Nota 25. Espacios vectoriales

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Con esta nota empezamos la unidad 3, haremos el estudio de un tipo particular de estructura algebraica llamada espacio vectorial, el plano y el espacio cartesiano tienen esta estructura de espacio vectorial, seguramente en este momento de tu educación ya los has utilizado; ahí los vectores son representados con flechas dirigidas a un punto. Podemos sumar esos vectores o flechas, y multiplicarlos por números reales para cambiarles su tamaño o sentido.

Veremos que no sólo $\mathbb R^2$ y $\mathbb R^3$ son espacios vectoriales, si no que $\forall n\in \mathbb N$, se cumple que $\mathbb R^n$ es un espacio vectorial. Primero estableceremos dos operaciones llamadas suma y producto por escalar, y luego veremos que estas operaciones cumplen ciertas propiedades.

No será objeto de estudio de este curso, la construcción y propiedades de los números reales, pero es importante aclarar que el conjunto $\mathbb R$ también tiene una estructura particular denominada campo. Mencionemos, sin profundizar más en ello, las propiedades que cumplen los números reales con las operaciones de suma y producto, debido a las cuales se le llama un campo.

Empecemos entonces por esta importante nota.

Nota

$\mathbb R$ es un conjunto con dos operaciones binarias, $+$ y $\cdot$, en el que se cumplen las siguientes propiedades:

Propiedades de la suma $+$Propiedades del producto $\cdot$
Es asociativa.Es asociativa.
Es conmutativa.Es conmutativa.
Existe $0\in \mathbb R$ neutro aditivo.Existe $1\in \mathbb R$ neutro multiplicativo.
$\forall \alpha\in \mathbb R$ existe su inverso aditivo $-\alpha\in \mathbb R$.$\forall \alpha\in \mathbb R\;\;\alpha \neq 0$ tiene inverso multiplicativo $\alpha^{-1}\in \mathbb R$.
Además el producto $\cdot$ distribuye a la suma.

Con estas propiedades satisfechas decimos que $\mathbb R$ es un campo y a sus elementos les llamamos escalares.

El siguiente teorema nos hará evidente que $\mathbb R^n$ es un espacio vectorial, pues se verán satisfechas $8$ propiedades de sus dos operaciones, que hacen que un conjunto $V$, en este caso, $V=\mathbb R^n$ cumpla con ser un espacio vectorial sobre el campo $\mathbb R$.

Teorema

El conjunto $\mathbb R^n$ con las operaciones de suma $\oplus$ y producto por escalar $\odot$ definidas como:

La suma de dos vectores se suma coordenada a coordenada.

$(x_1,\dotsc,x_n)\oplus (y_1,\dotsc,y_n)=(x_1+y_1,\dotsc,x_n+y_n)$

Así se ve la suma de vectores en $\mathbb R^2$

En el siguiente recurso de geogebra puedes jugar moviendo $u$ y el vector $v$, y obteniendo su suma geométricamente en $\mathbb R^2$.

La multiplicación por escalares multiplica cada una de las coordenadas.

$\lambda \odot (x_1,\dotsc,x_n)=(\lambda x_1,\dotsc,\lambda x_n)$

$\forall (x_1,\dotsc,x_n),(y_1,\dotsc,y_n)\in \mathbb R^n\,\;y\,\;\forall \lambda \in \mathbb R$

Así se ve la multiplicación por escalares en $\mathbb R^2$, nota que es estirar un vector.

Con estas dos operaciones $\mathbb R^n$ cumple la siguiente lista de propiedades y por lo tanto será llamado un espacio vectorial sobre el campo $\mathbb R$ o un $\mathbb R$-espacio vectorial:

1. $(u\oplus v)\oplus w=u\oplus (v\oplus w)\,\,\,\,\forall u,v,w\in \mathbb R^n$, es decir la suma es asociativa.

2. $u\oplus v=v\oplus u\,\,\,\forall u,v\in \mathbb R^n$, es decir la suma es conmutativa.

3. $\exists \bar{0}\in \mathbb R^n$ tal que $u\oplus \bar{0}=\bar{0}\oplus u=u\,\,\,\forall u\in \mathbb R^n$, a $\bar{0}$ se le llama un neutro aditivo de $\mathbb R^n$.

4. Para todo $u\in \mathbb R^n$ existe $\tilde{u}\in \mathbb R^n$, tal que $u\oplus \tilde{u}=\tilde{u}\oplus u=\bar{0}$, a $\tilde{u}$ se le llama un inverso aditivo de $u$.

Estas primeras $4$ propiedades refieren únicamente a la suma $\oplus$, tendremos otras dos que se refieren sólo al producto por escalar:

5. $1\odot v=v\,\,\,\, \forall v\in \mathbb R^n$, existencia del neutro multiplicativo.

6. $\lambda\odot (\mu\odot v)=(\lambda\mu)\odot v \,\,\,\, \forall v\in \mathbb R^n\,\;\forall \lambda,\mu\in \mathbb R$, asociatívidad del producto.

Y por último dos propiedades que son la distributividad del producto sobre la suma, tanto de escalares como de $n-$adas.

7. $(\lambda+\mu)\odot v=\lambda\odot v\oplus \mu\odot v\,\;\forall \lambda,\mu\in \mathbb R\,\;\forall v\in \mathbb R^n$.

8. $\lambda\odot(v\oplus u)=\lambda\odot v\oplus\lambda\odot u\,\;\forall \lambda\in \mathbb R\,\;\forall v,u\in \mathbb R^n$.

Como veremos inmediatamente $\mathbb R^n$ satisface esas propiedades y se dice entonces que $\mathbb R^n,\oplus,\odot$ es un espacio vectorial sobre el campo$\mathbb R$, o un $\mathbb R$-espacio vectorial, a los elementos de $\mathbb R^n$ les llamaremos vectores.

Demostración de que $\mathbb R^n$ con sus operaciones $\oplus$ y $\odot$, cumple las $8$ propiedades dadas anteriormente.

Mostraremos las propiedades 2,3,4,6,7 y las propiedades 1,5 y 8 se dejan como tarea moral.

Demostración de 2

Sean $u=(x_1,\dotsc, x_n),v=(y_1,\dotsc, y_n)\in \mathbb R^n,\,\,\,\,\lambda,\mu\in \mathbb R$.

Por demostrar que $u\oplus v=v\oplus u.$

Por definición de la suma tenemos que:

$u\oplus v=(x_1,\dotsc, x_n)\oplus(y_1,\dotsc, y_n)=(x_1+y_1,\dotsc,x_n+y_n).$

Las sumas que aparecen en cada entrada son sumas en $\mathbb R$, y dado que la suma en $\mathbb R$ es conmutativa se tiene que $x_i+y_i=y_i+x_i$ para todo $1\leq i\leq n$, de forma que:

$(x_1+y_1,\dotsc,x_n+y_n)=(y_1+x_1,\dotsc,y_n+x_n).$

Y de nuevo por la definición de suma en $\mathbb R^n$ tenemos que:

$(y_1+x_1,\dotsc,y_n+x_n)=(y_1,\dotsc, y_n)\oplus(x_1,\dotsc, x_n)=v\oplus u.$

Por lo tanto concluimos que:

$u\oplus v=v\oplus u$.

Y así mostramos que la operación $\oplus$ es conmutativa.

Demostración de 3

Por demostrar que $\exists \bar{0}\in \mathbb R^n$ tal que $u\oplus \bar{0}=\bar{0}\oplus u=u\,\,\,\forall u\in \mathbb R^n.$

Propongamos al vector con sus $n$ entradas cero como neutro, es decir, consideremos $\bar{0}=(0,\dotsc,0)\in \mathbb R^n$.

Dado $u=(x_1,\dotsc, x_n)\in \mathbb R^n$ tenemos que:

$u\oplus\bar{0}=(x_1,\dotsc, x_n)\oplus(0,\dotsc, 0)$

y por la definición de suma en $\mathbb R^n$

$u\oplus\bar{0}=(x_1,\dotsc, x_n)\oplus(0,\dotsc, 0)=(x_1+0,\dotsc, x_n+0).$

Como $0$ es el neutro de $\mathbb R$ tenemos que $x_i+0=x_i$ para todo $1\leq i\leq n$, por lo tanto:

$u\oplus\bar{0}=(x_1,\dotsc, x_n)\oplus(0,\dotsc, 0)=(x_1+0,\dotsc, x_n+0)=(x_1,\dotsc, x_n)=u.$

Finalmente usando la conmutatividad que se probó en $2$ tenemos que $\bar{0}\oplus u=u\oplus \bar{0}=u$.

Demostración de 4

Sea $u=(x_1,\dotsc,x_n).$

Por demostrar que existe $\tilde{u}\in \mathbb R^n$, tal que $u\oplus \tilde{u}=\tilde{u}\oplus u=\bar{0}.$

Proponemos $\tilde{u}=(-x_1,\dotsc,-x_n).$ Tenemos que

$u\oplus \tilde{u}=(x_1,\dotsc,x_n)\oplus \left(-x_1,\dotsc,-x_n)=(x_1+(-x_1),\dotsc,x_n+(-x_n)\right).$

Como $-x_i$ es el inverso aditivo de $x_i$ en $\mathbb R$ para todo $1\leq i\leq n$, tenenemos que $x_i+(-x_i)=0$ para todo $1\leq i\leq n$. Concluimos que:

$u\oplus \tilde{u}=(x_1,\dotsc,x_n)\oplus \left(-x_1,\dotsc,-x_n)=(x_1+(-x_1),\dotsc,x_n+(-x_n)\right)=(0,\dotsc,0).$

Finalmente usando la conmutatividad que se probó en $2$ tenemos que $\tilde{u}\oplus u=u\oplus \tilde{u}=\bar{0}$.

Por lo tanto cada $u\in \mathbb R^n$ tiene un inverso aditivo.

Demostración de 6

Por demostrar que $\lambda\odot (\mu\odot v)=(\lambda\mu)\odot v \,\,\,\, \forall v\in \mathbb R^n\,\;\forall \lambda,\mu\in \mathbb R$.

Como $\lambda\odot (\mu\odot v)=\lambda\odot (\mu\odot(y_1,\dotsc,y_n))$, por definición del producto en $\mathbb R^n$ tenemos que

$\lambda\odot (\mu\odot v)=\lambda\odot (\mu\odot(y_1,\dotsc,y_n))=\lambda\odot (\mu y_1,\dotsc,\mu y_n).$

Aplicando de nuevo la definición de producto en $\mathbb R^n$ tenemos que:

$\lambda\odot (\mu\odot v)=\lambda\odot (\mu\odot(y_1,\dotsc,y_n))=\lambda\odot (\mu y_1,\dotsc,\mu y_n)=(\lambda(\mu y_1),\dotsc,\lambda(\mu y_1))$.

En virtud de la asociatividad del producto en $\mathbb R$ tenemos que $\lambda(\mu y_i)=(\lambda\mu) y_i$ para todo $1\leq i\leq n$, y así:

$\begin{align*} \lambda\odot (\mu\odot v)&=\lambda\odot (\mu\odot(y_1,\dotsc,y_n))=\lambda\odot (\mu y_1,\dotsc,\mu y_n)=(\lambda(\mu y_1),\dotsc,\lambda(\mu y_1))\\&=((\lambda\mu )y_1),\dotsc,(\lambda\mu) y_n).\end{align*}.$

Y por la definición del producto en $\mathbb R^n$ tenemos que:

$((\lambda\mu )y_1,\dotsc,(\lambda\mu) y_n)=(\lambda\mu)\odot(y_1,\dotsc,y_n)=(\lambda\mu)\odot v$.

