Variable Compleja I: Integrales de contorno I

Por Pedro Rivera Herrera

Introducción

En la entrada anterior vimos la definición de la integral para funciones complejas de variable real, es decir, funciones híbridas. Aunque de cierta manera esta definición nos limita, ya que en general trabajamos con funciones complejas de variable compleja.

Al igual que sucedió con el concepto de diferenciabilidad para una función compleja de variable compleja, también existe el concepto de integrabilidad para funciones complejas. En esta entrada veremos que aunque muchas de las definiciones y resultados para este tipo de integrales son una extensión de los conceptos de integración para funciones de varias variables reales, vistos en nuestros cursos de Cálculo, la integración en el sentido complejo va más allá de un simple salto de los resultados para funciones reales a la variable compleja, ya que como veremos, a través de la integración compleja es posible obtener herramientas e ideas únicas para el estudio de la teoría de las funciones complejas.

Definición 34.1. (Integral de contorno o integral de línea compleja.)
Sean $U\subset\mathbb{C}$ un conjunto abierto, $[a,b]\subset\mathbb{R}$, con $a<b$ un intervalo cerrado, $f: U \to \mathbb{C}$ una función continua en $U$ y $\gamma:[a,b] \to U$ un contorno en $U$ (definición 32.9). Se define a la integral de contorno o integral de línea compleja, a lo largo de $\gamma$, como:
\begin{equation*}
\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t)dt.\tag{34.1}
\end{equation*}

Si $C$ denota al contorno dado por la trayectoria $\gamma$, entonces la integral en (34.1) se puede escribir como:
\begin{equation*}
\int_{C} f(z) dz.
\end{equation*}

Observación 34.1.
Recordemos que un contorno es una trayectoria $\gamma$ de clase $C^1$ o de clase $C^1$ a trozos, por lo que al igual que con las integrales de funciones híbridas, esta definición ya considera el caso en el que $\gamma$ sea una curva suave a trozos. En tal caso, para la partición:
\begin{equation*}
P : a=t_0 < t_1 < \cdots < t_{n-1}<t_n=b,
\end{equation*}del intervalo $[a,b]$, tal que $\gamma_k$, la restricción de $\gamma$ al intervalo $[t_{k-1}, t_k]$, es una curva suave para $1\leq k\leq n$, entonces:
\begin{equation*}
\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \cdots + \int_{\gamma_n} f(z) dz = \sum_{k=1}^n \int_{\gamma_k} f(z) dz. \tag{34.2}
\end{equation*}

Observación 34.2.
Si $f(z) = u(z)+iv(z)$ y $\gamma(t)=\gamma_1(t)+i\gamma_2(t)$, tenemos que:
\begin{align*}
f(\gamma(t)) \gamma'(t) & = \left[u(\gamma(t))+iv(\gamma(t))\right]\left[\gamma_1 ‘(t)+i\gamma_2′(t)\right]\\
& = u(\gamma(t)) \gamma_1 ‘(t) – v(\gamma(t)) \gamma_2′(t) + i \left[u(\gamma(t)) \gamma_2 ‘(t) + v(\gamma(t)) \gamma_1′(t)\right],
\end{align*}por lo que la función híbrida $g(t)= f(\gamma(t)) \gamma'(t)$ es continua (o continua a trozos) en $[a,b]$, entonces la integral del lado derecho en (34.1) está bien definida.

Ejemplo 34.1.
Sea $C$ el contorno dado por la circunferencia $C(z_0, r)$, con $r>0$ y $z_0\in\mathbb{C}$ fijo, orientada positivamente.

a) Veamos que:
\begin{equation*}
\int_{C} \frac{1}{z-z_0} dz = i 2\pi.
\end{equation*}

b) Si $n\in\mathbb{Z}$ es tal que $n\neq1$, veamos que:
\begin{equation*}
\int_{C} \frac{1}{(z-z_0)^n} dz = 0.
\end{equation*}

Solución. Primeramente, podemos parametrizar al contorno $C$ mediante la trayectoria $\gamma(t)=z_0 + re^{it}$, con $0\leq t\leq 2\pi$. Por la proposición 32.1(1) y el ejemplo 32.1 tenemos que $\gamma'(t)=ire^{it}$.

Sea $D := \mathbb{C}\setminus\{z_0\}$. Claramente $C$ es un contorno en $D$.

Figura 122: Contorno $C$ dado por la circunferencia $C(z_0, r)$, orientada positivamente, en el dominio $D$.

a) Sea $f(z)=\dfrac{1}{z-z_0}$. Dado que $f$ es una función racional, entonces es analítica en el dominio $D$ y por tanto continua en $D$.

De acuerdo con la definición 34.1, tenemos que:
\begin{align*}
\int_{C} \frac{1}{z-z_0} dz & = \int_{0}^{2\pi} f(\gamma(t)) \gamma'(t)dt\\
& = \int_{0}^{2\pi} \frac{1}{z_0 +re^{it} – z_0} ire^{it} dt\\
& = \int_{0}^{2\pi} i dt\\
& = i 2\pi.
\end{align*}

b) Sean $n\in\mathbb{Z}$ tal que $n\neq1$ y $f(z)=\dfrac{1}{(z-z_0)^n}$. Análogamente tenemos que la función racional $f$ es continua en $D$.

Considerando la definición 34.1, el ejemplo 32.1 y las proposiciones 33.1(3), 33.2, 20.2(2) y 20.2(10), tenemos que:
\begin{align*}
\int_{C} \frac{1}{(z-z_0)^n} dz & = \int_{0}^{2\pi} f(\gamma(t)) \gamma'(t)dt\\
%& = \int_{0}^{2\pi} \frac{1}{(z_0 +re^{it} – z_0)^n} ire^{it} dt\\
& = ir^{1-n} \int_{0}^{2\pi} e^{it(1-n)} dt\\
& = ir^{1-n} \left. \frac{e^{it(1-n)}}{i(1-n)} \right|_{0}^{2\pi}\\
& = \frac{r^{1-n}}{1-n} \left(e^{i2\pi(1-n)} – e^{0}\right)\\
& = \frac{r^{1-n}}{1-n} \left(1 – 1\right)\\
& = 0.
\end{align*}

En particular, si $C$ es la circunferencia unitaria, orientada positivamente, es decir, dada por la trayectoria $\gamma(t)=e^{it}$, con $0\leq t\leq 2\pi$, entonces se cumple que:
\begin{equation*}
\int_{C} \frac{1}{z} dz = \int_{C(0,1)} \frac{1}{z} dz = 2\pi i.
\end{equation*}

Ejemplo 34.2.
De acuerdo con los ejemplos 32.1, 33.2 y las proposiciones 20.2(2) y 33.1(3), para el contorno $C$ dado por la circunferencia unitaria, orientada positivamente, es decir, $\gamma(t)=e^{it}$, con $0\leq t\leq 2\pi$, tenemos que:
\begin{align*}
\int_{C(0,1)} z^{n} dz & = \int_{0}^{2\pi} e^{itn} i e^{it} dt\\
& = i \int_{0}^{2\pi} e^{it(n+1)} dt\\
& = \left\{ \begin{array}{lcc}
0 & \text{si} & n \neq -1, \\ \\
i2\pi & \text{si} & n=-1.
\end{array} \right.
\end{align*}para todo $n\in\mathbb{Z}$.

Ejemplo 34.3.
Sea $C$ el contorno dado por la circunferencia $C(0, 1)$, orientada positivamente. Veamos que:
\begin{equation*}
\int_{C} \frac{1}{\overline{z}} dz = 0 \quad \text{y} \quad \int_{C} \overline{z} dz = i2\pi.
\end{equation*}

Solución. Podemos parametrizar a $C$ como la trayectoria $\gamma(t)=e^{it}$, con $0\leq t\leq 2\pi$, por lo que $\gamma'(t)=ie^{it}$.

Por la proposición 20.2(8) tenemos que $\overline{e^{it}} = e^{\overline{it}} = e^{-it}$, entonces, de acuerdo con la definición 34.1, el ejemplo 33.2 y las proposiciones 20.2(2), 20.2(3) y 33.1(3), tenemos que:
\begin{align*}
\int_{C(0,1)} \frac{1}{\overline{z}} dz & = \int_{0}^{2\pi} \frac{1}{\overline{e^{it}}} i e^{it} dt\\
& = \int_{0}^{2\pi} \frac{1}{e^{-it}} i e^{it} dt\\
& = i \int_{0}^{2\pi} e^{i2t} dt\\
& = i \cdot 0\\
& = 0.
\end{align*}
\begin{align*}
\int_{C(0,1)}\overline{z} dz & = \int_{0}^{2\pi} \overline{e^{it}} i e^{it} dt\\
& = \int_{0}^{2\pi} e^{-it} i e^{it} dt\\
& = i \int_{0}^{2\pi} 1 dt\\
& = i 2\pi.
\end{align*}

Ejemplo 34.4.
Evaluemos la integral $\int_{\gamma} (x+y) dz$ a lo largo del contorno $\gamma=[0,1+i]+[1+i, i]$.

Solución. De acuerdo con el ejemplo 15.1, es claro que para $z=x+iy\in\mathbb{C}$ la función $f(z)=\operatorname{Re}(z)+\operatorname{Im}(z)$ es una función continua en $\mathbb{C}$. Notemos que el contorno dado por la trayectoria $\gamma$ es una curva suave a trozos. Por el ejemplo 32.2 tenemos que:
\begin{equation*}
[0,1+i](t) = (1+i)t, \quad [1+i,i](t) = 1+i -t, \quad \forall t\in[0,1].
\end{equation*}

De acuerdo con la definición 32.13, tenemos que:
\begin{equation*}
\gamma(t) : = \left( [0,1+i] + [1+i,i] \right)(t) = \left\{ \begin{array}{lcc} (1+i)t & \text{si} & 0 \leq t \leq 1, \\ \\
2-t+i & \text{si} & 1 \leq t \leq 2. \end{array} \right.
\end{equation*}

Es claro que las curvas $\gamma_1 = \left. \gamma\right|_{[0,1]}$ y $\gamma_2 = \left. \gamma\right|_{[1,2]}$ son suaves, cuyas derivadas son, respectivamente, $\gamma_1′(t) = 1+i$ y $\gamma_2′(t) = -1$.

Entonces, por (34.2), (34.1) y las proposiciones 33.1 y 33.2, se tiene que:
\begin{align*}
\int_{\gamma} (x+y) dz & = \int_{\gamma_1} (x+y) dz + \int_{\gamma_2} (x+y) dz\\
& = \int_{0}^{1} 2t(1+i) dt + \int_{1}^{2} (3-t)(-1) dt\\
&= \left.(1+i)t^2\right|_{0}^{1} – \left.\left[3t – \frac{t^2}{2}\right]\right|_{1}^{2}\\
& = -\frac{1}{2} + i.
\end{align*}

Observación 34.3.
Considerando la definición 33.1 y el producto interior de $\mathbb{R}^2$, tenemos que:
\begin{align*}
\int_{\gamma} f(z) dz & = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt\\
& = \int_{a}^{b} \left[u(\gamma(t)) \gamma_1 ‘(t) – v(\gamma(t)) \gamma_2′(t)\right] dt + i \int_{a}^{b} \left[v(\gamma(t)) \gamma_1′(t) + u(\gamma(t)) \gamma_2 ‘(t)\right] dt\\
& = \int_{a}^{b} \left(u(\gamma(t)), -v(\gamma(t))\right) \cdot \left(\gamma_1 ‘(t), \gamma_2′(t)\right) dt + i \int_{a}^{b} \left(v(\gamma(t)), u(\gamma(t))\right) \cdot \left( \gamma_1′(t), \gamma_2 ‘(t)\right) dt.
\end{align*}

Si definimos a los campos vectoriales, en el plano, $F, G: U\subset\mathbb{R}^2 \to \mathbb{R}^2$ dados, respectivamente, por:
\begin{equation*}
F(x,y)=(u(x,y), -v(x,y)) \quad \text{y} \quad G(x,y)=(v(x,y), u(x,y)),
\end{equation*}entonces:
\begin{align*}
\int_{\gamma} f(z) dz & = \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt + i \int_{a}^{b} G(\gamma(t)) \cdot \gamma'(t) dt\\
& = \int_\Gamma F \cdot d\gamma + i \int_\Gamma G \cdot d\gamma,
\end{align*}donde $\Gamma=\gamma([a,b])$. Es decir, la interal que definimos en 34.1 se puede expresar en términos de la integral de línea de dos campos vectoriales en $\mathbb{R}^2$.

