuación diferencial. Veremos más adelante que cada forma de representación nos será de utilidad cuando intentemos encontrar a la función dependiente.

  • Clasificación por linealidad

Una ecuación diferencial ordinaria de $n$-ésimo orden (\ref{1}) es lineal si $F$ es lineal en $y, y^{\prime}, \cdots, y^{(n)}$, es decir, una EDO es lineal si se puede escribir como

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n -1}(x) \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = g(x) \tag{4} \label{4}$$

Cumpliendo las siguientes propiedades:

  • La variable dependiente $y$, así como todas sus derivadas $y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$ son de primer grado, es decir, la potencia de cada uno de los términos que involucran a $y$ es $1$.
  • Los coeficientes $a_{0}, a_{1}, \cdots, a_{n}$ de $y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$, respectivamente, así como la función $g(x)$ dependen a lo sumo de la variable independiente $x$.

Una ecuación diferencial ordinaria no lineal simplemente es una ecuación que no es lineal, es decir, que no cumple con las propiedades anteriores.

La ecuación

$$4x \dfrac{dy}{dx} + y = x$$

claramente es lineal, mientras que la ecuación

$$\dfrac{d^{2} y}{dx^{2}} + 5 \left( \dfrac{dy}{dx}\right) ^{3} -4y = e^{x}$$

es no lineal debido a que la primera derivada de la variable dependiente $y$ no es de primer grado, sino de grado $3$.

Ejemplo: Clasificar las siguientes ecuaciones diferenciales.

  • $\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$
  • $\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$
  • $(1-y) y^{\prime} + 2y = e^{x}$

Solución:

En la ecuación

$$\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$$

observamos que se trata de una ecuación diferencial ordinaria, pues la variable dependiente $y$ sólo depende de una variable independiente, en este caso de $x$. Por otro lado, observamos que la derivada más alta es $\dfrac{d^{3}y}{dx^{3}}$ , por lo tanto el orden de la ecuación es $3$, es decir, es una ecuación diferencial de tercer orden. Finalmente vemos que se trata de una ecuación lineal, pues la potencia de los términos que involucran a $y$ es $1$ y además la función $g(x) = e^{x}$ sólo depende de la variable independiente.

En la ecuación

$$\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$$

notamos que corresponde a una ecuación diferencial ordinaria de segundo orden ya que la derivada más alta es $\dfrac{d^{2}y}{dx^{2}}$. En este caso la ecuación es no lineal ya que la función $\sin(y)$ no es lineal e involucra a la variable dependiente.

Finalmente, en la ecuación

$$(1-y) y^{\prime} + 2y = e^{x}$$

se observa que es una ecuación diferencial ordinaria de primer orden y que es no lineal ya que el coeficiente de $y^{\prime}$, la función $(1 -y)$, depende de la variable dependiente.

$\square$

Como podemos notar, para deducir si una ecuación diferencial es lineal o no es conveniente escribirla en la forma (\ref{4}) y verificar las dos propiedades de linealidad.

De acuerdo a (\ref{4}), las ecuaciones diferenciales de primer orden ($n = 1$) y segundo orden ($n = 2$) se pueden escribir de forma general como

$$a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{5} \label{5}$$

y

$$a_{2}(x) \frac{d^{2}y}{dx^{2}} + a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{6} \label{6}$$

Respectivamente.

Hemos concluido con esta entrada.

Tarea Moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Definir el orden de las siguientes ecuaciones diferenciales ordinarias y establecer si son lineales o no lineales.
  • $(1 -x) y^{\prime \prime} -4xy^{\prime} + 5y = \cos(x)$
  • $\dfrac{d^{2}y}{dx^{2}} = \sqrt {1 + \left(\dfrac{dy}{dx}\right)^{2}}$
  • $x \dfrac{d^{3}y}{dx^{3}} -\left( \dfrac{dy}{dx} \right) ^{4} + y = 0$
  1. Determinar si las siguientes ecuaciones diferenciales de primer orden son lineales en la variable dependiente indicada comparándola con la ecuación (\ref{4}). (es decir, considera primero a una variable como dependiente de la otra y reescribe la ecuación en la forma general (\ref{4}) para deducir si es lineal o no, posteriormente intercambia al papel de las variables y vuelve a ver si la ecuación es lineal o no).
  • $(y^{2} -1) dx + x dy = 0$, $\hspace{0.5cm}$ en $y$, $\hspace{0.2cm}$ en $x$
  • $u dv + (v + uv -ue^{u}) du = 0$, $\hspace{0.5cm}$ en $v$, $\hspace{0.2cm}$ en $u$

Más adelante …

Como se mencionó, uno de los objetivos es hallar a la función involucrada que depende de la variable independiente, a esta función formalmente se le conoce como función solución de la ecuación diferencial. Antes de estudiar cómo obtener estas funciones solución será conveniente primero estudiar sus propiedades generales.