Siguiendo la cadena de igualdades concluimos que:

$\lambda\odot (\mu\odot v)=(\lambda\mu)\odot v$.

Demostración de 7

Por demostrar que $(\lambda+\mu)\odot v=\lambda\odot v\oplus \mu\odot v\,\;\forall \lambda,\mu\in \mathbb R\,\;\forall v\in \mathbb R^n$.

Por definición del producto por escalar en $\mathbb R^n$ tenemos que:

$(\lambda+\mu)\odot v=(\lambda+\mu)\odot (y_1,\dotsc,y_n)=((\lambda+\mu)y_1,\dotsc,(\lambda+\mu)y_n).$

Gracias a la distributividad en el campo $\mathbb R$ tenemos que $(\lambda+\mu)y_i=\lambda y_i+\mu y_i$ para todo $1\leq i\leq n$ y así:

$((\lambda+\mu)y_1,\dotsc,(\lambda+\mu)y_n)=(\lambda y_1+\mu y_1,\dotsc,\lambda y_n+\mu y_n).$

Por la definición de la suma en $\mathbb R^n$ tenemos que:

$(\lambda y_1+\mu y_1,\dotsc,\lambda y_n+\mu y_n)=(\lambda y_1,\dotsc,\lambda y_n)\oplus (\mu y_1,\dotsc,\mu y_n).$

Usando la definición del producto en $\mathbb R^n$:

$\begin{align*}(\lambda y_1+\mu y_1,\dotsc,\lambda y_n+\mu y_n)&=(\lambda y_1,\dotsc,\lambda y_n)\oplus (\mu y_1,\dotsc,\mu y_n)\\ &=\lambda\odot (y_1,\dotsc, y_n)\oplus\mu\odot (y_1,\dotsc, y_n)=\lambda\odot v\oplus \lambda\odot v .\end{align*}$

Podemos concluir entonces que:

$(\lambda+\mu)\odot v=\lambda\odot v\oplus \mu\odot v$

que es lo que queríamos demostrar.

$\square$

Tarea Moral

1. Demostrar los puntos $1,5,8$ del teorema.

2. Consideremos$\mathbb R^2$, con la operación suma $\boxplus$ y producto por escalar $\boxdot$ definidos como sigue:

i) $(x,y)\boxplus (z,w)= (x+z,y+w)$ y $\lambda\boxdot (x,y)=(\lambda x,y)$

ii) $(x,y)\boxplus (z,w)= (x-z,y-w)$ y $\lambda\boxdot (x,y)=(-\lambda x,\lambda y)$

iii) $(x,y)\boxplus (z,w)= (x+z,0)$ y $\lambda\boxdot (x,y)=(\lambda x,0)$

para $(x,y),(z,w)\in \mathbb R^2$ y $\lambda\in \mathbb R$.

En cada caso analiza cuáles de las $8$ propiedades del espacio vectorial $\mathbb R^2$ con las operaciones usuales, se cumplen para $\mathbb R^2$ con estas nuevas operaciones.

3. Ve el siguiente vídeo para ampliar tu idea de lo que es un vector.

Más adelante

En la siguiente nota veremos algunas propiedades de estos $\mathbb R$-espacios vectoriales $\mathbb R^n$.

Enlaces relacionados.

Página principal del curso.

Nota anterior. Nota 24. El triángulo de Pascal y el binomio de Newton.

Nota siguiente. Nota 26. Propiedades de $\mathbb R^n$.

Variable Compleja I: Funciones inversas de las funciones trigonométricas e hiperbólicas complejas

Por Pedro Rivera Herrera

Introducción

La entrada anterior definimos a las funciones complejas trigonométricas e hiperbólicas, a través de la exponencial compleja y vimos que tanto las funciones trigonométricas como las funciones hiperbólicas son periódicas, puesto que la función exponencial compleja es $2\pi i $-periódica. Al igual que en el caso real, podemos preguntarnos si es que existen las funciones inversas de estas funciones, por lo que nuestro objetivo en esta entrada será responder esa pregunta y en particular deducir y definir a las funciones inversas de dichas funciones.

Durante esta entrada utilizaremos nuevamente al logaritmo complejo para deducir a las funciones inversas. Es importante recordar, entrada 21, que la función logaritmo complejo es una función multivaluada, por lo que las funciones definidas en esta entrada serán también multivaluadas. Recordemos que aunque esta terminología no cumple con la definición habitual de función, desde que asigna más de un valor a cada elemento del dominio, es importante mencionar que cada una de las ramas de dichas funciones multivaluadas sí cumplen con la definición de función con la que estamos familiarizados. Más aún, cada una de las ramas cumple con muchas de las propiedades que conocemos para sus versiones reales.

Observación 23.1.
Como veremos en la entrada 26, la imagen de las funciones $\operatorname{sen}(w)$ y $\operatorname{cos}(w)$ es todo el plano complejo $\mathbb{C}$, por lo que dado $w\in\mathbb{C}$ siempre existirá $z\in\mathbb{C}$ que satisfaga $z = \operatorname{sen}(w)$ ó $z = \operatorname{cos}(w)$.

Proposición 23.1 (Funciones trigonométricas inversas.)

  1. $\operatorname{sen}^{-1}(z) = -i \operatorname{log}\left(iz +\sqrt{1-z^2}\right)$.
  2. $\operatorname{cos}^{-1}(z) = -i \operatorname{log}\left(z + i\sqrt{1-z^2}\right)$.
  3. $\operatorname{tan}^{-1}(z) = \dfrac{i}{2} \operatorname{log}\left(\dfrac{i+z}{i-z}\right)$, con $z\neq \pm i$.
  4. $\operatorname{cot}^{-1}(z) = -\dfrac{i}{2} \operatorname{log}\left(\dfrac{z+i}{z-i}\right)$, con $z\neq \pm i$.
  5. $\operatorname{sec}^{-1}(z) = \dfrac{1}{i} \operatorname{log}\left(\dfrac{1 + \sqrt{1-z^2}}{z}\right)$.
  6. $\operatorname{csc}^{-1}(z) = \dfrac{1}{i} \operatorname{log}\left(\dfrac{1 + \sqrt{z^2 – 1}}{z}\right)$.

Demostración.

  1. Sea $z = \operatorname{sen}(w)$. De acuerdo con la definición 22.1 tenemos que:
    \begin{equation*}
    z = \operatorname{sen}(w) = \frac{e^{iw} – e^{-iw}}{2i},
    \end{equation*}de donde:
    \begin{equation*}
    (e^{iw})^2-i2z(e^{iw}) – 1 = 0.
    \end{equation*}Notemos que esta última expresión es una ecuación cuadrática para la variable $e^{iw}$, por lo que podemos utilizar la fórmula general para resolver dicha ecuación. En este punto es importante que recordemos que la función compleja raíz cuadrada es una función multivaluada, por lo que nos dará dos raíces complejas, entonces:
    \begin{equation*}
    e^{iw} = \frac{2iz + \sqrt{4(1-z^2)}}{2} = iz + \sqrt{1-z^2}.
    \end{equation*}Dependiendo de la rama que consideremos, la función $ \sqrt{1-z^2}$ nos determina dos raíces cuadradas de $1-z^2$. Estableciendo la rama de la función multivaluada $ \sqrt{1-z^2}$ con la que trabajaremos, podemos utilizar la proposición 20.1(6) obteniendo:
    \begin{equation*}
    iw = \operatorname{log}\left(iz + \sqrt{1-z^2}\right) + i2k\pi, \quad k\in\mathbb{Z}.
    \end{equation*}Por lo que, para $k, n\in\mathbb{Z}$:
    \begin{align*}
    w &= \frac{1}{i}\operatorname{log}\left(iz + \sqrt{1-z^2}\right) + 2 k\pi\\
    &= \frac{1}{i} \left[\operatorname{ln}\left|iz + \sqrt{1-z^2}\right| + i\left(\operatorname{Arg}\left(iz + \sqrt{1-z^2}\right) + 2n\pi\right)\right] + 2 k\pi\\
    &= \frac{1}{i} \left[\operatorname{ln}\left|iz + \sqrt{1-z^2}\right| + i\left(\operatorname{Arg}\left(iz + \sqrt{1-z^2}\right) + 2m\pi\right)\right]\\
    &= \frac{1}{i} \left[\operatorname{ln}\left|iz + \sqrt{1-z^2}\right| + i\operatorname{arg}\left(iz + \sqrt{1-z^2}\right)\right]\\
    &= -i \operatorname{log}\left(iz + \sqrt{1-z^2}\right),
    \end{align*}donde $m=k+n\in\mathbb{Z}$.
  2. Se deja como ejercicio al lector
  3. Se deja como ejercicio al lector
  4. Sea $z = \operatorname{cot}(w)$. De acuerdo con la definición 22.2 sabemos que:
    \begin{equation*}
    \operatorname{cot}(w) = \frac{\operatorname{cos}(w)}{\operatorname{sen}(w)},
    \end{equation*}donde $w \neq k \pi$, con $k\in\mathbb{Z}$.

    Considerando lo anterior tenemos que:
    \begin{equation*}
    z = \operatorname{cot}(w) = i \left( \frac{e^{iw} + e^{-iw}}{e^{iw} – e^{-iw}}\right) = i \left( \frac{e^{i2w} + 1}{e^{i2w} – 1}\right),
    \end{equation*}de donde:
    \begin{equation*}
    -iz = \frac{e^{i2w} + 1}{e^{i2w} – 1}\quad \Longrightarrow e^{i2w} = \frac{iz – 1}{iz + 1} = \frac{z + i}{z – i}.
    \end{equation*}De acuerdo con la proposición 20.1(6) tenemos que:
    \begin{equation*}
    i2w = \operatorname{log}\left(\frac{z + i}{z – i}\right) + i2k \pi, \quad k\in\mathbb{Z}.
    \end{equation*}Entonces, para $k,n\in\mathbb{Z}$:
    \begin{align*}
    w & = \frac{1}{2i} \operatorname{log}\left(\frac{z + i}{z – i}\right) + k \pi\\
    & = \frac{1}{2i} \left[\operatorname{ln}\left|\frac{z + i}{z – i}\right| + i \left(\operatorname{Arg}\left(\frac{z+i}{z-i}\right) + 2\pi n\right) \right] + k \pi\\
    & = \frac{1}{2i} \left[\operatorname{ln}\left|\frac{z + i}{z – i}\right| + i \left(\operatorname{Arg}\left(\frac{z+i}{z-i}\right) + 2\pi m\right) \right]\\
    & = \frac{1}{2i} \left[\operatorname{ln}\left|\frac{z + i}{z – i}\right| + i \operatorname{arg}\left(\frac{z+i}{z-i}\right)\right]\\
    & = -\frac{i}{2} \operatorname{log}\left(\frac{z + i}{z – i}\right),
    \end{align*}donde $m=n+k \in\mathbb{Z}$.
  5. Se deja como ejercicio al lector.
  6. Se deja como ejercicio al lector

$\blacksquare$

Observación 23.2.
Puesto que todas las funciones inversas, de las funciones trigonométricas, están dadas en términos de la función multivaluada logaritmo, entonces también dichas funciones son multivaluadas. Más aún, de acuerdo con la proposición 23.1, debe ser claro que se puede elegir una rama de alguna de estas funciones eligiendo primero una rama de la función multivaluada raíz cuadrada y luego una rama adecuada del logaritmo de modo que la función en cuestión esté bien definida.

