Álgebra Lineal II: Ortogonalidad en espacios euclideanos

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente, cuando hablamos del espacio dual de un espacio vectorial, definimos qué quería decir que una forma lineal y un vector fueran ortogonales. Esa noción de ortogonalidad nos ayudó a definir qué era un hiperplano de un espacio vectorial y a demuestra que cualquier subespacio de dimensión $k$ de un espacio de dimensión $n$ podía ponerse como intersección de $n-k$ hiperplanos.

Hay otra noción de ortogonalidad en álgebra lineal que también ya discutimos en el primer curso: la ortogonalidad de parejas de vectores con respecto a un producto interior. En el primer curso vimos esta noción muy brevemente. Lo que haremos ahora es profundizar en esta noción de ortogonalidad. De hecho, gracias a las herramientas que hemos desarrollado podemos conectar ambas nociones de ortogonalidad.

Esta teoría la veremos de manera explícita en el caso real en la entrada. El caso en $\mathbb{C}$ queda esbozado en los ejercicios.

Definición de ortogonalidad

Comenzamos con las siguientes definiciones.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Diremos que dos vectores $x,y$ en $V$ son ortogonales (con respecto a $b$) si $b(x,y)=0$.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Sea $S$ un subconjunto de vectores de $V$. El conjunto ortogonal de $S$ (con respecto a $b$) consiste de todos aquellos vectores en $V$ que sean ortogonales a todos los vectores de $S$. En símbolos:

$$S^{\bot}:=\{v \in V : \forall s \in S, b(s,v)=0\}.$$

Es un buen ejercicio verificar que $S^\bot$ siempre es un subespacio de $V$. Finalmente, definimos la ortogonalidad de conjuntos.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Diremos que dos subconjuntos $S$ y $T$ son ortogonales (con respecto a $b$) si $S \subseteq T^{\bot}$.

En otras palabras, estamos pidiendo que todo vector de $S$ sea ortogonal a todo vector de $T$.

Observación. Si tenemos un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$, entonces tenemos la fórmula $$\norm{x+y}^2=\norm{x}^2+2\langle x,y\rangle +\norm{y}^2.$$

De esta forma, $x$ y $y$ son ortogonales si y sólo si $$\norm{x+y}^2= \norm{x}^2+\norm{y}^2.$$ Podemos pensar esto como una generalización del teorema de Pitágoras.

Descomposición en un subespacio y su ortogonal

Comenzamos esta sección con un resultado auxiliar.

Teorema. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$V=W\oplus W^\bot.$$

Demostración. Sea $\langle \cdot,\cdot \rangle$ el producto interior de $V$. Para demostrar la igualdad que queremos, debemos mostrar que $W$ y $W^\bot$ están en posición de suma directa y que $V=W+W^\bot$.

Para ver que $W$ y $W^\bot$ están en posición de suma directa, basta ver que el único elemento en la intersección es el $0$. Si $x$ está en dicha intersección, entonces $\langle x, x \rangle =0$, pues por estar en $W^\bot$ debe ser ortogonal a todos los de $W$, en particular a sí mismo. Pero como tenemos un producto interior, esto implica que $x=0$.

Tomemos ahora un vector $v\in V$ cualquiera. Definamos la forma lineal $f:W\to \mathbb{R}$ tal que $f(u)=\langle u, v \rangle$. Por el teorema de representación de Riesz aplicado al espacio vectorial $W$ y a su forma lineal $f$, tenemos que existe un (único) vector $x$ en $W$ tal que $f(u)=\langle u, x \rangle$ para cualquier $u$ en $W$.

Definamos $y=v-x$ y veamos que está en $W^\bot$. En efecto, para cualquier $u$ en $W$ tenemos:

\begin{align*}
\langle u, y\rangle &= \langle u, v-x \rangle\\
&=\langle u, v \rangle – \langle u , x \rangle\\
&=f(u)-f(u)\\
&=0.
\end{align*}

De esta manera, podemos escribir $v=x+y$ con $x\in W$ y $y\in W^\bot$.

$\square$

En particular, el teorema anterior nos dice que la unión disjunta de una base de $W$ y una base de $W^\bot$ es una base de $V$. Por ello, tenemos el siguiente corolario.

Corolario. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$\dim{W}+\dim{W^\bot}=\dim{V}.$$

Tenemos un corolario más.

Corolario. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$(W^\bot)^\bot=W.$$

Demostración. Tanto $W$ como $(W^\bot)^\bot$ son subespacios de $V$. Tenemos que $W\subseteq (W^\bot)^\bot$ pues cualquier elemento de $W$ es ortogonal a cualquier elemento de $W^\bot$. Además, por el corolario anterior tenemos:

\begin{align*}
\dim{W}+\dim{W^\bot}&=\dim{V}\\
\dim{W^\bot}+\dim{(W^\bot)^\bot}&=\dim{V}.
\end{align*}

De aquí se sigue que $\dim{W} = \dim{(W^\bot)^\bot}$. Así, la igualdad que queremos de subespacios se sigue si un subespacio está contenido en otro de la misma dimensión, entonces deben de ser iguales.

$\square$

Proyecciones ortogonales

Debido al teorema anterior, podemos dar la siguiente definición.

Definición. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. La proyección ortogonal hacia $W$ es la transformación lineal $p_W:V\to W$ tal que a cada $v$ en $V$ lo manda al único vector $p_W(v)$ tal que $x-p_W(v)$ está en $W^\bot$.

Dicho en otras palabras, para encontrar a la proyección de $v$ en $W$ debemos escribirlo de la forma $v=x+y$ con $x\in W$ y $y\in W^\bot$ y entonces $p_W(v)=x$.

Distancia a subespacios

Cuando definimos la distancia entre conjuntos que tienen más de un punto, una posible forma de hacerlo es considerando los puntos más cercanos en ambos conjuntos, o en caso de no existir, el ínfimo de las distancias entre ellos. Esto da buenas propiedades para la distancia. En particular, cuando queremos definir la distancia de un punto $x$ a un conjunto $S$ hacemos lo siguiente.

Definición. Sea $V$ un espacio vectorial real con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$. Sea $S$ un subconjunto de $V$ y $v$ un vector de $V$. Definimos la distancia de $v$ a $S$ como la menor posible distancia de $v$ hacia algún punto de $S$. En símbolos:

$$d(v,S):=\inf_{s\in S} d(v,s).$$

En general, puede ser complicado encontrar el punto que minimiza la distancia de un punto a un conjunto. Sin embargo, esto es más sencillo de hacer si el conjunto es un subespacio de un espacio con producto interior: se hace a través de la proyección al subespacio. Esto queda reflejado en el siguiente resultado.