En la siguiente entrada comenzaremos a estudiar lo relacionado a la solución (o soluciones) de una ecuación diferencial.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Introducción al curso y definiciones básicas

Por Eduardo Vera Rosales

Imágen Ecuaciones Diferenciales I

Introducción

Hola a todos. Esta es la primer entrada de una serie de videos correspondientes a un curso completo de Ecuaciones Diferenciales I, tomando como base el temario oficial de la Facultad de Ciencias de la UNAM, el cual podrás encontrar en el siguiente enlace (temario oficial).

En esta primer entrada daremos una pequeña introducción donde hablaremos a grandes rasgos sobre lo que tratará el curso. Posteriormente daremos un primer vistazo a lo que son las ecuaciones diferenciales y motivaremos su estudio mediante ejemplos donde juegan un papel fundamental. Finalmente veremos las definiciones básicas que necesitamos conocer para poder comenzar un estudio formal de las ecuaciones diferenciales.

¡Vamos a comenzar!

¿De qué trata el curso?

El curso pretende introducirte al mundo de las ecuaciones diferenciales ordinarias. A grandes rasgos una ecuación diferencial ordinaria es una relación entre una variable independiente $t$, una función que depende de $t$, y las derivadas de distintos órdenes de la función. Cuando la relación involucra más de una variable independiente hablaremos de una ecuación en derivadas parciales, sin embargo en este curso no abordaremos ese caso.

Principalmente veremos las distintas técnicas de resolución de ecuaciones, especialmente de primer y segundo orden, así como sistemas de ecuaciones de primer orden. Sin embargo, como el conjunto de ecuaciones diferenciales que se pueden resolver por métodos analíticos es muy pequeño, también analizaremos las ecuaciones desde un punto de vista cualitativo, es decir, realizaremos una descripción lo más completa posible de las soluciones a una ecuación diferencial sin conocerlas explícitamente. También abordaremos el Teorema de Existencia y Unicidad, el cual nos brinda las herramientas para poder resolver problemas con condiciones iniciales, bajo ciertas condiciones.

Motivación y ejemplos de modelos matemáticos mediante ecuaciones diferenciales

Comenzamos el curso con un par de aplicaciones a problemas de dinámica de poblaciones. Revisamos cómo modelar matemáticamente dichos fenómenos mostrando la importancia de las ecuaciones diferenciales.

Definiciones básicas

En el primer video, damos las definiciones de ecuación diferencial ordinaria, soluciones y orden de una ecuación, con sus respectivos ejemplos para que tengas claros estos conceptos.

En el segundo video, revisamos el concepto de problema de condición inicial, también llamado problema de valor inicial, y mediante un ejemplo analizaremos la importancia que tiene en la búsqueda de soluciones particulares de una ecuación. Por último clasificamos a las ecuaciones en lineales y no lineales, ya que en próximos videos comenzaremos a ver las técnicas para resolver este tipo de ecuaciones.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Investiga acerca de algún problema de la vida real que se modele mediante una ecuación diferencial.
  • Comprobar que cuando $P<N$, entonces la tasa de cambio del tamaño de la población en el ejemplo del modelo logístico ( visto en el segundo video) es positiva, es decir, $\frac{dP}{dt}=k(1-\frac{P}{N})P>0$, por lo cual el tamaño de la población crece.

Verificar si las siguientes funciones son solución a su respectiva ecuación diferencial:

  • $\frac{d^{2}y}{dt}+y=0, \,\,\,\,\, y(t)=\sin t$.
  • $y'{}’+5y’+6y=0, \,\,\,\,\, y(t)=e^{-2t}$.
  • $\frac{dy}{dt}+y=te^{t}, \,\,\,\,\, y(t)=ce^{-t}+\frac{te^{t}}{2}-\frac{e^{t}}{4}$.
  • Sabemos que $y(t)=\frac{1}{k-t}$ es solución a la ecuación $\frac{dy}{dt}=y^{2}$ (verifícalo). Encuentra la solución al problema si agregamos la condición inicial $y(0)=1$.

¿Cuál es el orden de las siguientes ecuaciones diferenciales? ¿Son lineales o no?

  • $3ty+y^{2}+(t^{2}+ty)\frac{dy}{dt}=0$.
  • $\alpha t\frac{d^{5}y}{dt}+\sin(t)\frac{d^{2}y}{dt}-\frac{dy}{dt}+t^{5}y=t$.
  • $\cos(t^{2})-y'{}'{}’+37e^{t}y'{}’+y’-\cosh(y)=100e^{\cos(t^{3})}$.

Más adelante

En la próxima entrada analizaremos un poco de la geometría de soluciones de una ecuación de primer orden mediante algunas técnicas bastante sencillas.

Primero veremos cómo asociar un campo de pendientes a una ecuación, y conoceremos cuál es la relación que tiene este campo con las soluciones a la ecuación. Posteriormente veremos el método de las isóclinas para encontrar el campo de pendientes asociado a una ecuación y sus soluciones en el plano $t-y$.

¡No se los pierdan!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»