Ejemplo 23.1.
Supongamos que $z$ es un número real en el intervalo $(-1,1)$. Veamos que si utilizamos las ramas principales de las funciones multivaluadas raíz cuadrada y logaritmo complejo entonces obtenemos la rama principal de la función inversa de la función real seno.

Solución. Sean $z=x+iy\in\mathbb{C}$. Consideremos a la funciones multivaluadas:
\begin{equation*}
F(z) = \operatorname{log}(z) \quad \text{y} \quad G(z) = \sqrt{1-z^2} = e^{\frac{1}{2} \operatorname{Log}(1-z^2)} e^{ik\pi}, \,\, k=0,1.
\end{equation*}

Para la primera función tenemos que su corte de rama está dado por los $z=x+iy\in\mathbb{C}$ tales que:
\begin{equation*}
-\pi < \operatorname{Arg}(z) \leq \pi \quad \Longleftrightarrow \quad \left\{ \begin{array}{l}
\operatorname{Re}(z) = x \leq 0, \\
\\ \operatorname{Im}(z) = y = 0.
\end{array}
\right.
\end{equation*}

De manera análoga, para la segunda función tenemos que su corte de rama está dado por los $z=x+iy\in\mathbb{C}$ tales que:
\begin{equation*}
\left\{ \begin{array}{l}
\operatorname{Re}(1-z^2) = 1-x^2+y^2 \leq 0, \\
\\ \operatorname{Im}(1-z^2) = -2xy = 0.
\end{array}
\right.
\end{equation*}

Como trabajaremos con las ramas principales de ambas funciones y $z=x\in\mathbb{R}$, entonces los cortes de rama de cada función, son respectivamente:
\begin{equation*}
\left\{x\in\mathbb{R} : x\leq 0\right\} \quad \text{y} \quad \left\{x\in\mathbb{R} : |x|\geq 1\right\}.
\end{equation*}

Para $k=0$ tenemos de la segunda función que su rama principal es:
\begin{equation*}
g_0(z) := \sqrt{1-z^2} = e^{\frac{1}{2} \operatorname{Log}(1-z^2)}.
\end{equation*}

Como $|z|=|x|<1$, entonces la función $g_0$ está bien definida, más aún, tenemos que $ 0<1-z^2\leq 1$, por lo que $\operatorname{Arg}(1-z^2) = 0$, entonces:
\begin{equation*}
\operatorname{Log}(1-z^2) = \operatorname{ln}|1-z^2| + i \operatorname{Arg}(1-z^2) = \operatorname{ln}(1-z^2),
\end{equation*}de donde:
\begin{equation*}
e^{\frac{1}{2} \operatorname{Log}(1-z^2)} = \sqrt{1-x^2} \in \mathbb{R}^+.
\end{equation*}

Así, al considerar las ramas principales de ambas funciones tenemos que:
\begin{align*}
\operatorname{sen}^{-1}(z) & = -i \operatorname{Log}\left(iz +\sqrt{1-z^2}\right)\\
& = -i \operatorname{Log}\left(iz + e^{\frac{1}{2} \operatorname{Log}(1-z^2)}\right)\\
& = -i \operatorname{Log}\left(ix + \sqrt{1-x^2}\right).
\end{align*}

Dado que $iz$ es un número imaginario puro, entonces los valores que toma $iz + e^{\frac{1}{2} \operatorname{Log}(1-z^2)}$ están en la mitad derecha del plano complejo, por lo que no están en el corte de rama de la función logaritmo. De hecho, dichos valores están sobre la mitad de la circunferencia unitaria que está en la mitad derecha del plano complejo, figura 83, ya que:
\begin{equation*}
\left| iz +\sqrt{1-z^2} \right| = \sqrt{x^2+(1-x^2)} = 1.
\end{equation*}

Por lo tanto:
\begin{align*}
\operatorname{sen}^{-1}(z) & = -i \operatorname{Log}\left(ix + \sqrt{1-x^2}\right)\\
& = -i \operatorname{ln}\left|ix + \sqrt{1-x^2}\right| + \operatorname{Arg}\left(ix + \sqrt{1-x^2}\right)\\
& = \operatorname{Arg}\left(ix + \sqrt{1-x^2}\right),
\end{align*}

donde $-\dfrac{\pi}{2}<\operatorname{Arg}\left(ix + \sqrt{1-x^2}\right)<\dfrac{\pi}{2}$, entonces:
\begin{equation*}
-\dfrac{\pi}{2}<\operatorname{sen}^{-1}(z)<\dfrac{\pi}{2},
\end{equation*}para los $z=x\in\mathbb{R}$ tales que $|x|<1$.

Figura 83: Puntos $ix + \sqrt{1-x^2}$ para $x\in\mathbb{R}$ tales que $|x|<1$.

Ejemplo 23.2.
Resolvamos la ecuación $\operatorname{tan}(z)=2$.

Solución. De acuerdo con la proposición 23.1(3), si elegimos la rama principal del logaritmo tenemos que:
\begin{align*}
\operatorname{tan}^{-1}(2) & = \dfrac{i}{2} \operatorname{log}\left(\dfrac{i+2}{i-2}\right)\\
& = \dfrac{i}{2} \operatorname{log}\left(\dfrac{-3-4i}{5}\right)\\
& = \dfrac{i}{2}\left[ \operatorname{ln}\left|\dfrac{-3-4i}{5}\right| + i \left( \operatorname{Arg}\left(\dfrac{-3-4i}{5}\right) + 2 k\pi \right)\right]\\
& = \dfrac{i}{2}\left[ \operatorname{ln}\left(1\right) + i \left( \operatorname{arctan}\left(\dfrac{4}{3}\right) -\pi + 2 k\pi \right)\right]\\
& = \dfrac{1}{2}\left[ (2 k – 1)\pi – \operatorname{arctan}\left(\dfrac{4}{3}\right) \right], \quad k\in\mathbb{Z}.
\end{align*}

Observación 23.3.
Dado que las funciones inversas de las funciones trigonométricas complejas son multivaluadas, entonces debemos ser cuidadosos al derivar estas expresiones. En general, una vez establecidas las ramas de las funciones multivaluadas raíz cuadrada y logaritmo, se puede derivar las funciones inversas dentro de su dominio de analicidad mediante la regla de la cadena.

Proposición 23.2. (Derivadas funciones trigonométricas inversas.)

  1. $\dfrac{d}{dz}\operatorname{sen}^{-1}(z) = \dfrac{1}{\sqrt{1-z^2}}$, para $z\neq \pm 1$.
  2. $\dfrac{d}{dz}\operatorname{cos}^{-1}(z) = -\dfrac{1}{\sqrt{1-z^2}}$, para $z\neq \pm 1$.
  3. $\dfrac{d}{dz}\operatorname{tan}^{-1}(z) = \dfrac{1}{1+z^2}$, para $z\neq \pm i$.
  4. $\dfrac{d}{dz}\operatorname{cot}^{-1}(z) = -\dfrac{1}{1+z^2}$, para $z\neq \pm i$.
  5. $\dfrac{d}{dz}\operatorname{sec}^{-1}(z) = \dfrac{1}{z^2\sqrt{1-\frac{1}{z^2}}}$, para $z\neq \pm 1$ y $z\neq 0$.
  6. $\dfrac{d}{dz}\operatorname{csc}^{-1}(z) = – \dfrac{1}{z^2\sqrt{1-\frac{1}{z^2}}}$, para $z\neq \pm 1$ y $z\neq 0$.

Demostración.

  1. Una vez elegida una rama de la función multivaluada $\sqrt{1-z^2}$ y una adecuada rama para la función logaritmo, por la regla de la cadena tenemos que:
    \begin{align*}
    \dfrac{d}{dz}\operatorname{sen}^{-1}(z) & = \dfrac{d}{dz} = -i \operatorname{log}\left(iz +\sqrt{1-z^2}\right)\\
    & = -i \left(\dfrac{i-\dfrac{z}{\sqrt{1-z^2}}}{iz +\sqrt{1-z^2}}\right)\\
    & = -i \left(\dfrac{i\sqrt{1-z^2} – z}{\left[iz +\sqrt{1-z^2}\right] \sqrt{1-z^2}}\right)\\
    & = \dfrac{1}{\sqrt{1-z^2}}.
    \end{align*}Donde la igualdad se mantiene siempre que se utilice la misma rama de $\sqrt{1-z^2}$ tanto en la definición de la función $\operatorname{sen}^{-1}(z)$ como en la expresión de su derivada.
  2. Se deja como ejercicio al lector.
  3. Se deja como ejercicio al lector.
  4. Se deja como ejercicio al lector.
  5. Se deja como ejercicio al lector.
  6. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 23.3.
Consideremos a las ramas principales de la funciones multivaluadas raíz cuadrada y logaritmo y determinemos el valor de la derivada de la función $\operatorname{sen}^{-1}(z)$ en el punto $z=i$.

Solución. De acuerdo con el ejemplo 23.1, sabemos que los cortes de rama de las ramas principales de las funciones multivaluadas $\operatorname{log}(z)$ y $\sqrt{1-z^2}$ son, respectivamente:
\begin{equation*}
(-\infty,0]=\left\{z=x+iy\in\mathbb{C} : x \leq 0, y=0\right\} \quad \text{y} \quad A:= \left\{z=x+iy\in\mathbb{C} : |x|\geq 1, y=0\right\}.
\end{equation*}

Figura 84: Cortes de rama de las ramas principales de las funciones multivaluadas $\operatorname{log}(z)$ y $\sqrt{1-z^2}$.

De acuerdo con lo anterior, es claro que el punto $z=i$ no pertenece al corte de rama, de la rama principal de $\sqrt{1-z^2}$. Por otra parte, tenemos que $1-i^2 = 2$, entonces:
\begin{equation*}
i(i) + \sqrt{1-i^2} = -1+\sqrt{2},
\end{equation*}el cual no es un punto sobre el corte de rama, de la rama principal del logaritmo. Por lo tanto, de la proposición 23.2(1) se sigue que:
\begin{align*}
\left. \frac{d}{dz} \operatorname{sen}^{-1}(z) \right|_{z=i} & = \left. \dfrac{1}{\sqrt{1-z^2}}\right|_{z=i}\\
& = \dfrac{1}{\sqrt{1-i^2}}\\
& = \dfrac{1}{\sqrt{2}}.
\end{align*}

Por último, si utilizamos la rama principal de la función $\sqrt{1-z^2}$ tenemos:
\begin{align*}
\left. \sqrt{1-z^2} \right|_{z=i} = \left. e^{\frac{1}{2} \operatorname{Log}(1-z^2)} \right|_{z=i} & = e^{\frac{1}{2} \operatorname{Log}(1-i^2)} \\
& = e^{\frac{1}{2} \operatorname{Log}(2)}\\
& = e^{\frac{1}{2}\left[\operatorname{ln}|2| + i \operatorname{Arg}(2)\right]}\\
& = e^{\operatorname{ln}\left(\sqrt{2}\right)}\\
& = \sqrt{2}.
\end{align*}

Por lo que la derivada es $\dfrac{1}{\sqrt{2}}$, es decir, el resultado coincide con el valor obtenido al utilizar la fórmula de la derivada.

