Archivo de la etiqueta: bases duales

Álgebra Lineal I: Problemas de transformaciones transpuestas y formas bilineales

Por Ayax Calderón

Introducción

En la entrada del miércoles pasado se definió el concepto de la transpuesta de una transformación lineal. Así mismo, se probó el impresionante y muy útil hecho de que si A es la matriz asociada a la transformación T con respecto a ciertas bases, entonces tA es la matriz asociada de la transformación tT con respecto a las bases duales. Comenzamos esta entrada con problemas de transformaciones transpuestas. Los problemas 1 y 2 de esta entrada nos servirán para repasar la teoría vista en esa clase.

Por otra parte, en la entrada del viernes pasado comenzamos con el estudio de las formas bilineales y también se definió la forma cuadrática asociada a una forma bilineal. Además, se presentó la identidad de polarización, la cuál dada una forma cuadrática q nos recupera la única forma bilineal simétrica de la cuál viene q.

Para repasar esta teoría, en esta entrada se encuentran los problemas 3 y 4. El problema 4 es interesante porque introduce de manera sencilla los espacios de funciones lp , de los cuáles se hace un estudio mucho más profundo en un primer curso de análisis matemático. Además, para este problema hacemos uso de herramientas de convergencia de series.

Problemas resueltos

Veamos dos problemas de transformaciones transpuestas

Problema 1. Considera la transformación lineal T:R3R2 dada por T(x,y,z)=(x+3y,x+yz).
Sea B={e1,e2} la base dual canónica de R2.
Calcula tT(e1+e2) y tT(e1e2) en términos de la base dual canónica {f1,f2,f3} de R3.

Solución. Primero observemos que para un vector cualquiera de R2 se tiene que
e1(x,y)=xe2(x,y)=y.

entonces
(e1+e2)(x,y)=x+y(e1e2)(x,y)=xy.

Así,

(tT(e1+e2))(x,y,z)=(e1+e2)(T(x,y,z))=(e1+e2)(x+3y,x+yz)=x+3y+x+yz=2x+4yz.

Esto nos dice que tT(e1+e2)=2f1+4f2f3.

Por otro lado,

(tT(e1e2))(x,y,z)=(e1e2)(T(x,y,z))=(e1e2)(x+3y,x+yz)=x+3yxy+z=2y+z.

Por lo tanto, tT(e1e2))=2f2+f3.


Problema 2. Encuentra la matriz de tT con respecto a la base canónica de R3 sabiendo que

T(x,y,z)=(x+y,yz,x+2y3z).

Solución. Recordemos que para calcular la matriz asociada a una transformación con respecto a una base canónica sólo hace falta poner en la i-ésima columna la imagen del i-ésimo vector canónico. Por esto, calculamos los siguientes valores

T(e1)=T(1,0,0)=(1,0,1)
T(e2)=T(0,1,0)=(1,1,2)
T(e3)=(0,0,1)=(0,1,3).

Entonces la matriz asociada a T es

A=(110011123).

Así, por Teorema 2 visto en la entrada de ortogonalidad y transformación transpuesta, sabemos que la matriz asociada a tT es justamente la matriz

tA=(101112013).

Problemas de formas bilineales y cuadráticas

Problema 1. Demuestra que la transformación

b:R2×R2R
b((x,y),(z,t))=xtyz

es una forma bilineal sobre R2. Describe la forma cuadrática asociada.

Demostración. Sea (x,y)R2 fijo. Queremos ver que

b((x,y),):R2R
definida por
(u,v)b((x,y),(u,v))
es lineal.

Sean (u,v),(z,t)R2.

b((x,y),(u,v)+(z,t))=b((x,y),(u+z,v+t))=x(v+t)y(u+z)=(xvyu)+(xtyz)=b((x,y),(u,v))+b((x,y),(z,t)).

Sea kR.
b((x,y),k(u,v))=b((x,y),(ku,kv))=kxvkyu=k(xvyu)=kb((x,y),(u,v)).

Así, (u,v)b((x,y),(u,v)) es lineal.

Ahora veamos que dado (u,v)R2 fijo, la transformación (x,y)b((x,y),(u,v)) es lineal.

Sean (x,y),(z,t)R2 y kR. Tenemos que
b((x,y)+k(z,t),(u,v))=b((x+kz,y+kt),(u,v))=(x+kz)v(y+kt)u=xvkzvyuktu=(xvyu)+k(zvtu)=b((x,y),(u,v))+kb((z,t),(u,v)).

Así, (x,y)b((x,y),(u,v)) es lineal y por consiguiente b es una forma bilineal.

Ahora, tomemos q:R2R definida por q(x,y)=b((x,y),(x,y)).
Entonces q(x,y)=xyyx=0. Así, la forma cuadrática cero es la forma cuadrática asociada a la forma bilineal b.

◻

Problema 2. Para un real p0, definimos el espacio lp:={(xn)nN:xnRnN;iN|xi|p<}.

Notemos que para p[1,), lp es un espacio vectorial sobre R con las operaciones definidas de manera natural. La demostración no es totalmente trivial, pues hay que mostrar que este espacio es cerrado bajo la suma, y esto requiere de la desigualdad del triángulo para la norma ||p. Puedes intentar demostrar esto por tu cuenta como tarea moral.

Ahora, considera H:l2×l2R definida por

H((xn)nN,(yn)nN)=nNxnyn.


Demuestra que H es una forma bilineal simétrica sobre l2.

Demostración. Lo primero que haremos es mostrar que la forma bilineal que definimos en efecto tiene valores reales. Para ello, tenemos que ver que converge.

Observemos que para cada nN se tiene que

0(|xn||yn|)2.

Entonces ,
0|xn|22|xnyn|+|yn|2|xnyn|12(|xn|2+|yn|2).


Por consiguiente,

nN|xnyn|12(nN|xn|2+nN|yn|2)<.

Lo anterior se debe a que

nN|xn|2< ya que (xn)nNl2

y análogamente para (yn)nN.

Así, nNxnyn<, pues converge absolutamente, y por lo tanto H((xn)nN,(yn)nN) siempre cae en R.

Ahora veamos que H es bilineal. Sea x=(xn)nNl2 fija. Queremos ver que (yn)nNH((xn)nN,(yn)nN) es lineal.

Sean y=(yn)nN,z=(zn)nNl2 y kR.

Entonces

H(x,y+kz)=nNxnyn+kxnzn=nNxnyn+knNxnzn=H(x,y)+kH(x,z).

Así, (yn)nNH((xn)nN,(yn)nN) es lineal.

De manera análoga se ve que si (yn)nNl2 fija, entonces (xn)nNH((xn)nN,(yn)nN) es lineal.

Además
H(x,y)=nNxnyn=nNynxn=H(y,x).

Por lo tanto, H es una forma bilineal simétrica sobre l2.

◻

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que en efecto lp es un espacio vectorial sobre R con las operaciones definidas entrada a entrada.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»