Proposición. Sea $V$ un espacio euclideano con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$. Sea $W$ un subespacio de $V$ y sea $v$ un vector en $V$. Entonces $$d(v,W)=\norm{v-p_W(v)}.$$

Más aún, $p_W(v)$ es el único punto en $W$ para el cual se alcanza la distancia mínima.

Demostración. Por el teorema de descomposición en un subespacio y su ortogonal, sabemos que podemos escribir $v=x+y$ con $x$ en $W$ y con $y$ en $W^\bot$.

Tomemos cualquier elemento $w$ en $W$. Tenemos que $x-w$ está en $W$ y que $y$ está en $W^\bot$. Así, usando el teorema de Pitágoras tenemos que:

\begin{align*}
\norm{v-w}^2&=\norm{y+(x-w)}^2\\
&=\norm{y}^2+\norm{x-w}^2\\
&\geq \norm{y}^2\\
&=\norm{v-x}^2.
\end{align*}

Esto muestra que $\norm{v-w}\geq \norm{v-x}$. Como $x\in W$, esto muestra que la distancia de $v$ a $W$ en efecto se alcanza con $x=p_W(v)$, pues cualquier otra distancia es mayor o igual.

La igualdad en la cadena anterior de alcanza si y sólo si $\norm{x-w}^2=0$, lo cual sucede si y sólo si $x=w$, como queríamos.

$\square$

Más adelante…

En la siguiente entrada recordaremos varias de las ventajas que tiene contar con una base de un espacio vectorial en la que cualesquiera dos vectores sean ortogonales entre sí. Y en la entrada después de esa, recordaremos algunas hipótesis bajo las cuales podemos garantizar encontrar una de esas bases.

Tarea moral

  1. Resuelve los siguientes ejercicios:
    1. Sea $\mathbb{R}^3$ con el producto interno canónico y $W=\{(0,0,a_3) : a_3 \in \mathbb{R} \}$. Encuentra a $W^{\bot}$ y define la proyección ortogonal $p_W$ hacia $W$.
    2. Encuentra el vector en $\text{Span}((1,2,1), (-1,3,-4))$ que sea el más cercano (respecto a la norma euclidiana) al vector $(-1,1,1)$.
  2. Sea $V$ un espacio euclidiano y $T : V \to V $ una transformación lineal tal que $T^2=T$. Prueba que T es una proyección ortogonal si y solo si para cualesquiera $x$ y $y$ en $V$ se tiene que $$\langle T(x),y\rangle =\langle x,T(y)\rangle.$$
  3. Resuelve los siguientes ejercicios:
    1. Demuestra que una proyección ortogonal reduce la norma, es decir, que si $T$ es una proyección ortogonal, entonces $\norm{T(v)}\leq \norm{v}$.
    2. Prueba que una proyección ortogonal únicamente puede tener como eigenvalores a $0$ ó a $1$.
  4. Demuestra que la composición de dos proyecciones ortogonales no necesariamente es una proyección ortogonal.
  5. En el teorema de descomposición, ¿es necesaria la hipótesis de tener un producto interior? ¿Qué sucede si sólo tenemos una forma bilineal, simétrica y positiva?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los conjuntos I: Funciones (parte II)

Por Gabriela Hernández Aguilar

Introducción

En esta sección hablaremos acerca de algunas propiedades de la imagen y la imagen inversa de un conjunto bajo una función, dichas propiedades hablan de cómo se comportan estos conjuntos con respecto a la unión, la intersección y la diferencia.

Propiedades de la imagen de un conjunto

A continuación enunciamos algunas propiedades de la imagen de conjuntos bajo una función.

Teorema. Sean $X$ y $Y$ conjuntos y sea $f:X\to Y$ una función. Sean $X_1,X_2\subseteq X$ y $Y_1, Y_2\subseteq Y$. Entonces se cumplen las siguientes propiedades:

  1. Si $X_1\subseteq X_2$, entonces $f[X_1]\subseteq f[X_2]$,
  2. $f[X_1\cup X_2]=f[X_1]\cup f[X_2]$,
  3. $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$,
  4. $f[X_1]\setminus f[X_2]\subseteq f[X_1\setminus X_2]$,
  5. Si $Y_1\subseteq Y_2$, entonces $f^{-1}[Y_1]\subseteq f^{-1}[Y_2]$,
  6. $f^{-1}[Y_1\cup Y_2]=f^{-1}[Y_1]\cup f[Y_2]$.

Demostración.

1) Supongamos que $X_1\subseteq X_2$ y veamos que $f[X_1]\subseteq f[X_2]$.
Sea $y\in f[X_1]$, entonces existe $x\in X_1$ tal que $f(x)=y$. Dado que $X_1\subseteq X_2$, entonces $x\in X_2$ cumple $f(x)=y$, esto es $y\in f[X_2]$.
Por lo tanto, $f[X_1]\subseteq f[X_2]$.

2) Veamos que $f[X_1\cup X_2]=f[X_1]\cup f[X_2]$.

$\subseteq$] Sea $y\in f[X_1\cup X_2]$, entonces existe $x\in X_1\cup X_2$ tal que $f(x)= y$. Entonces $x\in X_1$ o $x\in X_2$ cumple $f(x)=y$.

  • Si $x\in X_1$, f(x)=y entonces $y\in f[X_1]$ y por lo tanto $y\in f[X_1]\cup f[X_2]$.
  • Si $x\in X_2$, f(x)=y entonces $y\in f[X_2]$ y por lo tanto $y\in f[X_1]\cup f[X_2]$.

Por lo tanto, $f[X_1\cup X_2]\subseteq f[X_1]\cup f[X_2]$.

$\supseteq$] Sea $y\in f[X_1]\cup f[X_2]$, entonces $y\in f[X_1]$ o $y\in f[X_2]$.

Si $y\in f[X_1]$, entonces existe $x\in X_1$ tal que $f(x)=y$. Luego, como $X_1\subseteq X_1\cup X_2$, tenemos que $x\in X_1\cup X_2$. Por lo tanto, existe $x\in X_1\cup X_2$ tal que $f(x)=y$, esto es $y\in f[X_1\cup X_2]$.

Si $y\in f[X_2]$, entonces existe $x\in X_2$ tal que $f(x)=y$. Luego, como $X_2\subseteq X_1\cup X_2$, tenemos que $x\in X_1\cup X_2$. Por lo tanto, existe $x\in X_1\cup X_2$ tal que $f(x)=y$, esto es $y\in f[X_1\cup X_2]$.