Ejemplo 23.4.
Consideremos ahora el punto $z=\sqrt{5}$. De acuerdo con el ejemplo anterior, es claro que dicho punto está en el corte de rama, de la rama principal de la función multivaluada $\sqrt{1-z^2}$, por lo que utilizando dicha rama no podemos obtener el valor de la función $\operatorname{sen}^{-1}(z)$ ni de su derivada en $z=\sqrt{5}$. Entonces procedemos a elegir una nueva rama para la raíz cuadrada de modo que sea posible determinar dichos valores.

Solución. Por simplicidad elegimos a la rama natural de la raíz, es decir:
\begin{equation*}
\sqrt{1-z^2} = e^{\frac{1}{2} \operatorname{Log}_{[0,2\pi)}(1-z^2)}, \quad 0 \leq \operatorname{Arg}(1-z^2) < 2\pi.
\end{equation*}

El corte de rama de esta función está dado por los $z=x+iy\in\mathbb{C}$ tales que:
\begin{align*}
0 \leq \operatorname{Arg}(1-z^2) < 2\pi & \quad \Longleftrightarrow \quad \left\{ \begin{array}{l}
\operatorname{Re}(1-z^2) = 1+y^2-x^2 \geq 0, \\
\\ \operatorname{Im}(1-z^2) = -2xy = 0.
\end{array}
\right.\\
& \\
& \quad \Longleftrightarrow \quad B:= \left\{z=x+iy\in\mathbb{C} : |x|\leq 1, y=0\right\} \cup \left\{z=x+iy\in\mathbb{C} : x=0, y\in\mathbb{R}\right\}.
\end{align*}

Figura 85: Corte de rama, de la rama natural, de la función multivaluada $\sqrt{1-z^2}$.

Para esta rama es claro que el punto $z=\sqrt{5}$ no está en su corte de rama, por tanto podemos utilizarla. Tenemos que $1-(\sqrt{5})^2 = -4$, entonces:
\begin{align*}
\operatorname{Log}_{[0,2\pi)}(-4) &= \operatorname{ln}|-4| + i\operatorname{Arg}_{[0,2\pi)}(-4)\\
&= \operatorname{ln}(4) + i\pi,
\end{align*}por lo que:
\begin{align*}
\left.\sqrt{1-z^2}\right|_{z=\sqrt{5}} & = \sqrt{1-(\sqrt{5})^2}\\
& = e^{\frac{1}{2} \operatorname{Log}_{[0,2\pi)}(-4)}\\
& = e^{\operatorname{ln}(2)} e^{i\frac{\pi}{2}}\\
&= 2i.
\end{align*}

Dado que $i \sqrt{5}+2i = i(2+\sqrt{5})$ no es un punto sobre el corte de rama, de la rama principal del logaritmo, entonces utilizaremos de nuevo dicha rama. Por lo que:
\begin{align*}
\left.\operatorname{sen}^{-1}(z)\right|_{z=\sqrt{5}} & = \left. – i\operatorname{Log}\left(iz+\sqrt{1-z^2}\right)\right|_{z=\sqrt{5}}\\
& = -i\operatorname{Log}\left(i\left(2+\sqrt{5} \right)\right)\\
& = -i\left[\operatorname{ln}\left|i\left(2+\sqrt{5} \right)\right| + i \operatorname{Arg}\left(i\left(2+\sqrt{5} \right)\right)\right]\\
& = -i\left[\operatorname{ln}\left(2+\sqrt{5}\right) + i \frac{\pi}{2}\right]\\
& = \frac{\pi}{2} -i\operatorname{ln}\left(2+\sqrt{5}\right).
\end{align*}

Mientras que:
\begin{align*}
\left. \frac{d}{dz} \operatorname{sen}^{-1}(z) \right|_{z=\sqrt{5}} & = \left. \dfrac{1}{\sqrt{1-z^2}}\right|_{z=\sqrt{5}}\\
&= \dfrac{1}{\sqrt{-4}}\\
&= \dfrac{1}{2i}\\
&= -\dfrac{i}{2}.
\end{align*}

Procediendo de forma completamente análoga que con la proposición 23.1, es posible establecer las expresiones para las funciones inversas de las funciones hiperbólicas, que al estar definidas en términos de la exponencial compleja, también resultan ser funciones multivaluadas.

Proposición 23.3. (Funciones hiperbólicas inversas.)

  1. $\operatorname{senh}^{-1}(z) = \operatorname{log}\left(z + \sqrt{z^2+1}\right)$.
  2. $\operatorname{cosh}^{-1}(z) = \operatorname{log}\left(z + \sqrt{z^2-1}\right)$.
  3. $\operatorname{tanh}^{-1}(z) = \dfrac{1}{2} \operatorname{log}\left(\dfrac{1+z}{1-z}\right)$, para $z\neq \pm 1$.
  4. $\operatorname{coth}^{-1}(z) = \dfrac{1}{2} \operatorname{log}\left(\dfrac{z+1}{z-1}\right)$, para $z\neq \pm 1$.
  5. $\operatorname{sech}^{-1}(z) = \operatorname{log}\left(\dfrac{1 + z\sqrt{\dfrac{1}{z^2}-1}}{z}\right)$, para $z\neq 0$.
  6. $\operatorname{csch}^{-1}(z) = \operatorname{log}\left(\dfrac{1 + z\sqrt{\dfrac{1}{z^2}+1}}{z}\right)$, para $z\neq 0$.

Demostración.

  1. Se deja como ejercicio al lector.
  2. Sea $z = \operatorname{cosh}(w)$. De acuerdo con la definición 22.3 tenemos que:
    \begin{equation*}
    z = \operatorname{cosh}(w) = \frac{e^{w} + e^{-w}}{2},
    \end{equation*}de donde:
    \begin{equation*}
    (e^{w})^2-2z(e^{w}) + 1 = 0.
    \end{equation*}Resolvemos la ecuación cuadrática para $e^w$ utilizando la fórmula general, entonces:
    \begin{equation*}
    e^{w} = \frac{2z + \sqrt{4(z^2-1)}}{2} = z + \sqrt{z^2-1},
    \end{equation*}donde la función multivaluada $\sqrt{z^2-1}$ determina dos raíces complejas de $z^2-1$. Por lo que, una vez establecida la rama de dicha función multivaluada, podemos utilizar la proposición 20.1(6), para $k, n\in\mathbb{Z}$, como sigue:
    \begin{align*}
    w &= \operatorname{log}\left(z + \sqrt{z^2-1}\right) + i2k\pi\\
    &= \operatorname{ln}\left|z + \sqrt{z^2-1}\right| + i\left(\operatorname{Arg}\left(z + \sqrt{z^2-1}\right) + 2m\pi\right)\\
    &= \operatorname{ln}\left|z + \sqrt{z^2-1}\right| + i\operatorname{arg}\left(z + \sqrt{z^2-1}\right)\\
    &= \operatorname{log}\left(z + \sqrt{z^2-1}\right),
    \end{align*}donde $m=k+n\in\mathbb{Z}$.
  3. Se deja como ejercicio al lector.
  4. Se deja como ejercicio al lector.
  5. Se deja como ejercicio al lector.
  6. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 23.5.
Veamos que $\operatorname{tanh}^{-1}\left(\dfrac{1}{z}\right) = \operatorname{coth}^{-1}\left(z\right)$.

Solución. Sea $z\in\mathbb{C}\setminus\{-1,1,0\}$, entonces:
\begin{align*}
\operatorname{tanh}^{-1}\left(\dfrac{1}{z}\right) & = \dfrac{1}{2} \operatorname{log}\left(\dfrac{1+\dfrac{1}{z}}{1-\dfrac{1}{z}}\right)\\
& = \dfrac{1}{2} \operatorname{log}\left(\dfrac{z+1}{z-1}\right)\\
& = \operatorname{coth}^{-1}\left(z\right).
\end{align*}

Proposición 23.4. (Derivadas funciones hiperbólicas inversas.)

  1. $\dfrac{d}{dz}\operatorname{senh}^{-1}(z) = \dfrac{1}{\sqrt{1+z^2}}$, para $z\neq \pm i$.
  2. $\dfrac{d}{dz}\operatorname{cosh}^{-1}(z) = \dfrac{1}{\sqrt{z^2 – 1}}$, para $z\neq \pm 1$.
  3. $\dfrac{d}{dz}\operatorname{tanh}^{-1}(z) = \dfrac{1}{1-z^2}$, para $z\neq \pm 1$.
  4. $\dfrac{d}{dz}\operatorname{coth}^{-1}(z) = \dfrac{1}{1-z^2}$, para $z\neq \pm 1$.
  5. $\dfrac{d}{dz}\operatorname{sech}^{-1}(z) = -\dfrac{1}{z^2\sqrt{\dfrac{1}{z^2}-1}}$, para $z\neq \pm 1$ y $z\neq 0$.
  6. $\dfrac{d}{dz} \operatorname{csch}^{-1}(z) = – \dfrac{1}{z^2\sqrt{\dfrac{1}{z^2}+1}}$, para $z\neq \pm i$ y $z\neq 0$.

Demostración.

  1. Se deja como ejercicio al lector.
  2. Una vez establecida una rama de la función multivaluada $\sqrt{z^2-1}$ y una adecuada rama para la función logaritmo, procedemos a derivar utilizando la regla de la cadena, entonces:
    \begin{align*}
    \dfrac{d}{dz}\operatorname{cosh}^{-1}(z) & = \dfrac{d}{dz} \operatorname{log}\left(z + \sqrt{z^2-1}\right)\\
    & = \dfrac{1+\dfrac{z}{\sqrt{z^2-1}}}{z + \sqrt{z^2-1}}\\
    & = \dfrac{z +\sqrt{z^2-1}}{\left(z +\sqrt{z^2-1} \,\right) \sqrt{z^2-1}}\\
    & = \dfrac{1}{\sqrt{z^2-1}}.
    \end{align*}Donde la igualdad se mantiene siempre que se utilice la misma rama de $\sqrt{z^2-1}$ tanto en la definición de la función $\operatorname{cosh}^{-1}(z)$ como en la expresión de su derivada.
  3. Se deja como ejercicio al lector.
  4. Se deja como ejercicio al lector.
  5. Se deja como ejercicio al lector.
  6. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 23.6.
Utilizando la rama natural de la función $\sqrt{z^2-1}$ y la rama principal del logaritmo determinemos:
a) $\operatorname{cosh}^{-1}\left(\dfrac{1}{\sqrt{2}}\right)$.
b) $\dfrac{d}{dz}\operatorname{cosh}^{-1}\left(\dfrac{1}{\sqrt{2}}\right)$.

¿Es posible determinar los valores de cada inciso si se considera la rama principal de la función $\sqrt{z^2-1}$?

Solución. De acuerdo con el ejercicio 13.15, sabemos que para la función multivaluada $\sqrt{z^2-1}$ los cortes de rama, considerando las ramas principal y natural son, respectivamente:
\begin{equation*}
\left\{z=x+iy\in\mathbb{C} : |x|\leq 1, y=0\right\} \quad \text{y} \quad \left\{z=x+iy\in\mathbb{C} : |x|\geq 1, y=0\right\}.
\end{equation*}

Dado que $z=\dfrac{1}{\sqrt{2}}$ y $|z|<1$, entonces dicho punto está sobre el corte de rama, de la rama principal de la función $\sqrt{z^2-1}$, por tanto no podemos utilizar dicha rama para determinar los valores que nos pide cada inciso.