En este punto es conveniente recordar el siguiente resultado de Cálculo.

Teorema 34.1. (Cambio de variable.)
Sean $[a,b], [c,d]\subset\mathbb{R}$, con $a<b$ y $c<d$, dos intervalos cerrados, $f: [a,b] \to \mathbb{R}$ y $g: [c,d] \to \mathbb{R}$ dos funciones tales que $g([c,d])\subseteq [a,b]$, $f$ es continua en $[a,b]$ y $g$ de clase $C^1$ en $[c,d]$, entonces:
\begin{equation*}
\int_{c}^{d} f(g(t)) g'(t) dt = \int_{g(c)}^{g(d)} f(t)dt.
\end{equation*}

Una consecuencia del resultado anterior es la siguiente:

Proposición 34.1. (Independencia de la parametrización.)
Sean $U\subset\mathbb{C}$ un conjunto abierto, $[a,b], [c,d]\subset\mathbb{R}$, con $a<b$ y $c<d$, dos intervalos cerrados, $f: U \to \mathbb{C}$ una función continua en $U$ y $\gamma_1:[a,b] \to U$ un contorno en $U$. Si $\gamma_2:[c,d] \to U$ es una reparametrización de $\gamma_1$, entonces:
\begin{equation*}
\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz.
\end{equation*}

Demostración. Dadas las hipótesis, tenemos que existe una biyección $\sigma:[c,d]\to[a,b]$ continua de clase $C^1$ tal que $\sigma$ es creciente y $\gamma_2=\gamma_1\circ \sigma$.

Entonces, de acuerdo con la observación 34.2, la definición 34.1, el teorema 34.1 y la regla de la cadena, para $s=\sigma(t)$ tenemos que:
\begin{align*}
\int_{\gamma_2} f(z) dz & = \int_{c}^{d} f(\gamma_2(t)) \gamma_2′(t)dt\\
& = \int_{c}^{d} f(\gamma_1(\sigma(t))) \gamma_1′(\sigma(t)) \sigma'(t)dt\\
& = \int_{\sigma(c)}^{\sigma(d)} f(\gamma_1(s)) \gamma_1′(s) ds\\
& = \int_{a}^{b} f(\gamma_1(s)) \gamma_1′(s) ds\\
& = \int_{\gamma_1} f(z) dz.
\end{align*}

$\blacksquare$

Ejemplo 34.5.
Determinemos el valor de la integral:
\begin{equation*}
\int_{C} \frac{dz}{z-2},
\end{equation*}donde $C$ es la semicircunferencia superior de radio $r=1$ y centro en $z_0=2$.

Solución. Es claro que $C$ es un contorno ya que la trayectoria $\gamma(t)=2+e^{i\pi}$, con $0\leq t\leq \pi$, que lo parametriza, es una curva suave.

De acuerdo con el ejemplo 34.1, inferimos que el valor de dicha integral es $i\pi$. Procedemos a verificar lo anterior utilizando la proposición 34.1, es decir, considerando otra parametrización para el contorno $C$.

De acuerdo con el ejemplo 32.13(b), sabemos que $\beta(t)=2+e^{i\pi t}$, con $0\leq t \leq 1$, es una reparametrización de la curva $\gamma$.

Entonces, por la definición 34.1 tenemos que:
\begin{align*}
\int_{C} \frac{1}{z-2} dz & =\int_{0}^{1} f(\beta(t)) \beta'(t)dt\\
& = \int_{0}^{1} \frac{1}{2 +e^{i\pi t} – 2} i\pi e^{i\pi t} dt\\
& = \int_{0}^{1} i\pi dt\\
& = i\pi.
\end{align*}

Al igual que con las integrales de funciones híbridas, las integrales de contorno cumplen algunas propiedades que resultan de utilidad al resolver ciertos problemas.

Proposición 34.2. (Propiedades integrales de contorno.)
Sean $U\subset\mathbb{C}$ un conjunto abierto, $[a,b]\subset\mathbb{R}$, con $a<b$ un intervalo cerrado, $f, g: U \to \mathbb{C}$ dos funciones continuas en $U$ y $\gamma:[a,b] \to U$ un contorno en $U$. Se cumplen las siguientes propiedades.

  1. Si $\lambda, \mu \in\mathbb{C}$ son dos constantes, entonces:
    \begin{equation*}
    \int_{\gamma} \left[\lambda f(z) + \beta g(z)\right] dz = \lambda \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz.
    \end{equation*}
  2. \begin{equation*}
    \int_{-\gamma} f(z) dz = – \int_{\gamma} f(z) dz.
    \end{equation*}
  3. Si el contorno $\gamma$ es tal que $\gamma = \gamma_1 + \gamma_2$, entonces:
    \begin{equation*}
    \int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz.
    \end{equation*}En general, si $\gamma = \gamma_1 + \cdots + \gamma_n$, entonces:
    \begin{equation*}
    \int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \cdots + \int_{\gamma_n} f(z) dz = \sum_{k=1}^n \int_{\gamma_k} f(z) dz.
    \end{equation*}

Demostración. Dadas las hipótesis.

  1. Se deja como ejercicio al lector.
  2. De acuerdo con la definición 32.12 sabemos que $-\gamma(t) = \gamma(b+a-t)$ para toda $t\in[a,b]$, entonces, para $s=b+a-t$, por la observación 34.2, la definición 34.1, el teorema 34.1, la regla de la cadena y la proposición 33.1(7), tenemos que:
    \begin{align*}
    \int_{-\gamma} f(z) dz & = \int_{a}^{b} f(-\gamma(t)) \left[-\gamma(t)\right]’dt\\
    & = \int_{a}^{b} f(\gamma(a+b-t)) \left[-\gamma'(a+b-t)\right]dt\\
    & = \int_{b}^{a} f(\gamma(s)) \gamma'(s)ds\\
    & = -\int_{a}^{b} f(\gamma(s)) \gamma'(s)ds\\
    & = – \int_{\gamma} f(z) dz.
    \end{align*}
  3. Supongamos que existen $\gamma_1:[a_1, b_1] \to U$ y $\gamma_2:[a_2, b_2] \to U$ tales que $a=a_1$, $b=b_1+b_2-a_2$ y $\gamma_1(b_1)=\gamma_2(a_2)$, es decir, $\gamma=\gamma_1+\gamma_2$, entonces, por las definiciones 32.13, 34.1, la observación 34.2, la proposición 33.1(4) y el teorema 34.1, para $s=t-b_1+a_2$ tenemos que:
    \begin{align*}
    \int_{\gamma} f(z) dz & = \int_{\gamma_1+\gamma_2} f(z) dz\\
    & = \int_{a}^{b_1+b_2-a_2} f\left[\left(\gamma_1+\gamma_2\right)(t)\right] \left(\gamma_1+\gamma_2\right)'(t)dt\\
    & = \int_{a}^{b_1} f(\gamma_1(t)) \gamma_1′(t)dt + \int_{b_1}^{b_1+b_2-a_2} f(\gamma_2(t-b_1+a_2)) \gamma_2′(t-b_1+a_2)dt\\
    & = \int_{a}^{b_1} f(\gamma_1(t)) \gamma_1′(t)dt + \int_{a_2}^{b_2} f(\gamma_2(s)) \gamma_2′(s)ds\\
    & = \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz.
    \end{align*}El caso general se deja como ejercicio al lector.

$\blacksquare$

Observación 34.4.
Notemos que si $\gamma:[0,1] \to \mathbb{C}$ está dada por $\gamma(t)=it$ y $f(z)=1$, tenemos que:
\begin{align*}
\int_{\gamma} f(z) dz & = \int_{0}^{1} f(\gamma(t)) \gamma'(t)dt\\
& = \int_{0}^{1} 1 \cdot i \, dt\\
& = i.
\end{align*}

De donde se sigue que $\operatorname{Re}\left(\displaystyle \int_{\gamma} f(z) dz \right) = 0$.

Sin embargo, tenemos que $\operatorname{Re} f(z) = 1$, por lo que:
\begin{equation*}
\int_{\gamma} \operatorname{Re} f(z) dz = i.
\end{equation*}

Entonces, a diferencia de las integrales de funciones híbridas, para las integrales de contorno, en general tenemos que:
\begin{equation*}
\operatorname{Re}\left(\displaystyle \int_{\gamma} f(z) dz \right) \neq \int_{\gamma} \operatorname{Re} f(z) dz.
\end{equation*}

Ejemplo 34.6.
Verifiquemos el resultado del ejemplo 34.4 utilizando la proposición 34.2(3).

Solución. Para todo $t\in [0,1]$ se cumple que:
\begin{align*}
[0,1+i](t) & = (1+i)t, \quad [0,1+i]'(t) = 1+i,\\
[1+i,i](t) & = 1+i -t, \quad [1+i,i]'(t) = -1.
\end{align*}

Entonces, de acuerdo con la definición 34.1 y las proposiciones 33.2 y 34.2(3), tenemos que:
\begin{align*}
\int_{\gamma} (x+y) dz & = \int_{[0,1+i]} (x+y) dz + \int_{[1+i,i]} (x+y) dz\\
& = \int_{0}^{1} 2t(1+i) dt + \int_{0}^{1} (2-t)(-1) dt\\
&= \left.(1+i)t^2\right|_{0}^{1} + \left.\left[\frac{t^2}{2} – 2t\right]\right|_{0}^{1}\\
& = -\frac{1}{2} + i.
\end{align*}

Observación 34.5.
Aunque puede suceder que la integral de contorno de una función compleja a lo largo de dos curvas distintas sea la misma, esto en general no es cierto.

Ejemplo 34.7.
Veamos que:
\begin{equation*}
\int_{C_1} z dz = \int_{C_2} z dz,
\end{equation*}donde $C_1$ es el contorno dado por el segmento de recta que une a $z_1 = -1-i$ con $z_2 = 3+i$ y $C_2$ es el contorno que va de $z_1$ a $z_2$ a través del pedazo de la parábola $x=y^2+2y$, figura 123.

Figura 123: Contornos $C_1$ y $C_2$ del ejemplo 34.7.

Solución. De acuerdo con el ejemplo 32.2, podemos parametrizar al contorno $C_1$ mediante la trayectoria $\gamma_1:[0,1]\to\mathbb{C}$ dada por:
\begin{equation*}
\gamma_1(t) = -1-i+[3+i-(-1-i)]t = -1-i+(4+2i)t, \quad \forall t\in[0,1].
\end{equation*}

Por otra parte, podemos parametrizar al contorno $C_2$ como $\gamma_2(t)=x_2(t)+iy_2(t)$, donde:
\begin{equation*}
x_2(t)=t^2+2t, \quad y_2(t)=t.
\end{equation*}

Tenemos que $ t\in\mathbb{R}$, por lo que si $\gamma_2(t)=-1-i$, entonces:
\begin{equation*}
t^2+t(2+i)+1+i = (t+1)(t+1+i)=0 \quad \Longrightarrow \quad t=-1.
\end{equation*}

Análogamente, si $\gamma_2(t)=3+i$, entonces:
\begin{equation*}
t^2+t(2+i)-3-i = (t-1)(t+3+i)=0 \quad \Longrightarrow \quad t=1.
\end{equation*}

Por lo tanto $\gamma_2 : [-1,1]\to \mathbb{C}$, dada por $\gamma_2(t)=t^2+2t+it$, es una parametrización de $C_2$.

De acuerdo con la definición 34.1 y las proposiciones 33.1 y 33.2, tenemos que:
\begin{align*}
\int_{C_1} z dz & = \int_{0}^{1} \left[-1-i+(4+2i)t\right](4+2i) dt\\
& = (-1-i)(4+2i) \int_{0}^{1} dt + (4+2i)^2 \int_{0}^{1} t dt\\
& = (-2-6i) \left. t\right|_{0}^{1} + 4(3+4i) \left. \frac{t^2}{2}\right|_{0}^{1}\\
& = -2-6i + 6+8i\\
& = 4+2i.
\end{align*}
\begin{align*}
\int_{C_2} z dz & = \int_{-1}^{1} \left[t^2+2t+it\right](2t+2+i)dt\\
& = \int_{-1}^{1} \left[2t^3+6t^2+3t+i(3t^2+4t)\right]dt\\
& = \int_{-1}^{1} \left(2t^3+6t^2+3t\right)dt + +i\int_{-1}^{1}\left(3t^2+4t\right) dt\\
& = \left. \left(\frac{t^4}{2}+2t^3+\frac{3t^2}{2}\right)\right|_{-1}^{1} + \left. i\left(t^3+2t^2\right)\right|_{-1}^{1}\\
& = 4+2i.
\end{align*}

Ejemplo 34.8.
Veamos que:
\begin{equation*}
\int_{C_1} \overline{z} dz = -\pi i \quad \text{y} \quad \int_{C_2} \overline{z} dz = -4i,
\end{equation*}donde $C_1$ es el contorno que va de $-1$ a $1$ a través de la semicircunferencia unitaria superior y $C_2$ es el contorno que va de $-1$ a $1$ a través de la poligonal $[z_1, z_2, z_3, z_4]$, donde $z_1 = -1, z_2 = -1+i, z_3=1+i$ y $z_4 = 1$, ambos orientados negativamente, figura 124.