Por lo tanto, $f[X_1]\cup f[X_2]\subseteq f[X_1\cup X_2]$.

De las contenciones que demostramos tenemos que $f[X_1]\cup f[X_2]=f[X_1\cup X_2]$.

3) Ahora veamos que $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$.

Sea $y\in f[X_1\cap X_2]$, entonces existe $x\in X_1\cap X_2$ tal que $f(x)= y$. Entonces $x\in X_1$, y $x\in X_2$ y cumple $f(x)=y$.

De donde $y\in f[X_1]$ y $y\in f[X_2]$. Por lo tanto, $y\in f[X_1]\cap f[X_2]$.

Así, $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$.

4) A continuación mostraremos que $f[X_1]\setminus f[X_2]\subseteq f[X_1\setminus X_2]$.

Sea $y\in f[X_1]\setminus f[X_2]$, entonces $y\in f[X_1]$ y $y\notin f[X_2]$.

Dado que $y\in f[X_1]$, entonces existe $x\in X_1$ tal que $f(x)=y$. Luego, como $y\notin f[X_2]$ entonces para cualquier $a\in X_2$, $f(a)\not=y$. Resulta que $x\notin X_2$ pues de lo contrario $f(x)\not=y$ lo cual no puede ocurrir.

Por lo tanto, $x\in X_1\setminus X_2$ y cumple $f(x)=y$, esto es, $y\in f[X_1\setminus X_2]$.

5) Supongamos que $Y_1\subseteq Y_2$ y veamos que $f^{-1}[Y_1]\subseteq f^{-1}[Y_2]$.
Sea $x\in f^{-1}[Y_1]$, entonces existe $y\in Y_1$ tal que $f(x)=y$. Dado que $Y_1\subseteq Y_2$, entonces $y\in Y_2$ y se cumple $f(x)=y$, esto es $x\in f^{-1}[Y_2]$.
Por lo tanto, $f^{-1}[Y_1]\subseteq f^{-1}[Y_2]$.

6) Finalmente veamos que $f^{-1}[Y_1\cup Y_2]=f^{-1}[Y_1]\cup f^{-1}[Y_2]$.

Sea $x\in f^{-1}[Y_1\cup Y_2]$, entonces existe $y\in Y_1\cup Y_2$ tal que $f(x)=y$. Luego, como $y\in Y_1\cup Y_2$ se tiene que $y\in Y_1$ o $y\in Y_2$.

Si $y\in Y_1$, tenemos que $x\in f^{-1}[Y_1]$. Por lo tanto $x\in f^{-1}[Y_1]\cup f^{-1}[Y_2]$.

Si $y\in Y_2$, tenemos que $x\in f^{-1}[Y_2]$. Por lo tanto $x\in f^{-1}[Y_1]\cup f^{-1}[Y_2]$.

$\square$

¿Será cierto que $f[X_1\cap X_2]=f[X_1]\cap f[X_2]$?

Ya vimos que $f[X_1\cap X_2]\subseteq f[X_1]\cap f[X_2]$, por lo que, al igual que con la unión, podríamos pensar que se cumple la igualdad entre los conjuntos. Sin embargo, vamos a ver que en ocasiones $f[X_1]\cap f[X_2]\not\subseteq f[X_1\cap X_2]$.

Ejemplo.

Sean $X=\set{0,1,2}$ y $Y=\set{1,2,3}$ conjuntos y sea $f:X\to Y$ una función dada por el conjunto $f(x)=2$. Sean $X_1=\set{0,1}$ y $X_2=\set{2}$ subconjuntos de $X$.

Por un lado tenemos que $X_1\cap X_2=\set{0,1}\cap \set{2}=\emptyset$, por lo que $f[X_1\cap X_2]=f[\emptyset]= \emptyset$.

Por otro lado, $f[X_1]=f[\set{0,1}]=\set{2}$ y $f[X_2]=f[\set{2}]=\set{2}$. Así, $f[X_1]\cap f[X_2]=\set{2}$.

Por lo tanto, $f[X_1]\cap f[X_2]\not\subseteq f[X_1\cap X_2]$.

$\square$

¿Será cierto que $f[X_1\setminus X_2]=f[X_1]\setminus f[X_2]$?

Ya vimos que $f[X_1]\setminus f[X_2]\subseteq f[X_1\setminus X_2]$, pero veremos que la contención de regreso no siempre es posible, es decir, $f[X_1\setminus X_2] \not\subseteq f[X_1]\setminus f[X_2]$. Un ejemplo de esto se muestra a continuación.

Ejemplo.

Sean $X=\set{0,1,2}$ y $Y=\set{1,2,3}$ conjuntos y sea $f:X\to Y$ una función dada por $f(x)=2$ Sean $X_1=\set{0,1}$ y $X_2=\set{1,2}$ subconjuntos de $X$.

Por un lado tenemos que $X_1\setminus X_2=\set{0,1}\setminus \set{1,2}=\set{0}$, por lo que $f[X_1\setminus X_2]=f[\set{0}]= \set{2}$.

Por otro lado, $f[X_1]=f[\set{0,1}]=\set{2}$ y $f[X_2]=f[\set{1,2}]=\set{2}$. Así, $f[X_1]\setminus f[X_2]=\emptyset$.

Por lo tanto, $f[X_1\setminus X_2]\not\subseteq f[X_1]\setminus f[X_2]$.

$\square$

Restricción de una función

Si ya tenemos una función que va de un conjunto $X$ a un conjunto $Y$, podemos «limitar» a la función a un subconjunto de $X$ mediante la siguiente definición.

Definición. Sea $f:X\to Y$ una función y sea $A\subseteq X$. Decimos que la restricción de $f$ en $A$ es la función $f\upharpoonright_{A} :A\to Y$ dada por $f\upharpoonright_{A} (x)= f(x)$ para todo $x\in A$.

Aunque las funciones $f$ y $f\upharpoonright$ tengan la misma regla de correspondencia, típicamente son funciones distintas pues casi siempre tienen dominios distintos (a menos que $X=A$).

Ejemplo.

Sean $X=\set{1,2,3,4}$ y $Y=\set{1,2,3,4,5}$. Sea $f:X\to Y$ la función dada por $\set{(1,1), (2,2), (3,3), (4,1)}$. Si restringimos $f$ al subconjunto ${1,2,3}$ obtenemos la función identidad en este subconjunto. En efecto, $f\upharpoonright_A=\set{(1,1), (2,2), (3,3)}$.