Por otra parte, es claro que $z=\dfrac{1}{\sqrt{2}}$ no está sobre el corte de rama, de la rama natural de la función $\sqrt{z^2-1}$, entonces:
\begin{equation*}
\sqrt{1-z^2} = e^{\frac{1}{2} \operatorname{Log}_{[0,2\pi)}(z^2-1)}, \quad 0 \leq \operatorname{Arg}(z^2-1) < 2\pi.
\end{equation*}

Tenemos que:
\begin{align*}
\operatorname{Log}_{[0,2\pi)}\left(\left(\dfrac{1}{\sqrt{2}}\right)^2 – 1\right) = \operatorname{Log}_{[0,2\pi)}\left(-\dfrac{1}{2}\right)
&=\operatorname{ln}\left|-\dfrac{1}{2}\right| + i\operatorname{Arg}_{[0,2\pi)}\left(-\dfrac{1}{2}\right)\\
&= -\operatorname{ln}(2) + i \pi,
\end{align*}por lo que:
\begin{align*}
\left.\sqrt{z^2-1}\right|_{z=\frac{1}{\sqrt{2}}} & = \sqrt{\left(\dfrac{1}{\sqrt{2}}\right)^2 – 1}\\
& = e^{\frac{1}{2} \operatorname{Log}_{[0,2\pi)}\left(-\frac{1}{2}\right)}\\
& = e^{-\frac{\operatorname{ln}(2)}{2}} e^{-\frac{\pi}{2}}\\
&= i\frac{1}{\sqrt{2}}.
\end{align*}

Dado que $\dfrac{1}{\sqrt{2}} + i\dfrac{1}{\sqrt{2}} = \dfrac{1}{\sqrt{2}}\left(1+i\right)$ no es un punto sobre el corte de rama, de la rama principal del logaritmo, entonces utilizaremos de nuevo dicha rama. Por lo que:
\begin{align*}
\left.\operatorname{cosh}^{-1}(z)\right|_{z=\frac{1}{\sqrt{2}}} & = \left. \operatorname{Log}\left(z+\sqrt{z^2-1}\right)\right|_{z=\frac{1}{\sqrt{2}}}\\
& =\operatorname{Log}\left( \dfrac{1}{\sqrt{2}}\left(1+i\right)\right)\\
& =\operatorname{ln}\left| \dfrac{1}{\sqrt{2}}\left(1+i\right)\right| + i \operatorname{Arg}\left( \dfrac{1}{\sqrt{2}}\left(1+i\right)\right)\\
& = \operatorname{ln}\left(1\right) + i \frac{\pi}{4}\\
& = i\frac{\pi}{4}.
\end{align*}

Mientras que:
\begin{align*}
\left. \frac{d}{dz} \operatorname{cosh}^{-1}(z) \right|_{z=\frac{1}{\sqrt{2}}} & = \left. \dfrac{1}{\sqrt{z^2-1}}\right|_{z=\frac{1}{\sqrt{2}}}\\
&= \dfrac{1}{\sqrt{-\frac{1}{2}}}\\
&= \dfrac{1}{\frac{i}{\sqrt{2}}}\\
&= -i\sqrt{2}.
\end{align*}

Tarea moral

  1. Completa las demostraciones de las proposiciones de esta entrada.
  2. Sean $w=\operatorname{cos}(z)$ y $\zeta = e^{iz}$. Muestra que:
    \begin{align*}
    \zeta & = w+\sqrt{w^2-1},\\
    \operatorname{cos}^{-1}(w) & = -i\operatorname{log}\left(w\pm \sqrt{w^2-1}\right).
    \end{align*}
  3. Muestra que los puntos de ramificación de la función multivaluada $\operatorname{sen}^{-1}(z)$ son $z=\pm 1$.
  4. Demuestra que si $a\in\mathbb{R}$ y $a>1$, entonces:
    \begin{equation*}
    \operatorname{tanh}^{-1}(a) = \operatorname{Log}\sqrt{\frac{a+1}{a-1}} + i \frac{2k+1}{2} \pi, \quad k\in\mathbb{Z}.
    \end{equation*}
  5. Muestra que si se usa la misma rama de la función $\sqrt{1-z^2}$ en la definición de las funciones multivaluadas $\operatorname{sen}^{-1}(z)$ y $\operatorname{cos}^{-1}(z)$, proposición 23.1, entonces:
    a) $\operatorname{sen}^{-1}(z) + \operatorname{cos}^{-1}(z) = 2k\pi +\frac{\pi}{2}, \,\, k\in\mathbb{Z}$.
    b) $\operatorname{tan}^{-1}(z) + \operatorname{cot}^{-1}(z) = k\pi -\frac{\pi}{2}, \,\, k\in\mathbb{Z}$.
  6. Resuelve las siguientes ecuaciones:
    a) $\operatorname{senh}(5z+i) = -\sqrt{3} i$.
    b) $\operatorname{tanh}\left(\frac{z-3}{2}\right) = -1+ i$.
    c) $\operatorname{cot}(z) = 2i$.
    d) $\operatorname{cosh}^2(z) = -1$.
  7. Prueba que:
    \begin{equation*}
    \operatorname{tanh}^{-1}\left(e^{i\theta}\right) = \frac{1}{2} \operatorname{log}\left(i \operatorname{cot}\left(\frac{\theta}{2}\right)\right).
    \end{equation*}Determina una expresión similar para $\operatorname{tan}^{-1}\left(e^{i\theta}\right)$.
  8. Demuestra que:
    \begin{equation*}
    \operatorname{tan}\left(i \operatorname{log}\left(\frac{a-ib}{a+ib}\right)\right) = \frac{2ab}{a^2 – b^2}.
    \end{equation*}Hint: sustituye $z$ por $\dfrac{2ab}{a^2 – b^2}$ en la definición de $\operatorname{tan}^{-1}(z)$.
  9. Determina los puntos de ramificación de las siguientes funciones:
    a) $\operatorname{cos}^{-1}(z)$.
    b) $\operatorname{tan}^{-1}(z^2+2z+1)$.

Más adelante…

En esta entrada hemos abordado de manera general las definiciones de las funciones inversas de las funciones trigonométricas e hiperbólicas. Vimos que estas funciones resultan ser funciones multivaluadas, por lo que es importante recordar los conceptos de la entrada 13 referentes a este tipo de funciones, como los conceptos de rama de una función multivaluada, corte de rama y puntos de ramificación, ya que a través de estos conceptos es posible determinar de manera clara los dominios de analicidad de dichas funciones. Así mismo, vimos que una vez definida una rama de alguna de estas funciones inversas, es posible determinar su derivada a través de la regla de la cadena.

La siguiente entrada abordaremos el concepto de transformación, que como hemos visto en nuestros cursos de Geometría y Álgebra Lineal resulta ser una herramienta muy útil para el estudio de funciones de varias variables, en este caso para las funciones complejas, ya que a través de dicho concepto podremos dar una interpretación geométrica del comportamiento de las funciones complejas.

Entradas relacionadas

Variable Compleja I: Funciones complejas elementales como series de potencias

Por Pedro Rivera Herrera

Introducción

En la entrada 16 abordamos algunas de las funciones elementales en el estudio de la variable compleja. Vimos que todas las funciones de dicha entrada estaban motivadas por la extensión de las funciones reales a $\mathbb{C}$, además de que todas las funciones definidas en dicha entrada estuvieron dadas en términos de la función exponencial compleja, por lo que nos resulta de gran interés estudiar a detalle las propiedades de dicha función y justificar el por qué la definición dada para dicha función realmente extiende a la función exponencial real.

En esta entrada abordaremos de nueva cuenta a algunas de las funciones elementales desde el sentido complejo, pero utilizando series de potencias. Como veremos, esta caracterización nos permitirá entender mejor la analicidad de dichas funciones.

Primeramente consideremos la definición de la función exponencial como una serie de potencias dada en nuestros cursos de cálculo. Si $x \in \mathbb{R}$, entonces:
\begin{equation*}
\operatorname{exp}(x) = e^x = \sum_{n=0}^\infty \frac{x^n}{n!} \tag{31.1}.
\end{equation*}

De acuerdo con la definición 20.1, tenemos que si $z=x+iy\in\mathbb{C}$, entonces la función exponencial compleja está dada por:
\begin{equation*}
\operatorname{exp}(z) = e^x\left[\operatorname{cos}(y) + i \operatorname{sen}(y)\right]. \tag{31.2}
\end{equation*}

Por la fórmula de Euler tenemos que si $z\in\mathbb{C}$ es un número complejo puro, es decir, $z=iy$ con $y\in\mathbb{R}$, entonces:
\begin{equation*}
\operatorname{exp}(iy) =\operatorname{cos}(y) + i \operatorname{sen}(y). \tag{31.3}
\end{equation*}

Motivados en la definición de la función exponencial para el caso real (31.1), veamos que mediante series de potencias podemos dar una definición similar para el caso complejo, que extienda de manera natural a la exponencial real a su versión compleja. Más aún, veamos que a través de dicha definición podemos justificar la definición (31.2) y todos los resultados de la entrada 20, como la fórmula de Euler (31.1), que resultarán ser consecuencia de esta expansión en series y sus propiedades.

Entonces, la pregunta fundamental es ¿cómo podemos llegar a una expresión similar a la de (31.1) para el caso complejo?

Sea $z\in\mathbb{C}$. Definimos a la función:
\begin{equation*}
f(z) = \sum_{n=0}^\infty c_n z^n.
\end{equation*}

Dado que $f$ es nuestra función candidata a ser la exponencial compleja, de acuerdo con las propiedades de la exponencial compleja vistas en la entrada 20, planteamos la siguiente ecuación diferencial con condición inicial.
\begin{equation*}
f(z) = f'(z), \quad f(0) = 1 \tag{31.4}
\end{equation*}

La respuesta a nuestra pregunta está dada por la solución de la ecuación diferencial anterior.

Tenemos que:
\begin{equation*}
f(z) = c_0 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots,
\end{equation*}como la función exponencial es entera, entonces el radio de convergencia de la serie que define a $f$ debe ser infinito, entonces, por la proposición 30.2 tenemos que el de su derivada también es infinito y $f’$ deberá estar dada por la derivada término a término de la serie que la define, es decir:
\begin{align*}
f(z) = c_0 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots,\\
f'(z) = c_1 + 2c_2 z + 3c_3 z^2 + 4 c_4 z^3 + \cdots .
\end{align*}

Como $f(z) = f'(z)$, entonces, por el corolario 30.2, los coeficientes de ambas series deben ser iguales, es decir:
\begin{equation*}
c_0 = c_1, \,\, c_1 = 2 c_2, \,\, c_2 = 3 c_3, \,\, \ldots, c_{n-1} = n c_n,
\end{equation*}de donde $c_n = \dfrac{1}{n} c_{n-1}$, para todo $n\geq 1$.

Considerando lo anterior y la condición inicial $f(0) = 1$, entonces $c_0 = 1$, por lo que:
\begin{equation*}
c_1 = 1, \,\, c_2 = \frac{1}{2} = \frac{1}{2!}, \,\, c_3 = \left(\frac{1}{3}\right) \left(\frac{1}{2}\right) = \frac{1}{3!}, \,\, \ldots \,\, , c_{n} = \left( \frac{1}{n}\right)\left( \frac{1}{(n-1)!}\right) = \frac{1}{n!}.
\end{equation*}

Por lo que, la solución a la ecuación diferencial (31.4) es:
\begin{equation*}
f(z) = \sum_{n=0}^\infty \frac{z^n}{n!}, \forall z\in\mathbb{C}.
\end{equation*}

Definición 31.1. (Exponencial compleja como serie de potencias.)
Sea $z \in\mathbb{C}$, entonces definimos a la exponencial compleja como la serie de potencias:
\begin{equation*}
\operatorname{exp}(z) = \sum_{n=0}^\infty \frac{z^n}{n!}. \tag{31.5}
\end{equation*}

Observación 31.1.
En el ejemplo 27.8 hemos probado que la serie de potencias que define a la exponencial compleja es absolutamente convergente para todo $z\in\mathbb{C}$. Por lo que la función exponencial compleja está bien definida para todo $z\in\mathbb{C}$.