Solución. Considerando la definición 32.12, podemos parametrizar a $C_1$ mediante la curva opuesta de la semicircunferencia unitaria superior, orientada positivamente, es decir, $\beta(t)=e^{it}$, con $0\leq t \leq \pi$. Entonces, una parametrización del contorno $C_1$ está dada por la trayectoria $\gamma_1:[0,\pi]\to\mathbb{C}$ dada por:
\begin{equation*}
\gamma_1(t):= -\beta(t) = \beta(\pi + 0 – t) = \beta(\pi-t) = e^{i(\pi-t)} = -e^{-it}, \quad \forall t\in[0,\pi].
\end{equation*}

Considerando lo anterior, del ejemplo 32.1 se sigue que:
\begin{equation*}
\gamma_1′(t) = \frac{d}{dt} \left(-e^{-it}\right) = -(-i)e^{-it} = ie^{-it}.
\end{equation*}

Por otra parte, de acuerdo con la definición 32.13 y la observación 32.15, podemos parametrizar al contorno $C_2$, descrito por la poligonal $[z_1, z_2, z_3, z_4]$, donde $z_1 = -1, z_2 = -1+i, z_3=1+i$ y $z_4 = 1$, a través de la trayectoria $\gamma_2=[z_1, z_2] + [z_2, z_3] + [z_3, z_4]$. De acuerdo con el ejemplo 32.2 tenemos que:
\begin{align*}
[z_1, z_2](t) & = -1 + [-1+i-(-1)]t = -1+it,\\
[z_2, z_3](t) & = -1+i + [1+i-(-1+i)]t = -1+2t+i,\\
[z_3, z_4](t) & = 1+i + [1-(1+i)]t = 1+i(1-t),
\end{align*}donde $t\in[0,1]$ para los tres segmentos de recta. Entonces:
\begin{align*}
[z_1, z_2]'(t) & = \frac{d}{dt} \left(-1+it\right) = i,\\
[z_2, z_3]'(t) & = \frac{d}{dt} \left(-1+2t+i\right) = 2,\\
[z_3, z_4]'(t) & = \frac{d}{dt} \left(1+i(1-t)\right) = -i.
\end{align*}

Utilizando la definición 32.13 es fácil obtener de manera explícita la regla de correspondencia de $\gamma_2$, sin embargo, podemos utilizar la proposición 34.2(3) y simplificar las cuentas.

Figura 124: Contornos $C_1$ y $C_2$ del ejemplo 34.8.

Por lo tanto, de la definición 34.1 y las proposiciones 20.2 y 33.1, tenemos que:
\begin{align*}
\int_{C_1} \overline{z} dz & = \int_{0}^{\pi} \overline{-e^{-it}}(ie^{-it}) dt\\
& = -i\int_{0}^{\pi}e^{it}e^{-it} dt\\
& = -i\int_{0}^{\pi} e^{0} dt\\
& = -i \pi.
\end{align*}

Mientras que de la definición 34.1 y las proposiciones 34.2(3), 33.1 y 33.2, se sigue que:
\begin{align*}
\int_{C_2} \overline{z} dz & = \int_{ [z_1, z_2]} \overline{z} dz + \int_{ [z_2, z_3]} \overline{z} dz + \int_{ [z_3, z_4]} \overline{z} dz\\
& = \int_{0}^{1} \left(\overline{-1+it}\right) i dt + \int_{0}^{1} \left(\overline{-1+2t+i}\right) 2 dt + \int_{0}^{1} \left[\overline{1+i(1-t)}\right](-i) dt\\
& = i\int_{0}^{1} \left(-1-it\right) dt + 2 \int_{0}^{1} \left(-1+2t-i\right) dt -i \int_{0}^{1} \left[1-i(1-t)\right] dt\\
& = \left.i\left(-t-i\frac{t^2}{2}\right)\right|_{0}^{1} + \left. 2 \left(-t+t^2-it\right)\right|_{0}^{1} – \left. i \left[t+i\frac{(1-t)^2}{2}\right]\right|_{0}^{1}\\
& = i\left(-1-\frac{i}{2}\right) – 2i – i \left(1-\frac{i}{2}\right)\\
& = -4i.
\end{align*}

Definición 34.2. (Integral con respecto de la longitud de arco.)
Sean $U\subset\mathbb{C}$ un conjunto abierto, $[a,b]\subset\mathbb{R}$, con $a<b$ un intervalo cerrado, $f: U \to \mathbb{C}$ una función continua en $U$ y $\gamma:[a,b] \to U$ un contorno en $U$. Se define a la integral de $f$ {\bf con respecto de la longitud de arco $|dz|$}, a lo largo de $\gamma$, como:
\begin{equation*}
\int_{\gamma} f(z) |dz| := \int_{a}^{b} f(\gamma(t)) \left|\gamma'(t)\right| dt.\tag{34.3}
\end{equation*}

Si el contorno está dado por una trayectoria $\gamma$ suave a trozos, para la partición:
\begin{equation*}
P : a=t_0 < t_1 < \cdots < t_{n-1}<t_n=b,
\end{equation*}del intervalo $[a,b]$, tal que $\gamma_k$, la restricción de $\gamma$ al intervalo $[t_{k-1}, t_k]$, es una curva suave para $1\leq k\leq n$, se cumple que:
\begin{equation*}
\int_{\gamma} f(z) |dz| = \int_{\gamma_1} f(z) |dz| + \cdots + \int_{\gamma_n} f(z) |dz| = \sum_{k=1}^n \int_{\gamma_k} f(z) |dz|. \tag{34.4}
\end{equation*}

Observación 34.6.
Notemos que si $f(z)=1$, entonces de (34.3) obtenemos:
\begin{equation*}
\int_{\gamma}|dz| = \int_{a}^{b} \left|\gamma'(t)\right| dt,
\end{equation*}la cual corresponde con la longitud de arco de una curva en $\mathbb{C}$, definición 32.15.

El siguiente resultado justifica la definición anterior.
Lema 34.1.
Si $\gamma$ es una curva suave a trozos, es decir, un contorno en $\mathbb{C}$, entonces $\gamma$ es rectificable (definición 32.16) y la longitud de arco de dicha curva es:
\begin{equation*}
\ell(\gamma)=\int_{\gamma}|dz|.
\end{equation*}

Se puede consultar una prueba detallada de este resultado en:

  • An Introduction to Complex Function Theory, Bruce P. Palka.
  • Function of One Complex Variable, John B. Conway.
  • Teoría de funciones de una variable compleja, Felipe Zaldívar.

Ejemplo 34.9.
Evaluemos las siguientes integrales.
a) $\displaystyle \int_{\gamma} z^{-2} |dz|$, donde la trayectoria $\gamma$ describe a la circunferencia $C(0,2)$ orientada positivamente, es decir, $\gamma(t)=2e^{it}$, con $0\leq t\leq 2\pi$.
b) $\displaystyle \int_{\gamma} x |dz|$, donde $\gamma(t)=t+i\left(\dfrac{t^2}{2}\right)$, con $0\leq t\leq 1$, figura 125.

Figura 125: Contorno $\gamma(t)=t+i\left(\dfrac{t^2}{2}\right)$, con $0\leq t\leq 1$.

Solución.

a) Es claro que $\gamma$ es un contorno y $\gamma'(t)=i2e^{it}$. Más aún, sabemos que la función $f(z)=z^{-2}$ es analítica en el dominio $D=\mathbb{C}\setminus\{0\}$, por lo que es continua en $D$ y el contorno descrito por $\gamma$ está completamente contenido en $D$. Entonces, por la definción 34.2, las proposiciones 20.2(6), 20.2(7), 33.1(3) y el ejemplo 33.2, tenemos que:
\begin{align*}
\int_{\gamma} z^{-2} |dz| & = \int_{0}^{2\pi} \left(2e^{it}\right)^{-2}\left|i2e^{it}\right| dt\\
& = \frac{1}{2} \int_{0}^{2\pi}e^{-i2t} dt\\
& = \frac{1}{2}(0)\\
& = 0.
\end{align*}

b) Es claro que $\gamma$ es un contorno, con $\gamma'(t)=1+it$. Por otra parte, por el ejemplo 15.1(a) sabemos que la función $f(z)=\operatorname{Re}(z)=x$, para $z=x+iy\in\mathbb{C}$, es continua en todo $\mathbb{C}$. Entonces, por la definción 34.2 tenemos que:
\begin{align*}
\int_{\gamma} x |dz| & = \int_{0}^{1} t\left|1+t^2\right| dt\\
& = \frac{1}{2} \int_{0}^{1}2t\sqrt{1+t^2}dt\\
& = \frac{1}{2} \left.\left[ \frac{2\left(1+t^2\right)^{3/2}}{3}\right]\right|_{0}^{1}\\
& = \frac{2\sqrt{2}-1}{3}.
\end{align*}

Proposición 34.3. (Propiedades integrales con respecto de la longitud de arco.)
Sean $U\subset\mathbb{C}$ un conjunto abierto, $[a,b]\subset\mathbb{R}$, con $a<b$ un intervalo cerrado, $f, g: U \to \mathbb{C}$ dos funciones continuas en $U$ y $\gamma:[a,b] \to U$ un contorno en $U$. Se cumplen las siguientes propiedades.

  1. Si $\lambda, \mu \in\mathbb{C}$ son dos constantes, entonces:
    \begin{equation*}
    \int_{\gamma} \left[\lambda f(z) + \beta g(z)\right] |dz| = \lambda \int_{\gamma} f(z) |dz| + \beta \int_{\gamma} g(z) |dz|.
    \end{equation*}
  2. \begin{equation*}
    \int_{-\gamma} f(z) |dz| = \int_{\gamma} f(z) |dz|.
    \end{equation*}
  3. Si el contorno $\gamma$ es tal que $\gamma = \gamma_1 + \gamma_2$, entonces:
    \begin{equation*}
    \int_{\gamma} f(z) |dz| = \int_{\gamma_1} f(z) |dz| + \int_{\gamma_2} f(z) |dz|.
    \end{equation*}En general, si $\gamma = \gamma_1 + \cdots + \gamma_n$, entonces:
    \begin{equation*}
    \int_{\gamma} f(z) |dz| = \int_{\gamma_1} f(z) |dz| + \cdots + \int_{\gamma_n} f(z) |dz| = \sum_{k=1}^n \int_{\gamma_k} f(z) |dz|.
    \end{equation*}
  4. Si $\beta$ es una reparametrización de $\gamma$, entonces:
    \begin{equation*}
    \int_{\beta} f(z) |dz| = \int_{\gamma} f(z) |dz|.
    \end{equation*}
  5. \begin{equation*}
    \left|\int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| |dz|.
    \end{equation*}En particular, si $M$ es una constante tal que $|f(z)|\leq M$ y $L=\ell\left(\gamma\right)$, entonces:
    \begin{equation*}
    \left|\int_{\gamma} f(z) dz\right| \leq ML.
    \end{equation*}

Demostración. Dadas las hipótesis.

  1. Se deja como ejercicio al lector.
  2. Se deja como ejercicio al lector.
  3. Se deja como ejercicio al lector.
  4. Se deja como ejercicio al lector.
  5. De acuerdo con la definición 34.1 y la proposición 33.1(5) tenemos que:
    \begin{align*}
    \left|\int_{\gamma} f(z) dz \right| & = \left| \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt\right|\\
    & \leq \int_{a}^{b} \left| f(\gamma(t))\gamma'(t)\right| dt\\
    & = \int_{a}^{b} \left| f(\gamma(t))\right| \, \left|\gamma'(t)\right| dt\\
    & = \int_{\gamma} |f(z)| |dz|.
    \end{align*}Si $M=\max\limits_{z\in\gamma}|f(z)|$ y $L=\ell\left(\gamma\right)$, entonces $|f(z)| \leq M$, por lo que de la monotonía de la integral para funciones reales se sigue que:
    \begin{equation*}
    \left|\int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| |dz| \leq \int_{a}^{b} M |\gamma'(t)| dt = ML.
    \end{equation*}

$\blacksquare$

Observación 34.7.
Muchas veces, en la teoría y en la práctica, no es necesario evaluar una integral de contorno, sino que simplemente basta con obtener una cota superior de su módulo, por ello la propiedad dada en la proposición 34.3(5) es de mucha utilidad.