$\square$

Composición de funciones

Recuerda que podemos pensar a una función $f:X\to Y$ como una «regla de correspondencia» que manda a cada elemento de $X$ a uno y sólo un elemento de $Y$. Si tenemos otra función $g:Y\to Z$ entonces también $g$ da una «regla de correspondencia», pero para mandar elementos de $Y$ a $Z$. Entonces, suena a que podríamos combinar a $f$ con $g$ de alguna manera para enviar elementos de $X$ a $Z$. Esto lo hará la composición de funciones. Reescribamos la definición que teníamos de relaciones, pero ahora para funciones.

Definición. Sean $f:X\to Y$ y $g:Y\to Z$. Definimos a la composición de $f$ con $g$ como el siguiente conjunto:

$g\circ f=\set{(x,z): \exists y\in Y \text{ tal que } f(x)=y \text{ y } g(y)=z}$.

Observa que estamos pidiendo que si estas dos igualdades pasan, entonces $g\circ f$ tiene a la pareja $(x,z)$. Como enuncia el siguiente teorema, esto impicará que $g\circ f$ es función, y que su regla de correspondencia será $(g\circ f)(x)=g(f(x))$.

Proposición. Si $f:X\to Y$ y $g:Y\to Z$ son funciones, entonces $g\circ f:X\to Z$ es función. Además, cumplirá que $(g\circ f)(x)=g(f(x))$ para toda $x\in X$.

Demostración.

En la sección de composición de relaciones vimos que si $f$ y $g$ son relaciones, entonces $g\circ f$ es relación, por lo que resta ver que $g\circ f$ es funcional y total.

Para ver que es funcional, supongamos que hay parejas $(x,z)$ y $(x,z’)$ en $g\circ f$. Por definición, esto implica que existen $y$ y $y’$ en $Y$ tales que $(x,y),(x,y’)\in f$ y $(y,z), (y’,z’) \in g$. Como $f$ es funcional, se tiene $y=y’$. Así, $(y,z), (y,z’)\in g$. Como $g$ es funcional, se tiene $z=z’$.

Para ver que es total, como $f$ es total, existe $y\in Y$ con $(x,y)\in f$. Como $g$ es total, existe $z$ con $(y,z)\in g$. Así, por definición de composisión tenemos $(x,z)\in g\circ f$ y por lo tanto $g\circ f$ es total.

El párrafo anterior justo nos dice que si $f(x)=y$ y $g(y)=z$, entonces $$(g\circ f)(x)=z=g(y)=f(g(x)).$$

$\square$

Ejemplo.

Sean $f:\set{1,2}\to \set{2,4}$ y $g:\set{2,4}\to \set{3,5}$ las funciones dadas por $f(x)= 2x$ y $g(x)=x+1$ respectivamente (con tu entendimiento actual de $2x$ y $x+1$, posteriormente formalizaremos estas operaciones). Entonces $g\circ f:\set{1,2}\to \set{3,5}$ está dada por:

$(g\circ f)(x)=g(f(x))=g(2x)=2x+1$.

Por lo que,

  • $(g\circ f)(1)=2(1)+1=2+1=3$,
  • $(g\circ f)(2)= 2(2)+1=4+1=5$.

De modo que los elementos de $g\circ f$ son $(1,3)$ y $(2,5)$.

$\square$

Tarea moral

  1. Demuestra que si $X$ y $Y$ son conjuntos, $X_1\subseteq X$, $Y_1, Y_2\subseteq Y$ y $f:X\to Y$ una función, entonces se cumplen las siguientes propiedades:
    • $f^{-1}[Y_1\cap Y_2]=f^{-1}[Y_1]\cap f^{-1}[Y_2]$,
    • $f^{-1}[Y_1\setminus Y_2]=f^{-1}[Y_1]\setminus f{-1}[Y_2]$,
    • $X_1\subseteq f^{-1}[f[X_1]]$,
    • $f[f^{-1}[B_1]]\subseteq B_1$.
  1. Demuestra que la composición de funciones es asociativa.
  2. ¿Será cierto que si $R$ es una función, entonces la relación inversa $R^{-1}$ también es función?
  3. ¿Será cierto que si $R$ de $A$ en $B$ y $S$ de $B$ en $C$ son relaciones tal que ninguna de ellas es función, entonces $S\circ R$ nunca es función?

Más adelante…

La siguiente sección estará dedicada a funciones inyectivas. Este tipo de funciones empezarán a estudiar cómo se comportan los elementos del codominio de una función. Específicamente, las funciones inyectivas serán aquellas para las que cada elemento del codominio viene de a lo más un elemento del dominio. Este tema será de gran importancia pues en muchas ocasiones tendremos que verificar si se satisface esta propiedad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Funciones

Por Gabriela Hernández Aguilar

Introducción

Esta entrada estará dedicada a un tipo de relaciones a las que llamaremos funciones. Este tema es de gran importancia pues utilizaremos funciones con mucha frecuencia a partir de ahora. Por ello, dedicaremos una serie de entradas para tratarlas. En esta primera parte abordaremos la definición de función, algunas de sus propiedades y ejemplos.

¿Qué es una función?

La motivación de la definición de función es la siguiente. Tomemos conjuntos $A$ y $B$. Queremos poder asignar a cualquier elemento de $A$ uno y sólo un elemento de $B$, de manera que inequívocamente para cada $a\in A$ podamos hablar de él elemento que se le asignó en $B$. Las relaciones ayudan a emparejar elementos de $A$ y $B$, pero podemos tener dos problemas 1) Que no todo elemento de $A$ esté en alguna pareja de la relación o 2) Que algún elemento de $A$ quede emparejado con más de un elemento de $B$. Las siguientes definiciones nos permiten evitar estos problemas.

Definición. Sean $A$ y $B$ conjuntos y $f$ una relación de $A$ en $B$.

  • Diremos que $f$ es total si para cada $a\in A$ existe por lo menos un $b\in B$ tal que $(a,b)\in R$.
  • Diremos que $f$ es funcional si para cada $a\in A$ existe a lo más un $b\in B$ tal que $(a,b)\in R$.
  • Diremos que $f$ es una función de $A$ en $B$ si $f$ es total y funcional.

Otra manera de decir que $f$ es total es que su dominio activo sea igual a su dominio. Así mismo, notemos que $f$ es funcional si y sólo si para todo $a\in A$ y $b,c\in B$, se tiene que $(a,b)\in f$ y $(a,c)\in f$ implican que $b=c$.

La definición de función nos dice que dados dos conjuntos y una relación $f$ de $A$ en $B$, podremos decir que la relación es función si y sólo si a cada uno de los elementos $a\in A$ le corresponde (bajo la relación) a uno y sólo un elemento $b\in B$. A este elemento $b$ lo denotamos por $f(a)$

El siguiente diagrama muestra cómo podría verse una función.