Podemos mencionar algunas de las propiedades más importantes de esta función, dada como series de potencias, en la siguiente:

Proposición 31.1. (Propiedades de la exponencial compleja.)
La función exponencial compleja definida como en (31.5) satisface las siguientes propiedades.

  1. Es una función entera y para todo $z\in\mathbb{C}$ se cumple que $\dfrac{d}{dz} \operatorname{exp}(z) = \operatorname{exp}(z)$.
  2. $\operatorname{exp}(0) = 1$.
  3. $\operatorname{exp}(z_1 + z_2) = \operatorname{exp}(z_1) \operatorname{exp}(z_2)$ para todo $z_1, z_2 \in\mathbb{C}$.
  4. $\operatorname{exp}(z) \neq 0$ para todo $z\in\mathbb{C}$.
  5. $\operatorname{exp}(-z) = \dfrac{1}{\operatorname{exp}(z)}$ y $\operatorname{exp}(z_1 – z_2) = \dfrac{\operatorname{exp}(z_1)}{\operatorname{exp}(z_2)}$, para cualesquiera $z, z_1, z_2 \in\mathbb{C}$.
  6. $\overline{\operatorname{exp}(z)} = \operatorname{exp}\left(\overline{z}\right)$ para todo $z\in\mathbb{C}$.
  7. Para todo $z\in\mathbb{C}$ se cumple que $|\operatorname{exp}(z)| = \operatorname{exp}\left(\operatorname{Re}(z)\right)$, de donde:
    \begin{equation*}
    |\operatorname{exp}(i\theta)| = 1 \quad \Longleftrightarrow \quad \theta \in\mathbb{R} \quad \text{y} \quad |\operatorname{exp}(z)| \leq \operatorname{exp}(|z|).
    \end{equation*}

Demostración.

  1. Sea $z\in\mathbb{C}$, entonces, por la proposición 30.2 se cumple que:
    \begin{equation*}
    \dfrac{d}{dz} \operatorname{exp}(z) = \dfrac{d}{dz} \sum_{n=0}^\infty \frac{z^n}{n!} = \sum_{n=1}^\infty \frac{n z^{n-1}}{n (n-1)!} = \sum_{n=0}^\infty \frac{z^n}{n!} = \operatorname{exp}(z).
    \end{equation*}
  2. Es inmediata de la definición de la función exponencial compleja.
  3. Sean $z_1, z_2 \in\mathbb{C}$, entonces:
    \begin{equation*}
    \operatorname{exp}(z_1) = \sum_{n=0}^\infty \frac{z_1^n}{n!} \quad \text{y} \quad \operatorname{exp}(z_2) = \sum_{n=0}^\infty \frac{z_2^n}{n!}.
    \end{equation*}Por el ejemplo 27.8 sabemos que ambas series son absolutamente convergentes. Del ejemplo 27.11, tenemos que el producto de Cauchy de dichas series es:
    \begin{equation*}
    \sum_{n=0}^\infty c_n = \sum_{n=0}^\infty \frac{(z_1 + z_2)^n}{n!}.
    \end{equation*}Por último, por el ejemplo 27.12, sabemos que el producto de estas series absolutamente convergentes, converge a su producto de Cauchy, es decir:
    \begin{align*}
    \operatorname{exp}(z_1) \operatorname{exp}(z_2) & = \left(\sum_{n=0}^\infty \frac{z_1^n}{n!}\right) \left(\sum_{n=0}^\infty \frac{z_2^n}{n!}\right)\\
    & = \sum_{n=0}^\infty \frac{(z_1 + z_2)^n}{n!}\\
    & = \operatorname{exp}(z_1 + z_2).
    \end{align*}Por inducción es fácil verificar que:
    \begin{equation*}
    \prod_{i=1}^n \operatorname{exp}(z_i) = \operatorname{exp}\left( \sum_{i=1}^n z_i\right), \quad \forall n\geq 2.
    \end{equation*}
  4. Se sigue de los incisos 2 y 3, por lo que los detalles se dejan como ejercicio al lector.
  5. Se sigue de los incisos 2 y 3, por lo que los detalles se dejan como ejercicio al lector.
  6. El resultado se sigue de la proposición 27.2(2).
  7. Sea $z\in\mathbb{C}$. Sabemos que:
    \begin{equation*}
    \operatorname{Re}(z) = \frac{z + \overline{z}}{2} \quad \text{y} \quad |z|^2 = z \overline{z}.
    \end{equation*}De los incisos 3, 4 y 6 tenemos que:
    \begin{equation*}
    |\operatorname{exp}(z)|^2 = \operatorname{exp}(z) \overline{\operatorname{exp}(z)} = \operatorname{exp}(z) \operatorname{exp}\left(\overline{z}\right) = \operatorname{exp}\left(z+\overline{z}\right) = \operatorname{exp}\left(2 \operatorname{Re}(z)\right) = \left[\operatorname{exp}\left(\operatorname{Re}(z)\right)\right]^2 >0,
    \end{equation*}de donde:
    \begin{equation*}
    |\operatorname{exp}(z)| = \operatorname{exp}\left(\operatorname{Re}(z)\right).
    \end{equation*}La parte restante del resultado se sigue de esta última igualdad, por lo que los detalles se dejan como ejercicio al lector.

$\blacksquare$

Es claro que si $z=x\in\mathbb{R}$, entonces las definiciones (31.5) y (31.1), correspondientes con la exponencial compleja y la exponencial real, coinciden. Sin embargo, procedemos a verificar que en efecto la exponencial compleja extiende a la exponencial real de manera formal.

Recordemos los siguientes resultados de Cálculo.

Teorema 31.1. (Teorema del Valor Intermedio.)
Sea $f:[a, b] \to \mathbb{R}$ una función continua en $[a, b]$. Entonces, para todo $y$ entre $f(a)$ y $f(b)$ existe $c\in [a, b]$ tal que $f(c) = y$.

Teorema 31.2. (Teorema del Valor Medio.)
Sea $f:[a,b] \to \mathbb{R}$ una función continua en $[a, b]$ y diferenciable en $(a, b)$. Entonces, existe $c\in (a, b)$ tal que:
\begin{equation*}
f'(c) = \frac{f(b) – f(a)}{b – a}.
\end{equation*}

Lema 31.1.
Si $f:(a,b) \to \mathbb{R}$ es una función diferenciable en $(a, b)$ tal que $f'(x)>0$ para todo $x\in(a, b)$, entonces $f$ es estrictamente creciente en $(a, b)$.

Demostración. Es una consecuencia de teorema del valor medio, por lo que se deja como ejercicio al lector.

$\blacksquare$

Lema 31.2.
Si $f:[a,b] \to \mathbb{R}$ es una función estrictamente creciente en $[a, b]$, entonces $f$ es inyectiva.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Lema 31.3.
Sea $I\subset\mathbb{R}$ un intervalo. Si $f:I \to \mathbb{R}$ es una función continua e inyectiva. Entonces $f^{-1}$ es continua.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Puede consultarse la prueba de estos resultados en alguno de los siguientes textos:

  • Elementary Analysis: The Theory of Calculus de Kenneth A. Ross.
  • An Introduction to Analysis de William R. Wade.
  • An Introduction to Analysis de James R. Kirkwood.

Procedemos con el resultado.

Corolario 31.1. ($\pmb{e^x = \operatorname{exp}|_{\mathbb{R}}(x)}$.)
Si $z = x+i0 \in\mathbb{C}$, con $x\in\mathbb{R}$, entonces la función $u(x) = \operatorname{exp}|_{\mathbb{R}}(x)$, es decir, la exponencial compleja restringida a $\mathbb{R}$, satisface lo siguiente:

  1. $u$ es una función real, continua y estrictamente creciente en su dominio $\mathbb{R}$.
  2. $u(\mathbb{R}) = (0, \infty)$.
  3. $u$ es un homeomorfismo, definición 9.2, entre $\mathbb{R}$ y $(0, \infty)$ y la única solución de la ecuación $u(0)=1$ es $x=0$.

Demostración. Dadas las hipótesis.

  1. De acuerdo con la definición 30.1, es claro que al evaluar la expresión (31.5) con $z=x\in\mathbb{R}$, la función $u(x) = \operatorname{exp}(x)$ es una función real de variable real. La continuidad de la función $u$ se sigue de la proposición 31.1(1), pues la exponencial compleja es una función entera y por tanto continua en $\mathbb{C}$, proposición 16.1, en particular es continua en $\mathbb{R}\subset\mathbb{C}$.

    Por otra parte, de la proposición 31.1(4) sabemos que para todo $z\in\mathbb{C}$ se cumple que $\operatorname{exp}(z) \neq 0$, y por el inciso 2, de la misma proposición, para todo $z=x\in\mathbb{R}$ tenemos que:
    \begin{equation*}
    u(x) = \operatorname{exp}(x) = \operatorname{exp}\left(\frac{x}{2} + \frac{x}{2} \right) = \left[\operatorname{exp}\left(\frac{x}{2}\right)\right]^2 >0.
    \end{equation*}Dado que $u'(x) = u(x) > 0$, proposición 31.1(1), entonces se sigue del lema 31.1 que la función $u$ es estrictamente creciente en $\mathbb{R}$.
  2. Como $u$ es continua y $\mathbb{R}$ es un conjunto conexo, entonces de la proposición 10.3 se sigue que $u(\mathbb{R}) = \operatorname{exp}(\mathbb{R}) \subset{\mathbb{R}}$ debe ser un conjunto conexo, por lo tanto, proposición 10.1, es un intervalo. Puesto que para todo $z=x\in\mathbb{R}$ se cumple que $u(x)>0$, entonces $u(\mathbb{R}) \subset (0, \infty)$.

    Probemos la otra contención. De acuerdo con la definición de $u$, es claro que para $z = x>0$ se cumple que:
    \begin{equation*}
    u(x) = \operatorname{exp}(x) > 1 + x,
    \end{equation*}por lo que:
    \begin{equation*}
    \lim_{x \to\infty} u(x) = \infty. \tag{31.6}
    \end{equation*}Dado que para todo $z\in\mathbb{C}$ se cumple que $\operatorname{exp}(z) = 1/\operatorname{exp}(-z)$, proposición 31.1(5), entonces, para $z=t\in\mathbb{R}$ tal que $t<0$, es claro que:
    \begin{equation*}
    \lim_{t \to -\infty} u(t) = \lim_{-t \to \infty} \frac{1}{u(-t)} = \lim_{x \to\infty} \frac{1}{u(x)} = 0. \tag{31.7}
    \end{equation*}Sea $L>0$. De acuerdo con la definición del límite, de (31.6) se sigue que si $K=L>0$, entonces existe $M>0$ tal que:
    \begin{equation*}
    f(x) > K, \quad \text{si} \quad x>M.
    \end{equation*}En particular, para $x=M+1$ tenemos que $u(M+1) > L$.