Ejemplo 34.10.
Determinemos una cota superior para:
\begin{equation*}
\left|\int_{\gamma} \frac{e^{z}}{z^2+1} dz \right|,
\end{equation*}donde $\gamma$ describe a la circunferencia $C(0,2)$ en sentido positivo.

Solución. Tenemos que una parametrización del contorno $C(0,2)$ es $\gamma(t)=2e^{it}$, para $0\leq t \leq 2\pi$. Sabemos que $\gamma'(2)=i2e^{it}$, entonces, de la proposición 20.2(6) y la definción 32.15 se sigue que:
\begin{equation*}
L := \ell(\gamma) = \int_{0}^{2\pi}|\gamma'(t)| dt = \int_{0}^{2\pi}|i2e^{it}| dt = \int_{0}^{2\pi} 2 dt = 4\pi.
\end{equation*}

Por el corolario 16.1(2) es claro que la función racional:
\begin{equation*}
f(z) = \frac{e^{z}}{z^2+1},
\end{equation*}es analítica en $D=\mathbb{C}\setminus\{-i, i\}$ y por tanto continua en $D$. Además el contorno $C(0,2)$ está completamente contenido en $D$.

Por la proposición 20.2(4), para $z=x+iy\in\mathbb{C}$ sabemos que $|e^z| = e^x$ y de la observación 3.1 tenemos que $x = \operatorname{Re}(z)\leq |z|$, entonces, corolario 31.1(1), $|e^z| \leq e^{|z|}$.

De lo anterior, para $z=\gamma(t)$ tenemos que:
\begin{equation*}
\left|e^{2e^{it}}\right| \leq e^{|2e^{it}|} = e^{2},
\end{equation*}y considerando la desigualdad del triángulo, proposición 3.3, tenemos que:
\begin{equation*}
\left|z^2+1\right| = \left|\left(2e^{it}\right)^2+1\right| = \left|4e^{i2t}+1\right| \geq \left|4e^{i2t}\right| – \left|1\right| = 4-1=3.
\end{equation*}

Entonces, para $z=\gamma(t)$, es decir, para $|z|=2$, se cumple que:
\begin{equation*}
\left|f(z)\right| = \left|\frac{e^{z}}{z^2+1}\right| \leq \frac{e^2}{3} =: M.
\end{equation*}

Por lo tanto, por la proposición 34.3(5) tenemos que:
\begin{equation*}
\left|\int_{\gamma} \frac{e^{z}}{z^2+1} dz \right| \leq M L = \frac{4\pi e^2}{3}.
\end{equation*}

Ejemplo 34.11.
Sea $r>0$. Veamos que:
\begin{equation*}
\left|\int_{\gamma} e^{iz^2} dz \right| \leq \frac{\pi(1-e^{-r^2})}{4r},
\end{equation*}donde $\gamma(t) = re^{it}$, con $0\leq t \leq \dfrac{\pi}{4}$.

Solución. Sabemos que la función $f(z)=e^{iz^2}$ es entera y por tanto continua en $\mathbb{C}$. Por otra parte, es claro que el arco de circunferencia $C(0,r)$ descrito por $\gamma(t) = re^{it}$, $0\leq t \leq \dfrac{\pi}{4}$, es un contorno en $\mathbb{C}$ y $\gamma'(t)=ire^{it}$. Entonces, por la proposición 20.2(6), es claro que:
\begin{equation*}
\left|\gamma'(t)\right| = \left|ire^{it}\right| = r.
\end{equation*}

Si $z=x+iy\in\mathbb{C}$, entonces $iz^2= i(x^2-y^2) – 2xy$, por lo que, de acuerdo con la proposición 20.2(4), tenemos que:
\begin{equation*}
\left|f(z)\right| = \left|e^{iz^2}\right| = e^{\operatorname{Re}\left(iz^2\right)} = e^{-2xy}.
\end{equation*}

De la proposición 20.2(5) se sigue que $\gamma(t)=re^{it} = r\operatorname{cos}(t)+ir\operatorname{cos}(t)$, entonces:
\begin{equation*}
\left|f\left(\gamma(t)\right)\right| = e^{-2r^2\operatorname{cos}(t)\operatorname{sen}(t)} = e^{-r^2\operatorname{sen}(2t)}.
\end{equation*}

Sea $u=2t$. Notemos que:
\begin{equation*}
0\leq u \leq \dfrac{\pi}{2} \quad \Longrightarrow \quad \operatorname{sen}(u) \geq \frac{2u}{\pi} \quad \Longrightarrow \quad -r^2 \operatorname{sen}(u) \leq -\frac{2ur^2}{\pi}.
\end{equation*}

Por lo que:
\begin{align*}
\int_{\gamma} \left|f(z)\right| |dz| & = \int_{0}^{\pi/4} \left|f\left(\gamma(t)\right)\right| \, \left|\gamma'(t)\right| dt\\
& = \int_{0}^{\pi/4} r e^{-r^2\operatorname{sen}(2t)} dt\\
& = \frac{r}{2} \int_{0}^{\pi/2} e^{-r^2\operatorname{sen}(u)} du\\
& \leq \frac{r}{2} \int_{0}^{\pi/2} \operatorname{exp}\left(-\dfrac{2ur^2}{\pi}\right) du\\
& = \left.\left[-\dfrac{\pi \operatorname{exp}\left(-\dfrac{u2r^2}{\pi}\right)}{4r}\right]\right|_{0}^{\pi/2}\\
& = \frac{\pi(1-e^{-r^2})}{4r}.
\end{align*}

Entonces, por la proposición 34.3(5) tenemos que:
\begin{equation*}
\left|\int_{\gamma} e^{iz^2} dz \right| \leq \int_{\gamma} \left|e^{iz^2}\right| \, |dz| \leq \frac{\pi(1-e^{-r^2})}{4r}.
\end{equation*}

Observación 34.8.
En este punto es importante hacer un comentario sobre la notación para integrales de contorno a lo largo de segmentos de recta. Si $f$ es una función compleja continua en el segmento de recta que une a los puntos $z_1, z_2\in\mathbb{C}$, con $z_1\neq z_2$, es decir, $f$ es continua en $[z_1, z_2]$, entonces denotamos lo anterior como:
\begin{equation*}
\int_{[z_1, z_2]} f(z) dz := \int_{z_1}^{z_2} f(z) dz.
\end{equation*}
\begin{equation*}
\int_{[z_1, z_2]} f(z) |dz| := \int_{z_1}^{z_2} f(z) |dz|.
\end{equation*}

Así por ejemplo, como $[z_2, z_1](t) = -[z_1, z_2](t)$, de la proposición 34.2(2) se sigue que:
\begin{equation*}
\int_{z_2}^{z_1} f(z) dz = – \int_{z_1}^{z_2} f(z) dz.
\end{equation*}

Además, como $[z_1, z_1]$ corresponde con un contorno constante, entonces:
\begin{equation*}
\int_{z_1}^{z_1} f(z) dz = 0.
\end{equation*}

Considerando lo anterior, si $z_3$ es un tercer punto en el segmento $[z_1, z_2]$, distinto de $z_1$ y de $z_2$, entonces:
\begin{equation*}
\int_{z_1}^{z_2} f(z) dz = \int_{z_1}^{z_3} f(z) dz + \int_{z_3}^{z_2} f(z) dz.
\end{equation*}

Debe ser claro que lo anterior no es una consecuencia directa de la proposición 34.2(3), ya que si consideramos la definición 32.13, no es difícil verificar que el contorno dado por $[z_1, z_3] + [z_3, z_2]$ no es igual al contorno dado por $[z_1, z_2]$.

Ejemplo 34.12.
Si $R\subset\mathbb{C}$ es un rectángulo en el plano complejo con vértices $z_1, z_2, z_3, z_4\in\mathbb{C}$, entonces el contorno poligonal dado por $\gamma = [z_1, z_2] + [z_2, z_3] + [z_3, z_4] + [z_4, z_1]$ parametriza a la frontera $\partial R$ de dicho rectángulo, en sentido positivo relativo a $R$, figura 126. Considerando la notación dada en la observación 34.6, la integral de contorno de una función $f$ continua a lo largo de $\gamma$ está dada por:
\begin{equation*}
\int_{\delta R} f(z) dz = \int_{z_1}^{z_2} f(z) dz + \int_{z_2}^{z_3} f(z) dz + \int_{z_3}^{z_4} f(z) dz + \int_{z_4}^{z_1} f(z) dz.
\end{equation*}

Figura 126: Rectángulo $R$ en el plano complejo $\mathbb{C}$ y su frontera $\partial R$.

Tarea moral

  1. Completa las demostraciones de las proposiciones 34.2 y 34.3.
  2. Evalúa las siguientes integrales.
    a) $\displaystyle \int_{\gamma} (2xy-ix^2) dz$, donde $\gamma(t)=t+it^2$, con $0\leq t\leq 1$.
    b) $\displaystyle \int_{\gamma} \dfrac{z^2-1}{z(z^2+4)} dz$, donde $\gamma(t)=e^{it}$, con $0\leq t\leq 2\pi$.
    Hint: Utiliza fracciones parciales.
    c) $\displaystyle \int_{C} z^2 |dz|$, donde $C=C(i,2)$, orientada positivamente.
    d) $\displaystyle \int_{\gamma} z |dz|$, donde $C\gamma=[e, 1] + [1, -1+i\sqrt{3}]$.
  3. Sea $C$ el contorno dado por el segmento de recta que va de $1$ a $i$. Determina una cota superior para:
    \begin{equation*}
    \left|\int_{C} \operatorname{cos}^2(z) dz\right|.
    \end{equation*}
  4. Sea $f:C(0,1) \to \mathbb{C}$ una función continua tal que $|f(z)|\leq M$ para todo $z\in C(0,1)$, con $M>0$. Prueba que si:
    \begin{equation*}
    \left|\int_{C(0,1)} f(z) dz\right| = 2\pi M,
    \end{equation*}
    entonces $f(z)=c\overline{z}$, donde $c\in\mathbb{C}$ es una constante tal que $|c|=M$.
    Hint: Considera el ejercicio 4 de la entrada 33.
  5. Si $\gamma(t)=e^{1+it}$, con $0\leq t \leq \pi$, muestra que:
    \begin{equation*}
    \left|\int_{\gamma} \left[\operatorname{Log}(z)\right]^{-1} dz\right| \leq e \operatorname{Log}(\pi+\sqrt{\pi^2+1}).
    \end{equation*}
  6. Sean $P(z)$ y $Q(z)$ dos polinomios complejos de grado $n$ y $m$, respectivamente, tales que $m\geq n+2$. Muestra que:
    \begin{equation*}
    \lim\limits_{r\to \infty} \int_{C} \frac{P(z)}{Q(z)} dz = 0,
    \end{equation*}donde el contorno $C$ es la circunferencia $C(0,r)$.
    Hint: Utiliza la proposición 34.3(5).
  7. Evalúa la integral $\int_{\gamma} \overline{z} dz$, donde:
    a) $\gamma$ es el pedazo de la parábola $y=x^2$ que va de $0$ a $1+i$;
    b) $\gamma$ es el arco de la cicloide dada por:
    \begin{equation*}
    x(t)=a(t-\operatorname{sen}(t)), \quad y(t)=a(1-\operatorname{cos}(t)),
    \end{equation*}entre los puntos $(0,0)$ y $(a\pi, 2a)$, con $a>0$.
  8. Verifica que:
    \begin{equation*}
    \int_{\gamma_1} \frac{1}{z} dz \neq \int_{\gamma_2} \frac{1}{z} dz,
    \end{equation*}donde $\gamma_1(t)=e^{-it}$ y $\gamma_2(t)=e^{it}$, con $t\in[0,2\pi]$.

Más adelante…

En esta entrada hemos definido de manera formal lo que es una integral de una función compleja de variable compleja. Como vimos, esta definición es similar a la de una integral de línea y muchos de las propiedades de este tipo de integrales están sustentados por la teoría de integración para integrales reales, por lo que la operabilidad de estas integrales resulta sencilla gracias a los resultados de nuestros cursos de Cálculo.