Los siguientes ejemplos ayudarán a entender mejor cada uno de los conceptos anteriores.

Ejemplo.

Sea $A=\set{1,2}$ y $B=\set{1,2,3}$. Sea $r$ la relación de $A$ en $B$ dada por $r=\set{(1,1), (1,2), (2,1)}$.

Resulta que $r$ no es función pues $(1,1)\in r$ y $(1,2)\in r$, sin embargo no es cierto que $1=2$. Aquí el problema es entonces que la relación no es funcional. Puedes verificar por tu cuenta que $f$ sí es total.

Sea $g$ la relación de $A$ en $B$ dada por $g=\set{(1,2)}$.

Resulta que $g$ no es función pues no tiene parejas de la forma $(2,b)$ con $b\in B$. Aquí el problema es entonces que la relación no es total. Puedes verificar por tu cuenta que $g$ sí es funcional.

Finalmente, sea $h$ la relación de $A$ en $B$ dada por $h=\{(1,3),(2,3)\}$. Aquí la relación sí es total, pues para $1\in A$ existe $3\in B$ con $(1,3)\in h$ y para $2\in A$ existe $3\in B$ con $(2,3)\in h$. La relación también es funcional, pues para $1\in A$ el único $b\in B$ con $(1,3)\in h$ es $b=3$ y para $2\in A$ el único $b\in B$ con $(2,b)\in h$ es $b=3$. Podemos decir entonces que $h(1)=3$ y que $h(2)=3$.

$\square$

Veamos otro ejemplo de una relación que sí es función.

Ejemplo.

Sea $A=\set{1,2,3}$ y $B=\set{1,2}$. Sea $f$ la relación de $A$ en $B$ dada por $f=\set{(1,1), (2,1), (3,1)}$.

En este ejemplo tenemos que $f$ es función pues cada elemento de $A$ está relacionado con uno y sólo uno de $B$.

$\square$

Después de revisar estos ejemplos es importante mencionar que aunque no toda relación es función, siempre ocurrirá que una función es una relación.

Algunas funciones importantes

Ahora discutiremos algunos ejemplos importantes de funciones.

  1. Función vacía
    Observa que si $X=\emptyset$ y $Y$ un conjunto cualquiera, entonces el conjunto vacío es una función de $X$ en $Y$. En la sección de relaciones vimos que el conjunto vacío en efecto es una relación. Además, como $X$ es vacío se cumple por vacuidad que esta relación es total y funcional. Por lo tanto, la relación vacía es función.
  2. Función constante
    Sean $X$, $Y$ conjuntos y $c\in Y$. Definimos la función constante $f_c$ de $X$ en $Y$ como $f_c= X\times \set{c}$. Nuestra función se verá de la siguiente forma:
  1. Función identidad
    Sea $X$ un conjunto. La relación identidad en $X$ es función. Recordemos que la relación identidad $Id_X$ esta definida como sigue:

$Id_X=\set{(x,y)\in X\times X: x=y}$

Por esta definición, para cada $x\in X$ el único elemento relacionado con $x$ es $x$ mismo. Así concluimos que $Id_X$ es función.

  1. Función característica
    Sean $A$ y $X$ conjuntos tales que $A\subseteq X$. Definimos a la función característica $\chi_A$ de $A$ en $\set{0,1}$

$\chi_A=\set{(x,1):x\in A}\cup \set{(x,0):x\in X\setminus A}$.

Recuerda que $0=\emptyset$ y $1=\{\emptyset\}$. Debemos tener un poco de cuidado con las definiciones por casos, pues si una $x$ cae en dos casos cuyas evaluaciones son distintas, podría pasarnos que perdamos la funcionalidad. La función característica sí es función pues para cualquier $x\in X$ pasa uno y sólo uno de los casos $x\in A$ y $x\not \in A$.

  1. Función inclusión. Sea $X$ un conjunto cualquiera y $A\subseteq X$. Definimos a la función inclusión como el siguiente conjunto:

$\iota_A= \set{(x,x):x\in A}$.

Debido a que las funciones serán recurrentes en las entradas subsecuentes es adecuado adoptar alguna notación para estos conceptos. Dada una relación $f$ de $A$ en $B$ utilizaremos la notación $f:A\to B$ para indicar que $f$ es una función. Ahora bien, si $f:A\to B$ y $x\in A$ y $y\in B$, escribiremos $f(x)=y$ si $(x,y)\in f$.

Dominio activo, imagen e imagen de un subconjunto

Ahora que conocemos el concepto de función y que hemos adoptado las notaciones anteriores para funciones, podemos describir el dominio y la imagen de una función, recordando las definiciones de dominio e imagen que ya conocemos, de la siguiente manera:

Definición. Si $f:A\to B$, definimos el dominio activo de $f$ como:

$\text{DomAct}(f)=\set{x\in A:\exists y\in B\ tal\ que\ f(x)=y}$.

Ejemplo.

Sea $A=\set{1,2,3,4}$ y $B=\set{1,2,3,4}$. Sea $f:A\to B$ la función dada por el conjunto $f=\set{(1,1), (2,2), (3,3), (4,4)}$.

Tenemos que,

$\text{DomAct}(f)=\set{x\in \set{1,2,3,4}:\exists y\in \set{1,2,3,4}\ tal\ que\ f(x)=y}=\set{1,2,3,4}$.

$\square$

Así como en el ejemplo anterior, el dominio activo de una función siempre coincide con el dominio, pues recordemos que por definición una función es total. Es por esta razón que para funciones prácticamente nunca usamos el término dominio activo y decimos simplemente dominio de $f$.

Definición. Si $f:A\to B$, definimos la imagen de $f$ como:

$\text{Im}(f)=\set{y\in B:\exists x\in A\ tal\ que\ f(x)=y}$.

Ejemplo.

Sea $A=\set{1,2,3,4}$ y $B=\set{1,2,3}$. Sea $f:A\to B$ la función dada por $f(x)=1$ para todo $x\in A$.

Tenemos que,

$\text{Im}(f)=\set{y\in B: \exists x\ tal\ que\ f(x)=y}=\set{1}$.

$\square$

Observa que en este caso la imagen y el codominio de la función $f$ no coinciden. En general, para una función no es cierto que la imagen y el codominio coincidan. Las funciones para las cuales ocurre esto son especiales y las definiremos y estudiaremos posteriormente.

Definición. Si $f:A\to B$ y $C\subseteq A$, definimos la imagen de $C$ bajo $f$ como el conjunto:

$f[C]=\set{y\in B: \exists x\in C\ tal\ que\ f(x)=y}$.