    Análogamente, considerando la definición del límite (31.7), si $\varepsilon=L>0$, entonces existe $N<0$ tal que:
    \begin{equation*}
    |u(x) – 0| = |u(x)| = u(x) < L, \quad \text{si} \quad x < N.
    \end{equation*}Entonces, para $x=N-1$ tenemos que $u(N-1) < L$. Por lo tanto, dado $L>0$ existen $a=N-1<0$ y $b = M+1>0$ tales que:
    \begin{equation*}
    u(a) < L < u(b).
    \end{equation*}Como $u$ es continua en $\mathbb{R}$, en particular lo es en $(a, b)$, entonces, del teorema del valor intermedio se sigue que existe $c\in(a, b)$ tal que $u(c) = L$, lo cual prueba la contención restante, por lo que $u(\mathbb{R}) = (0, \infty)$.
  3. Dado que $u$ es estrictamente creciente, entonces, del lema 31.2 se sigue que es una función inyectiva. Por otra parte, del inciso anterior tenemos que $u:\mathbb{R} \to (0,\infty)$ es una función suprayectiva, por lo que $u$ es una función biyectiva y por tanto invertible. Denotamos a $u^{-1}(y)=x$ como la función inversa, entonces $u^{-1}$ es continua, lema 31.3, ya que $u$ es continua e inyectiva, por lo que $\mathbb{R}$ y $(0, \infty)$ son homeomorfos, definición 9.2.

    Como $u$ es inyectiva es claro que la única solución de la ecuación $u(0)=1$ es $x=0$.

$\blacksquare$

Observación 31.2.
De acuerdo con estos resultados, es claro que para $z=x\in\mathbb{R}$, la definición de la exponencial compleja dada en (31.5) se reduce al caso real dado por (31.1), por lo que de manera natural hemos hecho una extensión de la función exponencial real a $\mathbb{C}$, y como la serie que define a la exponencial converge absolutamente para todo $z\in\mathbb{C}$, entonces podemos utilizar las expresiones $e^z$ y $\operatorname{exp}(z)$ de manera indistinta para referirnos a la función exponencial compleja.

De nuestros cursos de cálculo, sabemos que las series de potencias de las funciones trigonométricas reales seno y coseno son:
\begin{align*}
\operatorname{sen}(x) = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n+1)!},\\
\operatorname{cos}(x) = \sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{(2n)!}.
\end{align*}

Notemos que si $z = iy \in\mathbb{C}$, con $y\in\mathbb{R}$, entonces:
\begin{align*}
\operatorname{exp}(iy) & = \sum_{n=0}^\infty \frac{(iy)^n}{n!}\\
& = 1 + iy – \frac{y^2}{2!} – i\frac{y^3}{3!} + \frac{y^4}{4!} + i \frac{y^5}{5!} – \frac{y^6}{6!} – i
\frac{y^7}{7!} + \frac{y^8}{8!} + \cdots\\
& = \left( 1 – \frac{y^2}{2!} + \frac{y^4}{4!} – \frac{y^6}{6!} + \frac{y^8}{8!} – \cdots \right) + i \left( y – \frac{y^3}{3!} + \frac{y^5}{5!} – \frac{y^7}{7!} – \cdots \right)\\
& = \sum_{n=0}^\infty \frac{(-1)^n y^{2n}}{(2n)!} + i \sum_{n=0}^\infty \frac{(-1)^n y^{2n+1}}{(2n+1)!}\\
& = \operatorname{cos}(y) + i \operatorname{sen}(y).
\end{align*}

De acuerdo con la proposición 31.1(3), para $z = x+ iy \in\mathbb{C}$ se tiene que:
\begin{align*}
e^z = \operatorname{exp}(z) & = \operatorname{exp}(x + iy)\\
& = \operatorname{exp}(x) \operatorname{exp}(iy)\\
& = e^x \left[ \operatorname{cos}(y) + i \operatorname{sen}(y)\right],
\end{align*}lo cual justifica la definición 20.1 y por tanto todos los resultados de las entradas 20, 21, 22 y 23 son válidos.

De manera análoga, se puede utilizar la definición en series de potencias de la función exponencial compleja y las definiciones de las funciones trigonométricas e hiperbólicas, dadas en la entrada 22, para obtener sus correspondientes definiciones en series de potencias, que extienden de manera natural a $\mathbb{C}$ a sus versiones reales.

Proposición 31.2. (Series de las funciones trigonométricas e hiperbólicas seno y coseno.)
Sea $z\in\mathbb{C}$, entonces:
\begin{align*}
\operatorname{sen}(z) := \sum_{n=0}^\infty \frac{(-1)^n z^{2n+1}}{(2n+1)!}, \tag{31.8} \\
\operatorname{cos}(z) := \sum_{n=0}^\infty \frac{(-1)^n z^{2n}}{(2n)!}, \tag{31.9}\\
\operatorname{senh}(z) := \sum_{n=0}^\infty \frac{z^{2n+1}}{(2n+1)!}, \tag{31.10} \\
\operatorname{cosh}(z) := \sum_{n=0}^\infty \frac{z^{2n}}{(2n)!}. \tag{31.11}
\end{align*}

Demostración. La demostración es análoga para las cuatro funciones y se sigue de las definiciones 22.1, 22.3, 31.1 y de la proposición 27.2(1). Para ejemplificar el procedimiento realicemos la prueba de la serie de la función coseno hiperbólico y el resto de las series se dejan como ejercicio al lector.

De las definiciones 22.3 y 30.1, para todo $z\in\mathbb{C}$, por la proposición 27.2(1) tenemos que:
\begin{align*}
\operatorname{cosh}(z) & = \frac{\operatorname{exp}(z) + \operatorname{exp}(-z)}{2}\\
& = \dfrac{\displaystyle \sum_{n=0}^\infty \dfrac{z^n}{n!} + \displaystyle \sum_{n=0}^\infty \dfrac{(-z)^n}{n!}}{2}\\
& = \displaystyle \sum_{n=0}^\infty \dfrac{z^n + (-z)^n}{2 \cdot n!}\\
& = \displaystyle \sum_{n=0}^\infty \dfrac{z^n \left[1 + (-1)^n\right]}{2 \cdot n!}.
\end{align*}

Sea $c_n = \dfrac{1 + (-1)^n}{2 \cdot n!}$, para todo $n\in\mathbb{N}$. Notemos que:
\begin{equation*}
c_n = \left\{ \begin{array}{lcc}
0 & \text{si} & n = 2k+1, \\
\\ \dfrac{1}{(2k)!} & \text{si} & n=2k,
\end{array}
\right.
\end{equation*} donde $k\in\mathbb{N}$.

Entonces:
\begin{equation*}
\operatorname{cosh}(z) = \sum_{n=0}^\infty \frac{z^{2n}}{(2n)!}.
\end{equation*}

$\blacksquare$

De manera análoga es posible deducir las series de potencias del resto de funciones trigonométricas e hiperbólicas, por lo que se deja como ejercicio al lector.

Observación 31.2.
De estas definiciones para las funciones trigonométricas e hiperbólicas seno y coseno es claro que para todo $z\in\mathbb{C}$ se cumple que:
\begin{equation*}
\operatorname{sen}(-z) = -\operatorname{sen}(z) \quad \text{y} \quad \operatorname{cos}(-z) = \operatorname{cos}(z),
\end{equation*}
\begin{equation*}
\operatorname{senh}(-z) = -\operatorname{senh}(z) \quad \text{y} \quad \operatorname{cosh}(-z) = \operatorname{cosh}(z),
\end{equation*}ya que las series de potencias de las funciones $\operatorname{sen}$ y $\operatorname{senh}$ solo consideran a las potencias impares de $z$, mientras que las series de potencias de las funciones $\operatorname{cos}$ y $\operatorname{cosh}$ solo consideran potencias pares de $z$.

Observación 31.3.
De acuerdo con las definiciones en series de las funciones hiperbólicas seno y coseno es claro que si restringimos el dominio de estas funciones al conjunto de los números reales positivos, entonces estas funciones serán positivas y estrictamente crecientes.

Más aún, por la observación 22.5, sabemos que para todo $z=x+iy\in\mathbb{C}$ se cumplen las identidades:
\begin{align*}
|\operatorname{sen}(z)|^2 = \operatorname{sen}^2(x) + \operatorname{senh}^2(y),\\
|\operatorname{cos}(z)|^2 = \operatorname{cos}^2(x) + \operatorname{senh}^2(y),
\end{align*}de donde es claro que los únicos ceros de las series (31.8) y (31.9), que definen al seno y coseno complejos, son reales ya que $\operatorname{senh}(y) = 0$ si y solo si $y=0$.

Considerando las propiedades que hemos probado para las series de números complejos a lo largo de esta unidad, podemos probar fácilmente algunas de las identidades con las que estamos familiarizados para el caso real, mediante la manipulación algebraica de las series de potencias que definen a las funciones trigonométricas e hiperbólicas.

Ejemplo 31.1.
Verifiquemos que para todo $z\in\mathbb{C}$ se cumple que:
a) \begin{equation*}
\operatorname{cos}^2(z) = \frac{1+\operatorname{cos}(2z)}{2}.
\end{equation*}
b) \begin{equation*}
\operatorname{sen}(2z) = 2 \operatorname{sen}(z)\operatorname{cos}(z).
\end{equation*}

Solución.

a) Notemos que:
\begin{align*}
\frac{1+\operatorname{cos}(2z)}{2} & = \frac{1}{2} + \frac{\operatorname{cos}(2z)}{2}\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{(-1)^n (2z)^{2n}}{2 (2n)!}\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{i^{2n} \, 2^{2n-1} \, z^{2n}}{(2n)!}.
\end{align*}

Por otra parte:
\begin{align*}
\operatorname{cos}^2(z) & = \left(\frac{\operatorname{exp}(iz) + \operatorname{exp}(-iz)}{2}\right)^2\\
& = \frac{1}{4} \left[\operatorname{exp}(2iz) + 2 +\operatorname{exp}(-2iz)\right]\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{(2iz)^n}{4 \cdot n!} + \sum_{n=0}^\infty \frac{(-2iz)^n}{4 \cdot n!}\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{2^{n-2} \, i^n \, z^n}{n!} + \sum_{n=0}^\infty \frac{(-1)^n \, 2^{n-2} \, i^n \, z^n}{n!}\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{2^{n-2} \, i^n \, z^n \left[1 + (-1)^n\right]}{n!}.
\end{align*}

Sea $c_n = \dfrac{2^{n-2} \, i^n \left[1 + (-1)^n\right]}{n!}$, para todo $n\in\mathbb{N}$. Notemos que:
\begin{equation*}
c_n = \left\{ \begin{array}{lcc}
0 & \text{si} & n = 2k+1, \\
\\ \dfrac{2^{2k-1} i^{2k}}{(2k)!} & \text{si} & n=2k,
\end{array}
\right.
\end{equation*}donde $k\in\mathbb{N}$.

Entonces:
\begin{equation*}
\frac{1+\operatorname{cos}(2z)}{2} = \frac{1}{2} + \sum_{n=0}^\infty \frac{i^{2n} \, 2^{2n-1} \, z^{2n}}{(2n)!} = \operatorname{cos}^2(z).
\end{equation*}b) De acuerdo con el inciso anterior tenemos que:
\begin{equation*}
\operatorname{cos}^2(z) = \frac{1}{2} + \sum_{n=0}^\infty \frac{i^{2n} \, 2^{2n-1} \, z^{2n}}{(2n)!},
\end{equation*}la cual es una serie con radio de convergencia infinito.