En la siguiente entrada probaremos el Teorema Fundamental del Cálculo para integrales de contorno y el lema de Goursat, así como otros resultados importantes sobre las integrales de contorno para funciones complejas, los cuales nos serán de utilidad para probar algunos de los resultados fundamentales en la teoría de la Variable Compleja, como el teorema de Cauchy.

Entradas relacionadas

Geometría Moderna II: Inversión de Rectas y Circunferencias

Por Armando Arzola Pérez

Introducción

De la definición de Inversión se tiene la siguiente propiedad, se tienen $P$ y $P’$ dos puntos inversos respecto a la circunferencia $C(O,r)$, y cada uno de estos describe una curva, $P$ describe a $C$ y $P’$ describe a $C’$. Estas curvas son inversas una de la otra, se les llama mutuamente inversas.

Inversión de Rectas y Circunferencias

Se tienen 2 curvas $C$ y $C’$ inversas una de la otra, las cuales se intersecan, esto lo hacen sobre la circunferencia de Inversión, debido a que el punto en común debe ser su propio inverso, y el inverso de un punto en la $C(O,r)$ es el propio punto en la circunferencia de inversión.
Dado lo anterior se puede ver la inversión aplicada a 2 objetos geométricos: Rectas y Circunferencias.

Teorema. Sea $C(O,r)$ una circunferencia de inversión y $L$ una recta que pasa por $O$, entonces el inverso de $L$ respecto a $C(O,r)$ es el mismo $L$.

Demostración. Tenemos una circunferencia $C(O,r)$ y $L$ una recta por $O$, además todo punto $P$ en $L$ tiene su inverso $P’$ tal que $O,P$ y $P’$ son colineales entonces $OP \times OP’ =r^2$.

Inversión respecto a una recta que pasa por O.

Por lo cual los inversos de los puntos de $L$, también están en la misma recta $L$.
Por lo tanto, $L$ su inverso es el mismo $L$.

$\square$

Teorema. Sea $C(O,r)$ una circunferencia de inversión y $L$ una recta que no pasa por $O$, entonces el inverso de $L$ respecto a $C$ es una circunferencia que pasa por $O$. Recíprocamente, el inverso de una circunferencia que pasa por el centro de inversión es una recta que no pasa por el centro de inversión.

Inversión respecto a una recta que no pasa por O.

Demostración. Sea $P$ el pie de la perpendicular desde $O$ a $L$ y sea $Q \neq P$, donde $Q \in L$ y de estos obtenemos $P’$ y $Q’$ los inversos respecto a $C$ de $P$ y $Q$ respectivamente.

$\Rightarrow OP \times OP’ =r^2$ y $OQ \times OQ’=r^2$

$\Rightarrow OP \times OP’ = OQ \times OQ’$

$\Rightarrow \frac{OP}{OQ’} = \frac{OQ}{OP’}$

$\Rightarrow \triangle OQ’P’ \approx \triangle OPQ$

Esto ya que comparten 2 lados proporcionales y un ángulo en común $\angle O$.
Ahora $\triangle OPQ$ es rectángulo, entonces $\triangle OQ’P’$ es rectángulo, por lo cual $OP’$ es un diámetro de una circunferencia que pasa por $Q’$.

Análogamente, si tuviéramos un $R \in L$, $R \neq P$ y $R \neq Q$, su inverso $R’$ cumplirá $\frac{OP}{OR’} = \frac{OR}{OP’}$, con lo que $\triangle OPR \approx \triangle OR’P’$, por lo cual $\triangle OR’P’ $ es rectángulo, como $OP’$ es fijo se sigue que la circunferencia del diámetro $OP’$ que pasa por $Q’$ también pasa por $R’$.
Por lo tanto, el inverso de $L$ respecto a $C$ es $C_1$ una circunferencia que pasa por $O$.

$\square$

Inversamente, si $Q’$ es un punto de $C_1$ circunferencia, recorriendo al revés los pasos de la demostración anterior, que $Q$ está en la perpendicular a la línea del diámetro $OP’$ que pasa por el inverso de $P’$.

$\square$

Teorema. Sea $C(O,r)$ una circunferencia de inversión y sea $C_1$ una circunferencia ortogonal a $C$, el inverso de $C_1$ es $C_1$.

Demostración. Se traza una recta que pase por $O$ y $O_1$, la cual nos genere intersecciones en $C$ las cuales son $A$ y $B$, de igual forma en $C_1$ se genera $P$ y $P’$.

Inversión respecto a una circunferencia ortogonal a C(O,r).

Sea $C \perp C_1$ ortogonal, entonces $P$ y $P’$ son armónicos respecto a $A$ y $B$.

$\Leftrightarrow \frac{AP}{PB} = \frac{-AP’}{P’B} $

$\Leftrightarrow OP \times OP’ =r^2$

$\Leftrightarrow P$ y $P’$ son inversos respecto a $C$.

Tracemos una recta que pase por $O$ y corte a $C_1$ en $Q$ y $Q’ \in C_1$, y a $C$ en $A’$ y $B’ \in C$, tales que $Q$ y $Q’$ son armónicos respecto a $A’$ y $B’$

$\Leftrightarrow \frac{A’Q}{QB’} = \frac{-A’Q’}{Q’B’} $

$\Leftrightarrow OQ \times OQ’ =r^2$

$\Leftrightarrow P$ y $P’$ son inversos respecto a $C$.

Todo punto en una circunferencia ortogonal a la de inversión tiene su inverso en ella misma. Por lo tanto, $C_1$ es su propia inversa.

$\square$

Tenemos observaciones que nos indica que los siguientes son sus propios inversos con respecto a la circunferencia de Inversión:

  • La propia circunferencia de Inversión
  • Rectas por el centro de Inversión
  • Circunferencias ortogonales a la circunferencia de Inversión

Teorema. El inverso de una circunferencia que no pasa por el centro de inversión, es otra circunferencia que tampoco pasa por el centro de Inversión.

Demostración. Tenemos $C_1$ una circunferencia con centro $A$, tomemos un punto $P$ sobre la circunferencia $C_1$, también tenemos $C(O,r)$ una circunferencia con centro de Inversión $O$.

Tracemos una recta $OP$, genera un punto de intersección $Q$, y se genera $P’$ inverso de $P$. Ahora tracemos la recta $OA$ y $QA$, además tracemos una paralela a $QA$ que interseque a $OA$ en $B$

Inversión respecto a una circunferencia no Concéntrica con C(O,r).

Por definición de Inversión $OP \times OP’=r^2$ y $OQ \times OP = w$, ahora como los triángulos $\triangle OBP’$ y $\triangle OAQ$ son semejantes, entonces

$\Leftrightarrow \frac{OP’}{OQ} = \frac{OB}{OA}=\frac{BP’}{AQ} $

$\Leftrightarrow \frac{OP’}{OQ} = \frac{OB}{OA} $

$\Leftrightarrow OB=\frac{OP’ \times OA}{OQ} $ como $OQ = w/OP$

$\Leftrightarrow OB=\frac{OP’ \times OA}{w/OP} =\frac{OP’ \times OP\times OA}{w}=\frac{r^2 \times OA}{w} $

Entonces $OB$ es constante, $B$ es un punto fijo y $BP’$ es finita y constante, entonces el lugar geometrico de $P’$ es una circunferencia $C’_1$, por lo cual el punto $P’$ no pasa por $O$.

Por lo tanto, el Inverso de $C_1$ es $C’_1$.

$\square$

Observación. Note que $P$ y $P’$ son puntos antihomologos, $Q$ y $P’$ son homólogos y $O$ es el centro de homotecia de las circunferencias $C_1$ con centro $A$ y $C’_1$ con centro $B$.

Teorema. El inverso de una circunferencia concéntrica con la circunferencia de inversión, es otra circunferencia concéntrica con la circunferencia de inversión.

Demostración. Sea $C(O,r)$ nuestra circunferencia de Inversión y $C_1$ una circunferencia concéntrica a $C$

Circunferencia concéntrica con C(O,r).

Tomemos un punto en $C_1$ el cual es $P$, del cual su inverso es $P’$ con respecto a $C(O,r)$, entonces la distancia $OP$ es constante, al igual $r$ es constante y por definición de inversión $OP \times OP’ =r^2$ entonces $OP’=r^2/OP$ por lo cual $OP’$ es constante.

Por lo tanto, el inverso de $C_1$ es una circunferencia $C’_1$ con centro $O$ y radio $OP’$.

$\square$

Más adelante…

Otro aspecto a analizar de la inversión será la conservación de ángulos.

Entradas relacionadas

Geometría Moderna II: Unidad 2 Inversión

Por Armando Arzola Pérez

Introducción

Una vez visto la potencia de un punto P, es hora de analizar una nueva transformación Inversión.

Puntos Inversos con respecto a una circunferencia

Definición. Sea una circunferencia $C(O,r)$ con centro $O$ y radio $r>0$. Si $P$ y $P’$ son dos puntos colineales con $O$ se tiene que $P’$ es el inverso de $P$ y viceversa si y solo si $P’O \times PO=r^2$.

Definición de Inversión Gráfica

El punto $O$ es el centro de Inversión, la circunferencia $C$ es la circunferencia de inversión, y su radio $»r»$ es el radio de inversión.

Esta es una relación simétrica, ya que $P’$ es inverso de $P$ y $P$ es inverso de $P’$ con respecto a la circunferencia $C(O,r)$.

Propiedades de Inversión

  1. Cada punto en el plano, excepto el centro, tiene un inverso único.
  2. El inverso de un punto en la circunferencia de inversión es su propio inverso.
  3. El inverso de un punto interior a la circunferencia de inversión es siempre un punto exterior a la circunferencia de inversión.

De esta forma se puede construir el inverso de un punto $P$ con respecto a $C(O,r)$.

Proposición. Sea $C(O,r)$ una circunferencia y un punto $P$, por lo cual existe un $P’$ tal que $OP \times OP’ =r^2$.

Demostración. Se considera una circunferencia $C(O,r)$ y un punto $P$, pero existen 3 casos, el punto $P$ interno, externo y sobre la circunferencia $C(O,r)$.

Caso 1. Sea $P$ interno a $C(O,r)$. Trazamos la perpendicular a $OP$ por $P$, donde la intersección es $T$ de la perpendicular a $C(O,r)$. Trazamos $OT$ y trazamos la tangente a $C(O,r)$ por $T$, llamemos $P’$ a la intersección de $OP$ con respecto a la tangente mencionada.

Caso 1 Inversión

Por construcción $\angle OTP’ = \pi /2 = \angle OPT$, y los triangulos $\triangle OTP$ y $ \triangle OP’T$ comparten $\angle O$, por lo cual son semejantes, entonces $\triangle OTP \approx \triangle OP’T$.

$\Rightarrow \frac{OP’}{OT} = \frac{OT}{OP} \Leftrightarrow OP \times OP’ =r^2$.

$\square$

Caso 2. Sea $P$ externo a $C(O,r)$. Trazamos una circunferencia de diámetro $PO$ y unimos $P$ con la intersección de las 2 circunferencias, la cual llamaremos $T$.
De $T$ sacamos la perpendicular respecto a $OP$, la intersección será $P’$.

Cso 2 Inversión

El angulo $\angle OTP = \pi /2 $ ya que abarca el diametro $OP$. Ahora los $\triangle OP’T \approx \triangle OTP$ porque comparten $\angle TOP$ y $\angle OTP =\pi /2=\angle OP’T$

$\Rightarrow \frac{OP’}{OT} = \frac{OT}{OP} \Leftrightarrow OP’ \times OP=OT \times OT =r^2$.

$\square$

Caso 3. Sea $P$ está en $C(O,r)$. Su inverso $P’$ con respecto a $C(O,r)$ es colineal con $P$ y $O$, y además $OP=r$ entonces se debe cumplir $OP \times OP’ =r^2$

Caso 3 Inversión


$\Rightarrow r \times OP’ =r^2 \Rightarrow OP’=r \Rightarrow OP’=OP \Rightarrow P’=P$.

$\square$

Ahora veremos un teorema que será útil más adelante.

Teorema. Sea $C(O,r)$ una circunferencia de inversión, $P$ y $P’$ dos puntos inversos respecto a $C$. Cualquier circunferencia que pase por $P$ y $P’$ es ortogonal a $C$.