Ejemplo.

Sea $A=\set{1,2,3,4}$ y $B=\set{2,4,6,8}$. Sea $f:A\to B$ la función dada por $f(x)=2x$ para todo $x\in A$. Sea $C=\set{2,4}\subseteq A$.

Tenemos que,

$f[C]=\set{y\in B: \exists x\in C\ tal\ que\ f(x)=y}=\set{4,8}$.

$\square$

En este ejemplo estamos siendo un poco informales, pues estrictamente hablando, todavía no hemos definido quién es ni $6$, ni $8$, ni qué quiere decir la expresión $2x$. Pero probablemente a partir de las definiciones de $0,1,2,3,4$ que dimos en la entrada del axioma del par y de la unión puedas imaginarte quiénes serán $6$ y $8$. La expresión $2x$ puedes pensarla de momento que quiere decir que la función tiene a las parejas $(1,2),(2,4),(3,6),(4,8)$. Esto mismo te ayudará a formalizar el ejemplo después de la siguiente definición.

Definición. Sea $f:A\to B$ y $D\subseteq B$, definimos la imagen inversa de $D$ bajo $f$ como el conjunto:

$f^{-1}[D]=\set{x\in A: \exists y\in D\ tal\ que\ f(x)=y}$.

Ejemplo.

Sea $A=\set{1,2,3,4}$ y $B=\set{2,4,6,8}$. Sea $f:A\to B$ la función dada por $f(x)=2x$ para todo $x\in A$. Sea $D=\set{2,4}\subseteq B$.

Tenemos que,

$f^{-1}[D]=\set{x\in A: \exists y\in D\ tal\ que\ f(x)=y}=\set{1,2}$.

$\square$

Tarea moral

Los siguientes ejercicios te ayudarán a reforzar los conceptos de función, dominio e imagen.

  • Así como anteriormente definimos $0,1,2,3,4$, define también $5,6,7,8,9$.
  • Sea $f$ una función de $\set{1,2}$ en $\set{2.4,5}$ dada por $f=\set{(1,2), (2,4)}$. Describe al dominio y la imagen de $f$.
  • Sean $A=\set{1,2,3,4,5,6,7,8}$ y $B=\set{1,2,3,4,5,6,7}$ conjuntos. Responde si las siguientes relaciones son o no funciones de $A$ en $B$:
    1. $f_1=\set{(1,1), (1,2), (2,1), (3,4)}$,
    2. $f_2=\set{(1,1), (2,2), (3,3), (4,4) (5,5)}$,
    3. $f_3=\set{(1,1), (2,1), (3,1), (4,1), (5,1),(6,2),(7,3),(8,3)}$.

Más adelante…

La siguiente entrada estará dedicada a hablar acerca de algunas de las propiedades que tiene la imagen de un conjunto bajo una función respecto a la unión, la intersección y la diferencia. Además, hablaremos acerca de la composición de funciones, por lo que retomaremos el concepto de composición de relaciones.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Problemas de formas bilineales, cuadráticas y teorema de Gauss

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores nos dedicamos a recordar las definiciones y algunas propiedades de formas bilineales y cuadráticas en $\mathbb{R}^n$ con el fin de enunciar y demostrar el teorema de Gauss. La prueba da un método para representar cualquier forma cuadrática de este modo, pero es mucho más claro cómo se hace este método mediante ejemplos. En esta entrada veremos un par de problemas para seguir repasando formas bilineales y cuadráticas y luego veremos al teorema de Gauss en acción.

Ver que una función es una forma bilineal

Problema. Tomemos $V= \mathbb{R}^n$ y vectores $x,y$ en $V$ de coordenadas $x=(x_1, . . . , x_n)$ y $y =(y_1, . . . , y_n)$. Tomemos reales $a_1,\ldots, a_n$. Definamos a $b:V\times V\to \mathbb{R}$ como sigue:
\begin {align*} b(x,y)=a_1x_1y_1+ . . . + a_nx_ny_n.\end{align*}

Probemos que así definida, $b$ es una forma bilineal.

Solución. Para probar que $b$ es bilineal, probaremos que la función $b(x, \cdot)$ es lineal para cada $x \in \mathbb{R}^n$ fijo.

Sean $p,q \in \mathbb{R}^n$ y $\lambda \in \mathbb{R}$. Tenemos que:
\begin{align*} b(x,\lambda p+q)=\sum_{i=1}^n a_ix_i (\lambda p_i+q_i).\end{align*}

Como todos los miembros de esta operación son números reales, utilicemos las propiedades distributiva y conmutativa. Obtenemos:

\begin{align*} b(x,\lambda p+q)=&\sum_{i=1}^n a_ix_i \lambda p_i + \sum_{i=1}^n a_ix_iq_i\\
&=\lambda \sum_{i=1}^n a_ix_ip_i+ \sum_{i=1}^n a_ix_iq_i\\&=\lambda b(x,p) + b(x,q). \end{align*}

La demostración de que la función $b(\cdot,y)$ también es lineal para cada $y\in \mathbb{R}^n$ fijo es análoga.

$\square$

En particular, si tenemos que $a_1, \ldots, a_n =1$, obtenemos que $b$ es el producto interno canónico de $\mathbb{R}^n$, es decir el producto punto.

Ver que una función no es una forma cuadrática

Problema. Sea $q: \mathbb{R}^2 \rightarrow \mathbb{R}$ dada como sigue

\begin{align*} q(x,y)=x^2+y^2-8x. \end{align*}

¿Es $q$ una forma cuadrática?

Solución. La respuesta es que no. Con el fin de encontrar una contradicción, supongamos que $q$ sí es una forma cuadrática. Entonces su forma polar $b$ debe cumplir:

\begin{align*} b((x,y),(x,y))=x^2+y^2-8x.\end{align*}

Aplicando lo anterior al par $(-x,-y)$ obtendríamos:

\begin{align*} b((-x,-y),(-x,-y))=x^2+y^2+8x.\end{align*}

Por otro lado, sacando escalares en ambas entradas:

\begin{align*} b((-x,-y),(-x,-y))&=(-1)(-1)b((x,y),(x,y))\\&=b((x,y),(x,y)).\end{align*}

Juntando las igualdades, concluimos que

\begin{align*} x^2+y^2-8x=x^2+y^2+8x \end{align*}

por lo que

\begin{align*} 16x=0. \end{align*}

Pero esto no es cierto en general pues falla, por ejemplo, para la pareja $(1,0)$. Este error nació de suponer que $q$ era una forma cuadrática. Por lo tanto $q$ no es forma cuadrática.