Demostración. Sea $C$ una circunferencia y $OP$ un segmento, sean $A$ y $B$ los puntos donde $OP$ toca a $C$ y $B \in OP$

Ortogonalidad en circunferencias con puntos inversos

Por hipótesis $OP \times OP’ = r^2$ y $O$ es punto medio de $AB$
$\Rightarrow P’$ y $P$ son armónicos respecto a $A$ y $B$
$\Rightarrow (\frac{AP’}{P’B}) =-(\frac{AP}{PB})$
Ahora como $C$ pasa por $A$ y $B$, y $C_1$ pasa por $P’$ y $P$ entonces $C\perp C_1$.

$\square$

Más adelante

Una vez ya estudiado la definición de inversión y sus propiedades, es momento de analizar como afecta la inversión a otros objetos geométricos, en específico en Rectas y Circunferencias.

Entradas relacionadas

Entrada 1. Sistemas numéricos. Naturales y enteros.

Por Julio César Soria Ramírez

Introducción

Como las capas de una cebolla, los sistemas numéricos se contienen unos a otros, ya en la prehistoria tuvimos la necesidad de contar, de llevar un registro de los días transcurridos, o del número de lunas llenas. Hubo pronto la necesidad de partir esos números, y tomarse la mitad, la tercera parte de una cierta medida, por ejemplo del mes lunar; esto dio origen a los números fraccionarios. Nuestro sistema numérico es posicional y de base $10$, es decir tenemos $10$ símbolos, que son los números $1,2,3,4,5,6,7,8,9,0$, que colocamos en las distintas posiciones: unidades, decenas, centenas, unidades de millar, etc.

Con el desarrollo de nuestra civilización también se ampliaron los sistemas numéricos, y posiblemente derivado del manejo de la finanzas se concibieron los números negativos, esos números que tienen signo y que localizamos a la izquierda del cero en la recta numérica.

Todos estos números, los naturales, los enteros, las fracciones, los números decimales, se encuentran en la recta numérica, y juntos todos se dice que son los números reales.

Los números naturales.

Los primeros números concebidos por la humanidad son los números naturales, y con ellos las $4$ operaciones fundamentales:

  • $\textcolor{Red}{Sumar}$, que significa agregar a una cantidad otra.

    $\huge{7+5=12}$
  • $\textcolor{Red}{Restar}$, que significa quitar a una cantidad otra.

    $\huge{7-5=2}$
  • $\textcolor{Red}{Multiplicar}$, que se significa amplificar una cantidad por otra.

    $\huge{7\cdot5=5}$
  • $\textcolor{Red}{Dividir}$, que significa repartir una cantidad entre otra, o compararla.

    $\huge{8\div 4=2}$

Estas operaciones nos permiten resolver gran cantidad de problemas de la vida cotidiana, identifica con que operación se resolverían las siguientes situaciones en el huerto:

  1. Las donaciones al huerto este mes fueron de $1500$ pesos de Andrés, $400$ de Pedro y $350$ de Ana. ¿Cuánto lograron juntar?.
  2. De lo juntado en el huerto ese mes, se decidió invertir $300$ pesos para comprar semillas de lechuga, ¿Cuánto quedo?.
  3. Si cada sobre de semillas de lechuga cuesta $20$ pesos, ¿Cuántos compraron?.
  4. Se decide cultivar una parcela con $500$ lechugas, esperando vender cada pieza en promedio en $10$ pesos, ¿Cuánto se obtendría?.

En el siguiente recurso de geogebra mueve el deslizador para cambiar la posición del punto, los números naturales avanzan de uno en uno en un proceso sin fin.

Los números enteros.

Vamos a considerar la siguiente situación: Juan decide comprar un nuevo teléfono, tiene $3500$ pesos y el teléfono que le gusta cuesta $2800$ pesos, efectúa la compra, ¿Cuánto le quedó?. $\textit{Es claro que tenemos que restar a 3500 los 2800.}$

$\huge{3500-2800=700}$

Pero y si la situación fuese al revés, si Juan solo tuviera $2800$ pesos y se compra un teléfono que vale $3500$, la pregunta es: ¿Cómo le hizo?. Si uno se detiene a pensar está situación, la única manera de que Juan comprara su teléfono, $\textbf{¡es pidiendo prestado!}.$

Vamos a interpretar de ahora en adelante, la resta de $2800$ menos $3500$, con la deuda que se tuvo que adquirir, es decir $700$, añadiremos el signo negativo al resultado y escribiremos:

$\huge{2800-3500=-700}$

Estos números con signo negativo los vamos a situar a la izquierda del número cero, y avanzaran en saltos a la izquierda de uno en uno, creando el conjunto de los números negativos.

En el siguiente recurso de geogebra mueve el deslizador para cambiar la posición del punto. Observa que los números negativos se encuentran a la izquierda del cero.

Juntos, el conjunto de los números negativos y el conjunto de los números naturales, forman el conjunto de los números enteros.

Efectúa las siguientes restas:

$\huge{7-4=?}$

$\huge{4-7=?}$

$\huge{25-5=?}$

$\huge{5-25=?}$

$\huge{25-100=?}$

Reflexiona:
¿En que otras situaciones se usan los números enteros además de la deuda?

Así como se hizo con los números naturales, aprenderemos las operaciones fundamentales con enteros, suma, resta, multiplicación y división.

La suma se traga a la resta


Sumar es añadir, cuando sumamos dos números enteros positivos, a la primera cantidad le agregamos la segunda. En la recta numérica nos situamos en el entero correspondiente a la primera cantidad y avanzamos a la derecha saltos de tamaño uno tantas veces como lo indique la segunda cantidad, para obtener el resultado.

$\huge {5+7=12}$

Pero ahora tenemos estos nuevos números negativos, puedo ahora a un número positivo sumarle un número negativo, y lo voy a interpretar en la recta numérica de la siguiente manera:

Me situó en la primera cantidad (la positiva), y como el número que le voy a sumar es negativo, avanzamos a la izquierda saltos de tamaño uno tantas veces como lo indique la segunda cantidad, para obtener el resultado.

$\huge {5+(-7)=-2}$

Nota que el resultado es lo mismo que la resta de 5 menos 7:

$\huge {5-7=-2}$

Observa que: las restas de números positivos se pueden ver como la suma de un positivo con un número negativo, y viceversa también, las sumas de un positivo con un negativo se pueden ver como la resta de dos positivos.

Transforma las siguientes sumas en restas:

$\huge {9+(-3)}$
$\huge {7+(-8)}$
$\huge {8+(-12)}$

Transforma las siguientes restas en sumas:

$\huge {9-13}$
$\huge {17-8}$
$\huge {8-12}$

Inversos aditivos


Para cada número entero, existe otro de tal forma que al sumarse entre si el resultado es cero:
$\huge{\begin{align*} 7&+(-7)=0\\ 17&+(-17)=0 \\ 177&+(-177)=0 \end{align*}}$

Observa que a cada número se le suma su inverso, es decir el mismo número pero con signo negativo.

Reflexiona lo siguiente:

¿Cuál es el inverso aditivo de $5$?

Después de meditarlo te das cuenta que es el mismo número pero precedido del signo $\huge{\textcolor{red}{-}}$, es decir $\huge{\textcolor{red}{-}5}$, así:

$\huge {5+(\textcolor{red}{-}5)=0}$

Piensa ahora en lo siguiente: ¿Cuál es el inverso aditivo del número negativo $-10$?, recuerda que es un número que sumado con $-10$ te de como resultado cero.

¿Qué número se tiene que poner en el espacio faltante para que el resultado sea cero?
$\huge{-10+\phantom{10}=0}$

Después de pensarlo un momento uno se da cuenta que ese número es el $10$, pero por otra parte como es el inverso de $-10$, es el mismo número $-10$ pero precedido del signo $\huge{\textcolor{red}{-}}$, es decir $\huge{\textcolor{red}{-}(-10)}.$

Por lo que acabamos de obtener que:

$\huge{-10+10=-10+\textcolor{red}{-}(-10)=0}$

De está forma acabamos de ver que $10=\textcolor{red}{-}(-10)$, es decir el inverso del inverso de $10$, es el número positivo $10$.

Como todas las restas se pueden ver como sumas y gracias a los inversos aditivos, ahora tendrá sentido restar números negativos.

Si tenemos la resta de un número positivo con uno negativo:

$\huge {9-(-3)}$

Primero la transformaremos en una suma, sumándole el inverso aditivo del segundo número:

$\huge {9-(-3)=9+(\textcolor{red}{-}(-3))}$

Pero como el inverso aditivo de un negativo es un positivo concluimos que:

$\huge {9-(-3)=9+(\textcolor{red}{-}(-3))}=9+3$

Efectúa las siguientes restas:

$\huge{\begin{align*} 7&-(-17)=\\ 11&-(-10)= \\ 177&-(-1)= \end{align*}}$

Más adelante

El hecho de que toda resta se puede ver como suma, y que el inverso aditivo de un número negativo es un número positivo será el motivo de las llamadas leyes de los signos, que daremos en la siguiente nota.

Variable Compleja I: Integrales de funciones híbridas

Por Pedro Rivera Herrera

Introducción

En esta entrada veremos algunos de los conceptos básicos, pero elementales, de las integrales para funciones complejas de variable real. Para ello recurriremos a algunos resultados de nuestros cursos de Cálculo.

Primeramente consideremos a una función híbrida $f(t)=u(t)+iv(t)$, con $t\in[a,b]\subset\mathbb{R}$ y $a<b$. Tenemos que $u(t)$ y $v(t)$ son ambas funciones reales de variable real. De acuerdo con nuestros cursos de Cálculo, sabemos que si $u$ y $v$ son funciones continuas en el intervalo $[a,b]$, entonces ambas son funciones Riemann-integrables para la variable $t$, es decir, las integrales de Riemann $\int_{a}^{b} u(t) dt$ y $\int_{a}^{b} v(t) dt$ existen. Considerando lo anterior tenemos la siguiente:

Definición 33.1. (Integral compleja de una función híbrida.)
Sean $[a,b]\subset{\mathbb{R}}$ un intervalo cerrado, con $a<b$, y $f: [a,b] \to \mathbb{C}$ una función híbrida continua en $[a,b]$. Para $f(t) = u(t) + i v(t)$ se define a la integral de $f$ en $[a,b]$ como:
\begin{equation*}
\int_{a}^{b} f(t) \, dt
:= \int_{a}^{b} u(t)\, dt + i \int_{a}^{b} \,v(t) dt.
\end{equation*}

Es decir, $\int_{a}^{b} f(t) \,dt$ existe si y solo si $\int_{a}^{b} u(t) \,dt$ y $\int_{a}^{b} v(t) \,dt$ existen, en tal caso se dice que $f$ es integrable.

Observación 33.1.
Por nuestros cursos de Cálculo sabemos que una función real que es continua por partes o a trozos también es Riemann-integrable, por lo que, considerando la definición 32.3, podemos extender la definición 33.1 para funciones híbridas que son continuas a trozos.

Definición 33.2. (Integral compleja de una función híbrida a trozos.)
Sean $[a,b]\subset{\mathbb{R}}$ un intervalo cerrado, con $a<b$, y $f: [a,b] \to \mathbb{C}$ una función híbrida continua a trozos en $[a,b]$. Para la partición:
\begin{equation*}
P : a=t_0 < t_1 < \cdots < t_{n-1}<t_n=b,
\end{equation*}del intervalo $[a,b]$, se define a la integral de $f$ en $[a,b]$ como:
\begin{equation*}
\int_{a}^{b} f(t) \,dt
= \displaystyle\sum_{k=1}^n \int_{t_k}^{t_{k-1}} f(t) \,dt.
\end{equation*}

Observación 33.2.
Recordemos que no es esencial que la función $f$ esté definida en los puntos $t_0, t_1, \ldots, t_n$ ya que el valor de $f$ en dicho conjunto finito de puntos se puede asignar o cambiar de forma arbitraria sin afectar el valor de la integral.

Debe ser claro que las integrales complejas de este tipo heredan todas las propiedades de la integral de funciones reales de variable real.

Proposición 33.1.
Sean $[a,b]\subset{\mathbb{R}}$ un intervalo cerrado, con $a<b$, $f, g: [a,b] \to \mathbb{C}$ dos funciones híbridas continuas en $[a,b]$ y sea $k\in\mathbb{C}$ una constante. Se satisfacen las siguientes propiedades.