$\triangle$

El teorema de Gauss en acción

Para simplificar el lenguaje, si logramos escribir a una forma cuadrática $q$ como nos dice el teorema de Gauss, es decir, de la forma \begin{align*} q(x)= \sum_{i=1}^r \alpha _i (l_i(x))^2,\end{align*} entonces diremos que $q$ es combinación cuadrática de las $l_i$ con coeficientes $\alpha_i$.

Problema. Toma la forma cuadrática $q$ de $\mathbb{R}^3$ definida como sigue:

\begin{align*} q(x,y,z)= 4xy+yz+xz \end{align*}

Escribe a $q$ como combinación cuadrática de formas lineales linealmente independientes.

Solución. Revisando la demostración dada en la entrada anterior, tenemos tres casos:

  • Que la forma cuadrática sea la forma cuadrática cero.
  • Que tenga «términos puros».
  • Que no tenga «términos puros», es decir, que tenga sólo «términos cruzados».

Como en este caso la forma $q$ no es la forma cero, ni aparecen términos $x^2$, $y^2$ o $z^2$, estamos en el tercer caso. La estrategia era tomar dos de las variables y separar los términos que sí las tengan de los que no. Luego, hay que usar las identidades:

\begin{align} AXY+BX+CY=A\left(X+\frac{C}{A}\right) \left(Y+\frac{B}{A}\right)-\frac{BC}{A},\end{align}

\begin{align} DE= \frac{1}{4}(D+E)^2 – \frac{1}{4} (D-E)^2.\end{align}

Tomemos por ejemplo $x$ y $y$. En la forma cuadrática todos los términos tienen $x$ ó $y$, así que podemos usar la identidad $(1)$ para escribir (nota que reordenamos algunos términos para hacer más cómodas las cuentas con las identidades):

\begin{align*}
4xy+zx+zy&= 4 \left(x+\frac{z}{4}\right) \left(y+\frac{z}{4}\right)-\frac{z^2}{4}
\end{align*}

Luego, continuamos mediante la identidad $(2)$:

\begin{align*}
= \left(x+y+\frac{z}{2}\right)^2 – (x-y)^2- \frac{1}{4} z^2.
\end{align*}

Esta expresión ya tiene la forma buscada. Tenemos que $q$ es combinación cuadrática de las formas lineales $x+y+\frac{z}{2}$, $x-y$ y $z$. Verifica que en efecto estas formas lineales son linealmente independientes.

$\triangle$

Cambiando el orden de los pasos

Problema. ¿Qué pasaría si en el ejemplo anterior en vez de hacer el paso inductivo con $x$ y $y$ hacemos el paso inductivo con $y$ y $z$?

Solución. Las cuentas cambian y obtenemos una nueva forma de escribir a $q$. En efecto, aplicando las identidades $(1)$ y $(2)$ pero ahora a $y$ y $z$ obtendríamos:

\begin{align*}
yz+4xy+xz&= (y+x) (z+4x)-4x^2\\
&=\frac{1}{4}(y+z+5x)^2-\frac{1}{4}(y-z-3x)^2-4x^2.
\end{align*}

Esta es otra forma válida de expresar a $q$ como combinación cuadrática de formas lineales linealmente independientes. Lo que nos dice es que la expresión para $q$ no necesariamente es única.

Sin embargo, un poco más adelante veremos que aunque haya muchas formas de expresar a $q$, en todas ellas permanece constante cuántos sumandos positivos y cuántos negativos hay.

$\triangle$

Cuidado con la independencia lineal

Problema. Toma la forma cuadrática $q$ de $\mathbb{R}^3$ definida como sigue:

\begin{align*} q(x,y,z)= (x – y)^2+(y – z)^2+ (z – x)^2 \end{align*}

Escribe a $q$ como combinación cuadrática de formas lineales linealmente independientes.

Solución. Sería fácil asumir que $q$ ya está de la forma deseada, sin embargo, una revisión rápida nos deja ver qué $x – y$, $y-z$ y $z-x$ no son linealmente independientes en $(\mathbb{R}^3)^*$.

Primero desarrollemos todo

\begin{align*} q(x,y,z)= 2x^2+2y^2+2z^2 -2xy-2xz-2yz \end{align*}

Ahora sí hay «términos puros» pues en particular el coeficiente de $x^2$ no es cero.

En este caso hay que pensar a $q$ como polinomio de segundo grado en $x$ para completar un cuadrado:

\begin{align*} 2x^2+&2y^2+2z^2 -2xy-2xz-2yz\\
&= 2 \left( x- \frac{y+z}{2}\right)^2 – \frac{(y+z)^2}{2} + 2y^2 +2z^2-2yz \end{align*}

La demostración asegura que inductivamente los términos sin $x$ (en este caso $ – \frac{(y+z)^2}{2} + 2y^2 +2z^2-2yz$)se pueden escribir como una combinación cuadrática de formas lineales linealmente independientes. Es decir, a ese término ahora podemos aplicar nuevamente el procedimiento hasta llegar a un caso pequeño.

Sin embargo, para nuestra suerte, una pequeña manipulación muestra que
\begin{align*} – \frac{(y+z)^2}{2} + 2y^2 +2z^2-2yz = \frac{3}{2}(y – z)^2.\end{align*}

También, afortunadamente, $y-z$ es linealmente independiente con $x- \frac{y+z}{2}$. De este modo, una posible combinación cuadrática es la siguiente:

\begin{align*} q(x,y,z)= 2 \left( x- \frac{y+z}{2}\right)^2 + \frac{3}{2}(y – z)^2 \end{align*}

$\triangle$

El algoritmo

Con esto visto, podemos describir un algoritmo para encontrar una combinación cuadrática en 4 pasos.

  1. Desarrollar todos los términos $q$ si es necesario.
  2. Revisar qué forma tiene $q$ con respecto a los 3 casos que se vieron en la demostración.
  3. Reproducir el caso elegido de la demostración, dependiendo de la forma de $q$.
  4. Dentro de este paso, puede ser necesario repetir desde el paso 1.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

1.3. ESPACIOS VECTORIALES: propiedades

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Nota: Para simplificar notación (sobre todo en las demostraciones): $0_K$ será $0$; $\theta_V$ será $\theta$ y dependiendo de los elementos que se operen, serán las operaciones del campo o del espacio vectorial. Y en las justificaciones de pasos, tendremos que un número $m$ seguido $K$, hará referencia a la propiedad $m$ de la definición de campo y análogamente si el número $m$ es seguido por $V$ será la propiedad $m$ de la definición de espacio vectorial.

Recordemos que, por ahora, dado $u$ en un espacio vectorial, tenemos que $\tilde u$ denota a su inverso aditivo.

Proposición (1): Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
1. $0_K \cdot_V u = \theta_V$ $\forall u \in V$
2. $\lambda \cdot_V \theta_V = \theta_V$ $\forall \lambda\in K$

Demostración: Sean $u \in V$, $\lambda\in K$.

1. Tenemos por distributividad en $V$ que $(0+0)u=0u+0u$.
Y además, por ser $0$ el neutro de $K$ y $\theta$ el neutro de $V$, $(0+0)u=0u=\theta+0u$.
Así, $0u+0u=\theta+0u$.
De donde, $\widetilde{0u}+(0u+0u)=(\theta+0u)+\widetilde{0u}$

$\begin{align*}
\Rightarrow &(\widetilde{0u}+0u)+0u=\theta+(0u+\widetilde{0u})\tag{asociat. $+_V$}\\
\Rightarrow &\theta+0u=\theta+\theta\tag{inv. ad. $V$}\\
\Rightarrow &0u=\theta\tag{neu. ad. $V$}\\
\end{align*}$

2. Tenemos por distributividad en $V$ que $\lambda(\theta+\theta)= \lambda\theta+\lambda\theta$.
Y además, por ser $\theta$ el neutro de $V$, $\lambda(\theta+\theta)=\lambda\theta$.
Así, $\lambda\theta+\lambda\theta=\lambda\theta$.
De donde, $\widetilde{\lambda\theta}+(\lambda\theta+\lambda\theta)=\lambda\theta\widetilde{\lambda\theta}$

$\begin{align*}
\Rightarrow &(\widetilde{\lambda\theta}+\lambda\theta)+\lambda\theta=\lambda\theta_V+\widetilde{\lambda\theta}\tag{asociat. $+_V$}\\
\Rightarrow &\theta+\lambda\theta=\theta\tag{inv. ad. $V$}\\
\Rightarrow &\lambda\theta=\theta\tag{neu. ad. $V$}\\
\end{align*}$

Proposición (2): Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
Para todo $u \in V$, $(-1_K)\cdot_V u$ es el inverso aditivo de $u$.

Demostración: Sea $u\in V$.
Veamos que $u+(-1_K)u=\theta$

$\begin{align*}
u+(-1_K)u&=1_Ku+(-1_K)u\tag{propiedad 5. campo}\\
&=(1_K+(-1_K))u\tag{distrib. 7.1 $V$}\\
&=0u\tag{inv. ad. $K$}\\
&=\theta\tag{Prop. (1)}\\
\therefore u+(-1_K)u=\theta
\end{align*}$

Nota: Dada $u \in V$ denotaremos por $-u$ a su inverso aditivo.

Obs.* Existen resultados análogos para las dos proposiciones anteriores pero en el caso de los campos, y sus pruebas son también análogas.

Corolario: Sean $K$ un campo y $V$ un $K$ – espacio vectorial.
$(-\lambda)u=-(\lambda u)=\lambda(-u)$ $\forall \lambda \in K$ , $\forall u \in V$

Demostración: Sean $\lambda\in K, u\in V$.
Por un lado,
\begin{align*}
\lambda(-u)&=\lambda((-1_K)u)\tag{Prop. (2)}\\
&=(\lambda(-1_K))u\tag{propiedad 6. campo}\\
&=(-\lambda)u\tag{Obs.*}\\
\therefore\lambda(-u)=(-\lambda)u
\end{align*}
Por otro lado,
\begin{align*}
(-\lambda)u&=((-1_K)\lambda)u\tag{Obs.*}\\
&=(-1_K)(\lambda u)\tag{propiedad 6. campo}\\
&=-(\lambda u)\tag{Prop. (2)}\\
\therefore (-\lambda)u=-(\lambda u)
\end{align*}

Proposición (3): Sea $K$ un campo y $V$ un $K$ – espacio vectorial.
Si $\lambda\cdot_V u = \theta_V$, entonces se cumple al menos uno de los siguientes casos:
1. $\lambda = 0_K$
2. $u = \theta_V$

Demostración: Sup. que $\lambda u=\theta$.
Tenemos dos posibilidades:
i) $\lambda=0$
ii) $\lambda\not=0$

Si se cumple i), entonces ya tenemos el caso 1.

Sup. que se cumple ii). Veamos que $u=\theta$.
Como nuestra hipótesis es que $\lambda\not=0$ y $\lambda\in K$, con $K$ un campo, entonces $\exists(\lambda^{-1})\in K$ inverso multiplicativo de $\lambda$. Así,

$\begin{align*}
\lambda u=\theta\Rightarrow &(\lambda^{-1})(\lambda u)=(\lambda^{-1})\theta\\
\Rightarrow &((\lambda^{-1})\lambda)u=(\lambda^{-1})\theta\tag{propiedad 6. esp. vect.}\\
\Rightarrow &((\lambda^{-1})\lambda)u=\theta\tag{Prop. (1)}\\
\Rightarrow &1_Ku=\theta\tag{inv. mult. $K$}\\
\Rightarrow &u=\theta\tag{propiedad 5. campo}\\
\end{align*}$

Nota: En adelante, $K$ denotará un campo.

TAREA MORAL

Sea $K$ un campo. Sea $V$ un $K$ – espacio vectorial. Demuestra que para cualesquiera $u,v,w \in V$ se cumplen las siguientes propiedades de cancelación:

  1. Si $u+v=w+v$, entonces $u=w$.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Primero sup. que $u+v=w+v$ y justifiquemos por qué tiene que suceder que $u=w$.
    • Podemos sumar a la derecha de cada lado de la igualdad el inverso de $v$.
    • Una vez hecho eso, utiliza la asociatividad de la suma en $V$, luego la definición del inverso de $v$ y por último la definición del neutro aditivo en $V$.
  1. Si $v+u=v+w$, entonces $u=w$.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Primero sup. que $u+v=w+v$ y justifiquemos por qué tiene que suceder que $u=w$.
    • Piensa en qué propiedad de la $+$ en $V$ te permite tener una ecuación de la forma que se presenta en el $1$. Una vez teniendo esa forma, por lo que ya probaste, obtienes lo que se necesitaba.
      • Observa que haciendo un proceso totalmente análogo a este inciso, se obtiene que también se cumple la cancelación si es de la forma $u+v=v+w$, o bien, de la forma $v+u=w+v$.

MÁS ADELANTE…

Ahora vamos a usar el concepto de espacio vectorial para obtener otro concepto: subespacio.

Entradas relacionadas