  1. \begin{equation*}
    \operatorname{Re}\left( \int_{a}^{b} f(t) \,dt\right) = \int_{a}^{b} \operatorname{Re} f(t) \,dt \quad \text{e} \quad \operatorname{Im}\left( \int_{a}^{b} f(t) \,dt\right) = \int_{a}^{b} \operatorname{Im} f(t) \,dt.
    \end{equation*}
  2. \begin{equation*}
    \int_{a}^{b} \left[f(t) \pm g(t) \right]\,dt = \int_{a}^{b} f(t)\,dt \pm \int_{a}^{b} g(t)\,dt.
    \end{equation*}
  3. \begin{equation*}
    \int_{a}^{b} kf(t)\,dt = k\int_{a}^{b} f(t)\,dt.
    \end{equation*}
  4. Si $c\in(a,b)$, entonces:
    \begin{equation*}
    \int_{a}^{b} f(t)\,dt = \int_{a}^{c} f(t)\,dt + \int_{c}^{b} f(t)\,dt.
    \end{equation*}
  5. \begin{equation*}
    \left|\int_{a}^{b} f(t)\,dt\right| \leq \int_{a}^{b}\left| f(t) \right| \,dt
    \end{equation*}
  6. Si $f$ y $g$ son diferenciables en $(a,b)$ y continuas en $[a,b]$, entonces:
    \begin{equation*}
    \int_{a}^{b} f(t) g'(t)\,dt = f(b)g(b) – f(a)g(a) – \int_{a}^{b} f'(t) g(t)\,dt,
    \end{equation*}es decir, la integración por partes se cumple para funciones híbridas.
  7. \begin{equation*}
    \int_{b}^{a} f(t)\,dt = -\int_{a}^{b} f(t)\,dt.
    \end{equation*}

Demostración. Dadas las hipótesis.

  1. Es inmediata de la definición 33.1, por lo que los detalles se dejan como ejercicio al lector.
  2. Se deja como ejercicio al lector.
  3. Sean $f(t)=u(t)+iv(t)$ y $k=\alpha+i\beta$, con $\alpha, \beta\in\mathbb{R}$. Para toda $t\in[a,b]$ tenemos que:
    \begin{align*}
    k f(t) &= (\alpha+i\beta)(u(t)+iv(t))\\
    &= \alpha u(t)- \beta v(t) + i\left[\alpha v(t) +i\beta u(t)\right].
    \end{align*}Entonces, de la definición 33.1 y aplicando las propiedades de linealidad de las integrales de funciones reales, tenemos que:
    \begin{align*}
    \int_{a}^{b} k f(t) \, dt &= \int_{a}^{b} \left[\alpha u(t) – \beta v(t)\right] \, dt + i \int_{a}^{b} \left[\alpha v(t) +i\beta u(t)\right] \, dt\\
    &= \alpha \int_{a}^{b} u(t) dt – \beta \int_{a}^{b} v(t) dt + i \left[\alpha \int_{a}^{b} v(t) dt +\beta \int_{a}^{b} u(t) dt\right]\\
    & = (\alpha + i\beta) \left[\int_{a}^{b} u(t) dt + i \int_{a}^{b} v(t) dt\right]\\
    & = k \int_{a}^{b} f(t) \, dt.
    \end{align*}
  4. Se deja como ejercicio al lector.
  5. Si $\displaystyle\int_{a}^{b} f(t)\,dt = 0$, entonces:
    \begin{equation*}
    \left|\int_{a}^{b} f(t)\,dt\right| = 0 \leq \int_{a}^{b}\left| f(t) \right| \,dt,
    \end{equation*}por lo que en tal caso no hay nada que probar.

    Supongamos que $\displaystyle\int_{a}^{b} f(t)\,dt \neq 0$, entonces podemos escribir a la integral en su forma polar, es decir:
    \begin{equation*}
    \int_{a}^{b} f(t)\,dt = r e^{i\theta},
    \end{equation*}donde $r=\left|\int_{a}^{b} f(t)\,dt\right|\geq 0$ y $\theta = \operatorname{arg}\left(\int_{a}^{b} f(t)\,dt\right)$.

    Considerando lo anterior y la propiedad 3 tenemos que:
    \begin{equation*}
    r = \left|\int_{a}^{b} f(t)\,dt\right| = e^{-i\theta} \int_{a}^{b} f(t)\,dt = \int_{a}^{b} e^{-i\theta} f(t)\,dt.
    \end{equation*}Como las cantidades de la igualdad anterior son números reales, tomando la parte real de ambos lados de la igualdad, de la propiedad 1 se sigue que:
    \begin{equation*}
    \left|\int_{a}^{b} f(t)\,dt\right| = \operatorname{Re} \left(\int_{a}^{b} e^{-i\theta} f(t)\,dt\right) = \int_{a}^{b} \operatorname{Re} \left(e^{-i\theta} f(t)\right) \,dt.
    \end{equation*}Recordemos que para todo $z\in\mathbb{C}$ se cumple que $\operatorname{Re}(z) \leq |z|$, por lo que, considerando la monotonía de la integral para funciones reales y la proposición 20.2, tenemos que:
    \begin{align*}
    \left|\int_{a}^{b} f(t)\,dt\right| & = \int_{a}^{b} \operatorname{Re} \left(e^{-i\theta} f(t)\right) \,dt\\
    & \leq \int_{a}^{b} \left|e^{-i\theta} f(t)\right| \,dt\\
    & = \int_{a}^{b} \left|e^{-i\theta}\right| \left|f(t)\right| \,dt\\
    & = \int_{a}^{b} \left|f(t)\right| \,dt.
    \end{align*}Notemos que el resultado se cumple sin importar la rama del argumento que elijamos.
  6. Se sigue de desarrollar el producto de $f(t)$ y $g'(t)$ y aplicar integración por partes para funciones reales, por lo que los detalles se dejan como ejercicio al lector.
  7. Se deja como ejercicio al lector.

$\blacksquare$

Observación 33.3.
Notemos que si $M=\sup\limits_{t\in[a,b]} |f(t)| < \infty$, entonces se cumple que:
\begin{equation*}
\left|\int_{a}^{b} f(t)\,dt\right| \leq \int_{a}^{b}\left| f(t) \right| \,dt \leq \int_{a}^{b} M \,dt = M(b-a).
\end{equation*}

Ejemplo 33.1.
Obtengamos la integral $\displaystyle\int_{0}^{2} f(t)\,dt$, donde:
\begin{equation*}
f(t)= \left\{ \begin{array}{lcc}
(1+i)t& \text{si} & 0\leq t \leq 1, \\ \\
it^2 & \text{si} & 1\leq t \leq 2.
\end{array} \right.
\end{equation*}

Solución. De acuerdo con la proposición 33.1(3) y 33.1(4) tenemos que:
\begin{align*}
\int_{0}^{2} f(t)\,dt &= \int_{0}^{1} f(t)\,dt + \int_{1}^{2} f(t)\,dt\\
&= (1+i)\int_{0}^{1} t\,dt + i \int_{1}^{2} t^2\,dt\\
& = \frac{(1+i)(1^2-0^2)}{2} + \frac{i(2^3-1^3)}{3}\\
& = \frac{1}{2} + i\frac{17}{6}.
\end{align*}

Definición 33.2. (Primitiva de una función híbrida.)
Sean $[a,b]\subset{\mathbb{R}}$ un intervalo cerrado, con $a<b$, y $f: [a,b] \to \mathbb{C}$ una función híbrida continua en $[a,b]$. Si existe una función continua $F: [a,b] \to \mathbb{C}$ tal que:
\begin{equation*}
F'(t)=f(t), \quad \forall t\in(a,b),
\end{equation*}se dice que $F$ es una primitiva de $f$.

Observación 33.4.
Debe ser claro que si $f, F: [a,b] \to \mathbb{C}$ son dos funciones híbridas continuas en $[a,b]$, tales que:
\begin{equation*}
f(t)=u(t) +iv(t) \quad \text{y} \quad F(t)=U(t) +iV(t),
\end{equation*}entonces $F$ es primitiva de $f$ si y solo si $U$ es primitiva de $u$ y $V$ es primitiva de $v$, es decir, las funciones reales $U(t)$ y $V(t)$ son tales que $U'(t)=u(t)$ y $V'(t)=v(t)$.

Veamos que para las funciones híbridas el segundo Teorema Fundamental del Cálculo (TFC), es válido.

Proposición 33.2. (Segundo TFC para funciones híbridas.)
Sean $[a,b]\subset{\mathbb{R}}$ un intervalo cerrado, con $a<b$, y $f: [a,b] \to \mathbb{C}$ una función híbrida continua en $[a,b]$. Si $F: [a,b] \to \mathbb{C}$ es una primitiva de $f$, entonces:
\begin{equation*}
\int_{a}^{b} f(t)\,dt = \left. F(t) \right|_{a}^{b}
= F(b) – F(a).
\end{equation*}

Demostración. Dadas las hipótesis, sean $f(t)=u(t)+iv(t)$ y $F(t)=U(t)+iV(t)$. Dado que $F$ es una primitiva de $f$, entonces, por la observación 33.4 y considerando el segundo TFC para funciones reales, tenemos que:
\begin{align*}
\int_{a}^{b} f(t) dt & = \int_{a}^{b} u(t)\, dt + i \int_{a}^{b} \,v(t) dt\\
& = \left[U(b)-U(a)\right] + i \left[V(b)-V(a)\right]\\
& = \left[U(b)+iV(b)\right] -\left[U(a)+iV(a)\right]\\
& = F(b) – F(a).
\end{align*}

En el caso en que $f$ es continua a trozos en $[a,b]$, podemos tomar por definición a la partición:
\begin{equation*}
P : a=t_0 < t_1 < \cdots < t_{n-1}<t_n=b,
\end{equation*}del intervalo $[a,b]$, donde $t_1, \ldots, t_{n-1}$ son los puntos de discontinuidad de la función continua a trozos $f$ en $(a,b)$. Entonces por la proposición 33.1(4) tenemos que:
\begin{align*}
\int_{a}^{b} f(t) dt & = \displaystyle\sum_{k=1}^n \int_{t_k}^{t_{k-1}} f(t) \,dt\\
& = \displaystyle\sum_{k=1}^n \left[ F(t_k) – F(t_{k-1})\right]\\
& = F(t_n) – F(t_{0})\\
& = F(b) – F(a).
\end{align*}

$\blacksquare$

Observación 33.5.
Por simplicidad hemos enunciado los resultados anteriores para funciones híbridas continuas, sin embargo, tanto las definiciones anteriores como las propiedades de la proposición 33.1 y el segundo TFC, para funciones híbridas, siguen siendo válidos si $f$ y $g$ son funciones continuas a trozos en $[a,b]$, con una adecuada modificación de los enunciados considerando los resultados de la teoría de integración para funciones reales continuas a trozos y la definición 33.2.

Ejemplo 33.2.
Sea $n\in\mathbb{Z}$. Consideremos a la función híbrida:
\begin{equation*}
f:\mathbb{R} \to \mathbb{C}, \quad f(t)=e^{int}.
\end{equation*}Determinemos el valor de la integral $\displaystyle \int_{0}^{2\pi} f(t) \, dt$.

Solución. Es claro que $f$ es una función continua y diferenciable para todo $t\in\mathbb{R}$. Más aún, de acuerdo con la proposición 20.2 tenemos que:
\begin{equation*}
f(t) = e^{int} = \operatorname{cos}(nt) + i \operatorname{sen}(nt),
\end{equation*}por lo que:
\begin{equation*}
f'(t) = in \left[\operatorname{cos}(nt) + i \operatorname{sen}(nt)\right] = ine^{int},
\end{equation*}entonces, la función $F(t)=\dfrac{e^{int}}{in}$ es una primitiva de $f$.

Para $n\neq 0$, por las proposiciones 20.2 y 33.3, tenemos que:
\begin{equation*}
\displaystyle \int_{0}^{2\pi} e^{int} \, dt = \left. \dfrac{e^{int}}{in} \right|_{0}^{2\pi} = \frac{e^{i2n\pi}-e^0}{in} = \frac{1-1}{in} = 0.
\end{equation*}

Mientras que, para $n=0$ tenemos a la función constante $f(t)=1$, entonces, para todo $n\in\mathbb{Z}$ tenemos que:
\begin{equation*}
\displaystyle \int_{0}^{2\pi} e^{int} \, dt= \left\{ \begin{array}{lcc}
0 & \text{si} & n \neq 0, \\ \\
2\pi & \text{si} & n=0.
\end{array} \right.
\end{equation*}

Ejemplo 33.3.
Evaluemos a la integral $\displaystyle \int_{0}^{2\pi} \operatorname{cos}^2(t) \, dt$.

Solución. De acuerdo con la definición 22.1 tenemos que:
\begin{equation*}
\operatorname{cos}^2(t) = \left(\frac{e^{it}+e^{-it}}{2}\right)^2 = \frac{1}{4}\left(e^{i2t} + e^{-i2t} + 2\right).
\end{equation*}

De la proposición 33.1 y el ejemplo anterior se sigue que:
\begin{align*}
\int_{0}^{2\pi} \operatorname{cos}^2(t) \, dt &= \int_{0}^{2\pi} \left[\frac{1}{4}\left(e^{i2t} + e^{-i2t} + 2\right)\right] \, dt\\
& = \frac{1}{4} \left[ \int_{0}^{2\pi} e^{i2t} \, dt + \int_{0}^{2\pi} e^{-i2t} \,dt + \int_{0}^{2\pi} 2 dt\right]\\
& = \frac{1}{4} \left[ 0 + 0 + 4\pi \right]\\
& = \pi.
\end{align*}

Ejemplo 33.4.
Determinemos una primitiva de la función $f(t)$ dada en el ejemplo 33.1. y utilicemos la proposición 33.3 para verificar el resultado del ejemplo 33.1.

Solución. Tenemos que:
\begin{equation*}
f(t)= \left\{ \begin{array}{lcc}
(1+i)t& \text{si} & 0\leq t \leq 1, \\ \\
it^2 & \text{si} & 1\leq t \leq 2.
\end{array} \right.
\end{equation*}

Es claro que la funciones $f_1(t) = (1+i)t$ y $f_2(t) = it^2$ son funciones continuas para todo $t\in\mathbb{R}$, por lo que integrando a cada una de dichas funciones tenemos que:
\begin{equation*}
F(t)= \left\{ \begin{array}{lcc}
\dfrac{(1+i)t^2}{2} + c_1& \text{si} & 0\leq t \leq 1, \\ \\
\dfrac{it^3}{3} + c_2& \text{si} & 1\leq t \leq 2.
\end{array} \right.
\end{equation*}determina una expresión general de las primitivas de $f$, donde $c_1$ y $c_2$ son dos constantes complejas arbitrarias.

Si $c_1 =0$, al evaluar a $F$ en $t=1$ tenemos que:
\begin{equation*}
\dfrac{1+i}{2} =\dfrac{i}{3} + c_2 \quad \Longrightarrow \quad c_2 = \dfrac{1}{2} + \dfrac{i}{6}.
\end{equation*}

Entonces:
\begin{equation*}
F(t)= \left\{ \begin{array}{lcc}
\dfrac{(1+i)t^2}{2} & \text{si} & 0\leq t \leq 1, \\ \\
\dfrac{it^3}{3} + \dfrac{1}{2} + \dfrac{i}{6} & \text{si} & 1\leq t \leq 2.
\end{array} \right.
\end{equation*}es una primitiva de $f$ en el intervalo $[0,2]$.

De acuerdo con la proposición 33.3 tenemos que:
\begin{equation*}
\int_{0}^{2} f(t)\,dt = F(2) – F(0) = \frac{i(2^3)}{3} + \dfrac{1}{2} + \dfrac{i}{6} – 0 = \dfrac{1}{2} + i\dfrac{17}{6},
\end{equation*}lo cual coincide con el resultado del ejemplo 33.1.

Ejemplo 33.5.
Veamos que:
\begin{equation*}
\int_{0}^{1} (t-i)^3 dt = -\frac{5}{4}.
\end{equation*}

Solución. Sea $f(t) = (t-i)^3$. Desarrollando tenemos que:
\begin{equation*}
f(t)=t^3-3t+i(-3t^2+1),
\end{equation*}de donde $u(t)=t^3-3t$ y $v(t)=-3t^2+1$, las cuales son funciones continuas en $[0,1]$, por lo que podemos calcular la integral de cada función. Entonces:
\begin{equation*}
\int_{0}^{1} (t^3-3t) dt = \left.\left(\frac{t^4}{4}-\frac{3t^2}{2}\right)\right|_{0}^{1} = -\frac{5}{4},
\end{equation*}
\begin{equation*}
\int_{0}^{1} (-3t^2+1) dt = \left.\left(-t^3+t\right)\right|_{0}^{1} = 0,
\end{equation*}por lo que:
\begin{equation*}
\int_{0}^{1} (t-i)^3 dt = \int_{0}^{1} (t^3-3t) dt + i \int_{0}^{1} (-3t^2+1) dt = -\frac{5}{4}.
\end{equation*}

Ejemplo 33.6.
Verifiquemos que:
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} e^{t+it} dt = \frac{1}{2}\left[e^{\frac{\pi}{2}}-1+i\left(e^{\frac{\pi}{2}}+1\right)\right].
\end{equation*}

Solución. Sea $f(t) = e^{t+it}$. De acuerdo con la proposición 20.2 tenemos que:
\begin{equation*}
f(t)=e^t\operatorname{cos}(t)+ie^t\operatorname{sen}(t),
\end{equation*}de donde $u(t)=e^t\operatorname{cos}(t)$ y $v(t)=e^t\operatorname{sen}(t)$, las cuales son funciones continuas en $\left[0,\frac{\pi}{2}\right]$, por lo que podemos calcular la integral de cada función. Integrando por partes tenemos que:
\begin{equation*}
\int e^t\operatorname{cos}(t) dt = e^{t}\left[\operatorname{cos}(t) + \operatorname{sen}(t)\right] – \int e^t\operatorname{cos}(t) dt +c,
\end{equation*}de donde:
\begin{equation*}
\int e^t\operatorname{cos}(t) dt = \frac{1}{2} e^{t}\left[\operatorname{cos}(t) + \operatorname{sen}(t)\right] +c.
\end{equation*}

Análogamente tenemos que:
\begin{equation*}
\int e^t\operatorname{sen}(t) dt = \frac{1}{2} e^{t}\left[\operatorname{sen}(t) – \operatorname{cos}(t)\right] +c.
\end{equation*}

Por lo que:
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} e^t\operatorname{cos}(t) dt = \left.\frac{1}{2} e^{t}\left[\operatorname{cos}(t) + \operatorname{sen}(t)\right]\right|_{0}^{\frac{\pi}{2}} = \frac{1}{2}\left(e^{\frac{\pi}{2}}-1\right),
\end{equation*}
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} e^t\operatorname{sen}(t) dt = \left.\frac{1}{2} e^{t}\left[\operatorname{sen}(t) – \operatorname{cos}(t)\right]\right|_{0}^{\frac{\pi}{2}} = \frac{1}{2}\left(e^{\frac{\pi}{2}}+1\right),
\end{equation*}entonces:
\begin{align*}
\int_{0}^{\frac{\pi}{2}} e^{t+it} dt &= \int_{0}^{\frac{\pi}{2}} e^t\operatorname{cos}(t) dt + i \int_{0}^{\frac{\pi}{2}} e^t\operatorname{sen}(t) dt\\
&= \frac{1}{2}\left(e^{\frac{\pi}{2}}-1\right) + i \frac{1}{2}\left(e^{\frac{\pi}{2}}+1\right)\\
& = \frac{1}{2}\left[e^{\frac{\pi}{2}}-1+i\left(e^{\frac{\pi}{2}}+1\right)\right].
\end{align*}

Observación 33.6.
No es difícil verificar que dada una función híbrida continua $f:[a,b]\to\mathbb{C}$, si $F$ y $G$ son dos primitivas de $f$, entonces $F$ y $G$ solo difieren por una constante compleja, en $[a,b]$. Considerando esto y la proposición 33.3, podemos escribir:
\begin{equation*}
\int_{a}^{b} f(t) \, dt = F(t) + c,
\end{equation*}con $c$ una constante compleja, para denotar a cualquier primitiva de $f$.

Ejemplo 33.7.
Sea $z\in\mathbb{C}\setminus\{0\}$. Consideremos a la función híbrida $f(t)=e^{zt}$, con $t\in\mathbb{R}$, entonces:
\begin{equation*}
\int_{a}^{b} e^{zt} \, dt = \frac{1}{z} e^{zt} + c,
\end{equation*}con $c\in\mathbb{C}$ constante, ya que para $F(t) = \dfrac{1}{z} e^{zt}$, por la proposición 32.1(1) y el ejemplo 32.1, se cumple que:
\begin{equation*}
F'(t) = \frac{d}{dt} \dfrac{1}{z} e^{zt} = \dfrac{1}{z} \frac{d}{dt} e^{zt} = \dfrac{1}{z} z e^{zt} = e^{zt}, \quad z\neq 0.
\end{equation*}

Tarea moral

  1. Completa la demostración de la proposición 33.1.
  2. Sean $a,b\in\mathbb{R}\setminus\{0\}$ y sea $f(t)=e^{at}\operatorname{cos}(bt)$. Determina una expresión general para la primitiva de $f$ de las siguientes formas.
    a) Integra por partes dos veces y obtén la solución como en Cálculo.
    b) Expresa $f$ usando la exponencial compleja y utiliza los resultados de esta entrada.
  3. Evalúa las siguientes integrales utilizando los resultados de esta entrada, es decir, sin utilizar integración por partes.
    a) $\displaystyle \int_{0}^{2\pi} e^{3t} \operatorname{cos}^2(2t) dt$.
    b) $\displaystyle \int_{0}^{\pi} e^{t} \operatorname{cos}(3t) \operatorname{sen}(4t)dt$.
  4. Sean $[a,b]\subset{\mathbb{R}}$ un intervalo cerrado, con $a<b$, y $f: [a,b] \to \mathbb{C}$ una función híbrida continua tal que $|f(t)|\leq M$ para todo $t\in[a,b]$, con $M>0$. Prueba que si:
    \begin{equation*}
    \left|\displaystyle \int_{a}^{b} f(t)\, dt\right| = M(b-1),
    \end{equation*}entonces $f(t)=c$, con $c\in\mathbb{C}$ una constante tal que $|c|=M$.
  5. Evalúa las siguientes integrales.
    a) $\displaystyle \int_{0}^{2\pi} e^{i3t} dt$.
    b) $\displaystyle \int_{1}^{2} \operatorname{Log}(it)dt$.
    c) $\displaystyle \int_{-1}^{1} \dfrac{t+i}{t-i} dt$.
    d) $\displaystyle \int_{-1}^{0} \operatorname{sen}(it)dt$.
    e) $\displaystyle \int_{1}^{2} t^{i} dt$, considerando la rama principal de $t^i$.
    f) $\displaystyle \int_{-1}^{1}(2i+3+it)^2 \, dt$.
  6. Sean $m,n\in\mathbb{Z}$. Muestra que:
    \begin{equation*}
    \int_{0}^{2\pi} e^{imt} e^{-int}\, dt = \left\{ \begin{array}{lcc}
    0 & \text{si} & m\neq n, \\ \\
    2 \pi & \text{si} & m=n.
    \end{array} \right.
    \end{equation*}
  7. Evalúa la integral $\displaystyle \int_{-1}^{1} f(t) \, dt$, donde:
    a) $f(t)= \left\{ \begin{array}{lcc}
    (3+2i)t& \text{si} & -1\leq t \leq 0, \\ \\
    it^2 & \text{si} & 0\leq t \leq 1.
    \end{array} \right.$
    b) $f(t)= \left\{ \begin{array}{lcc}
    e^{i\pi t}& \text{si} & -1\leq t \leq 0, \\ \\
    t & \text{si} & 0\leq t \leq 1.
    \end{array} \right.$
  8. Muestra que si $\operatorname{Re}(z)>0$, entonces $\displaystyle \int_{0}^{\infty} e^{-zt} \, dt = \dfrac{1}{z}$.

Más adelante…

En esta entrada hemos definido la integral compleja para una función híbrida y probamos algunas de sus propiedades más importantes que resultan de gran utilidad al resolver ciertos problemas. Es importante mencionar que aunque para el caso de las derivadas y las integrales de funciones híbridas, los resultados parecen ser los mismos que para funciones reales, ya que podemos separar a una función híbrida en su parte real e imaginaria, la aplicación de estos resultados es mucha, en particular para el cálculo de integrales reales a través del uso las propiedades de las funciones complejas como la exponencial y las trigonométricas. Veremos más a detalle estas aplicaciones en la última unidad del curso, aunque muestra de esta utilidad se ve en el ejemplo 33.3.

En la siguiente entrada definiremos lo que es una integral de contorno, que como veremos nos permite hablar de la integrabilidad de una función compleja de variable compleja y aunque dicha definición resulta familiar a la de una integral de línea, veremos que a través de estas integrales obtendremos algunos resultados que serán de suma importancia para la teoría de la variable compleja.

Entradas relacionadas