Derivando ambos lados de ésta última igualdad, por la proposición 30.2 tenemos que:
\begin{align*}
-2 \operatorname{sen}(z) \operatorname{cos}(z) & = \sum_{n=1}^\infty \frac{i^{2n} \, 2^{2n-1} \, 2n \, z^{2n-1}}{2n \, (2n-1)!}\\
& = \sum_{n=1}^\infty \frac{(-1)^{n} \, (2z)^{2n-1}}{(2n-1)!}\\
& = \sum_{n=0}^\infty \frac{(-1)^{n+1} \, (2z)^{2n+1}}{(2n+1)!}\\
& = – \operatorname{sen}(2z),
\end{align*}de donde:
\begin{equation*}
\operatorname{sen}(2z) = 2 \operatorname{sen}(z)\operatorname{cos}(z).
\end{equation*}

Ejemplo 31.2.
Las funciones complejas exponencial, seno y coseno son analíticas, definición 30.1, en $\mathbb{C}$.

Solución. Sea $z_0\in\mathbb{C}$ fijo. Tenemos que:
\begin{align*}
e^z = e^{z_0 + z-z_0} & = e^{z_0} e^{z-z_0}\\
&= e^{z_0} \sum_{n=0}^\infty \frac{(z-z_0)^n}{n!}\\
& = \sum_{n=0}^\infty e^{z_0} \frac{(z-z_0)^n}{n!}, \quad \forall z\in\mathbb{C}.
\end{align*}

Por otra parte, por la proposición 22.1 sabemos que para todo $z\in\mathbb{C}$ se cumple que:
\begin{align*}
\operatorname{sen}(z) = \operatorname{sen}(z_0+z-z_0) = \operatorname{sen}(z_0) \operatorname{cos}(z-z_0) + \operatorname{sen}(z-z_0) \operatorname{cos}(z_0),\\
\operatorname{cos}(z) = \operatorname{cos}(z_0+z-z_0)= \operatorname{cos}(z_0) \operatorname{cos}(z-z_0) – \operatorname{sen}(z_0) \operatorname{sen}(z-z_0).
\end{align*}

Entonces:
\begin{equation*}
\operatorname{sen}(z) = \operatorname{sen}(z_0) \sum_{n=0}^\infty \frac{(-1)^n(z-z_0)^{2n}}{(2n)!} + \operatorname{cos}(z_0) \sum_{n=0}^\infty \frac{(-1)^n(z-z_0)^{2n+1}}{(2n+1)!}, \quad \forall z\in\mathbb{C},
\end{equation*}
\begin{equation*}
\operatorname{cos}(z) = \operatorname{cos}(z_0) \sum_{n=0}^\infty \frac{(-1)^n(z-z_0)^{2n}}{(2n)!} – \operatorname{sen}(z_0) \sum_{n=0}^\infty \frac{(-1)^n(z-z_0)^{2n+1}}{(2n+1)!}, \quad \forall z\in\mathbb{C}.
\end{equation*}

Ejemplo 31.3.
Determinemos el radio de convergencia y la suma de la serie:
\begin{equation*}
\sum_{n=2}^\infty \frac{n}{(n-2)!} z^n.
\end{equation*}

Solución. Por la forma de la serie, al tener un factorial en el denominador, inferimos que la función suma que describe la serie dada debe estar en términos de la exponencial compleja.

Sabemos que la serie de potencias, centrada en $z_0 = 0$, de la exponencial es:
\begin{equation*}
f(z) = e^z = \sum_{n=0}^\infty \frac{z^n}{n!}, \quad \forall z\in\mathbb{C},
\end{equation*}entonces, al derivar dos veces de ambos lados de la igualdad, por el corolario 30.1 tenemos que:
\begin{equation*}
f»(z) = e^z = \sum_{n=2}^\infty \frac{n(n-1) z^{n-2}}{n!}= \sum_{n=2}^\infty \frac{z^{n-2}}{(n-2)!}, \quad \forall z\in\mathbb{C}.
\end{equation*}

Multiplicando ambos lados por $z^2$ tenemos:
\begin{equation*}
z^2 e^z = \sum_{n=2}^\infty \frac{z^{n}}{(n-2)!} = \sum_{k=0}^\infty c_k z^k, \quad \forall z\in\mathbb{C},
\end{equation*}de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{1}{(n-2)!}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n,\\
\\ 0, & \text{en otro caso.}\\
\end{array}
\right.
\end{equation*}

Por lo que $c_0 = c_1 =0$ y para todo $k\geq 2$:
\begin{equation*}
c_k = \dfrac{1}{(k-2)!}.
\end{equation*}

Considerando lo anterior no es difícil verificar que esta última serie tiene radio de convergencia infinito, por lo que podemos volver a aplicar la proposición 30.2 y derivar de ambos lados de la igualdad, de donde se sigue que:
\begin{align*}
\frac{d}{dz} z^2 e^z = 2ze^z + z^2 e^z & = \sum_{k=1}^\infty k c_k z^{k-1}\\
& = \sum_{n=2}^\infty \frac{n z^{n-1}}{(n-2)!}, \quad \forall z\in\mathbb{C}.
\end{align*}

Por último, si multiplicamos por $z$ ésta última igualdad tenemos que:
\begin{equation*}
e^z(2z^2 + z^3) = \sum_{n=2}^\infty \frac{n z^{n}}{(n-2)!}, \quad \forall z\in\mathbb{C},
\end{equation*}la cual es la función suma correspondiente a la serie dada y tiene también radio de convergencia infinito.

Para cerrar esta entrada analicemos ahora a la función multivaluada logaritmo complejo, para ello consideremos el siguiente:

Ejemplo 31.4.
Veamos que la serie de potencias para la función $\operatorname{Log}(1+z)$ es:
\begin{equation*}
\sum_{n=0}^\infty \frac{(-1)^n z^{n+1}}{n+1},
\end{equation*}y determinemos su dominio de convergencia.

Solución. De acuerdo con el ejercicio 10 de la entrada 21, sabemos que la función $\operatorname{Log}(1+z)$ es analítica en $\mathbb{C}\setminus(-\infty, -1]$ y para todo punto en dicho dominio su derivada es:
\begin{equation*}
\frac{d}{dz} \operatorname{Log}(1+z) = \frac{1}{1+z}. \tag{31.12}
\end{equation*}

En particular, dicha función es analítica en $B(0,1)$ y para $|z|<1$ se cumple (31.12).

Por otra parte, considerando la serie geométrica, tenemos que:
\begin{equation*}
\sum_{n=0}^\infty (-z)^n = \sum_{n=0}^\infty (-1)^n z^n = \frac{1}{1+z}, \quad \text{si} \,\, |z|<1.
\end{equation*}

Entonces:
\begin{equation*}
\frac{d}{dz} \operatorname{Log}(1+z) = \sum_{n=0}^\infty (-1)^n z^n = \frac{1}{1+z}, \quad \text{si} \,\, |z|<1.
\end{equation*}

Notemos que si definimos a una función $f$ considerando la serie de potencias dada, tenemos que:
\begin{equation*}
f(z) = \sum_{n=0}^\infty \frac{(-1)^n z^{n+1}}{n+1} = \sum_{k=0}^\infty c_k z^k,
\end{equation*}de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{(-1)^{n}}{n+1}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n+1,\\
\\ 0, & \text{en otro caso.}\\
\end{array}
\right.
\end{equation*}

Por lo que, $c_0 = 0$ y para $k\geq 1$ se tiene que:
\begin{equation*}
c_k = \frac{(-1)^{k-1}}{k}.
\end{equation*}

Es claro que para $k\geq 1$ se tiene que $c_k \neq 0$ y como:
\begin{equation*}
\lambda = \lim_{k\to\infty} \frac{|c_{k+1}|}{|c_{k}|} = \lim_{k\to\infty} \left|\frac{k (-1)^{k}}{(k+1) (-1)^{k-1}}\right| = \lim_{k\to\infty} \frac{k}{k+1} = 1,
\end{equation*}entonces, del corolario 29.3 se sigue que $R = 1/ \lambda = 1$, es decir, la serie que define a $f$ tiene radio de convergencia 1, por lo que su dominio de convergencia es el disco $B(0,1)$.

Lo anterior nos garantiza que tanto $f(z)$ como $\operatorname{Log}(1+z)$ están bien definidas en el disco abierto $B(0,1)$.

De acuerdo con la proposición 30.2 y la definición 30.1, tenemos que $f$ es analítica en $B(0,1)$ y su derivada es:
\begin{align*}
f'(z) & = \sum_{k=1}^\infty k c_k z^{k-1}\\
& = \sum_{k=1}^\infty k \left(\frac{(-1)^{k-1}}{k}\right) z^{k-1}\\
& = \sum_{n=0}^\infty (-1)^n z^{n}\\
& = \frac{1}{1+z}, \quad \text{si} \,\, |z|<1.
\end{align*}

Sea $g(z) = f(z) – \operatorname{Log}(1+z)$. Claramente $g$ es analítica en $B(0,1)$ y su derivada es:
\begin{equation*}
g'(z) = \dfrac{d}{dz} \left [f(z) – \operatorname{Log}(1+z)\right] = 0, \quad \forall z\in B(0,1),
\end{equation*}por lo que $g$ es una función constante en $B(0,1)$, proposición 19.2. Para $z=0$ tenemos que:
\begin{equation*}
g(0) = f(0) – \operatorname{Log}(1+0) = 0,
\end{equation*}entonces:
\begin{equation*}
f(z) – \operatorname{Log}(1+z) = 0 \quad \Longrightarrow \quad f(z) = \operatorname{Log}(1+z).
\end{equation*}

Por lo tanto:
\begin{equation*}
\operatorname{Log}(1+z) = \sum_{n=0}^\infty \frac{(-1)^n z^{n+1}}{n+1}, \quad \text{si} \,\, |z|<1.
\end{equation*}

Observación 31.4.
Notemos que si sustituimos a $z$ por $z-1$ en el resultado anterior, entonces:
\begin{equation*}
\operatorname{Log}(z) = \sum_{n=0}^\infty \frac{(-1)^n (z-1)^{n+1}}{n+1}, \quad \text{si} \,\, |z-1|<1.
\end{equation*}

Tarea moral

  1. Prueba los lemas 31.1, 31.2 y 31.3.
  2. Completa la demostración de la proposición 31.1.
  3. Completa la demostración de la proposición 31.2.
  4. Utilizando las definiciones en series de potencias de las funciones seno y coseno prueba la identidad Pitagórica $\operatorname{sen}^2(z) + \operatorname{cos}^2(z) = 1$ para todo $z\in\mathbb{C}$.
  5. Determina la serie de potencias de la función $\operatorname{Log}\left(\dfrac{1}{1-z}\right)$ y determina su región de convergencia.

    Hint: Recuerda que para la rama principal del logaritmo se cumple que $\operatorname{Log}\left(w^{-1}\right) = -\operatorname{Log}(w)$ si $w\in\mathbb{C}\setminus(-\infty,0]$.
  6. a) Considera el desarrollo en serie de potencias para la función $f(z) = \operatorname{Log}(z)$ dado en la observación 31.4 y muestra que $f'(z) = 1/z$.

    b) Sea $z_0 \neq 0$. Para $z \in B(z_0, 1)$ define a la función:
    \begin{equation*}
    f(z) = \displaystyle\sum_{n=0}^\infty \dfrac{(-1)^{n-1}}{n} \left(\dfrac{z-z_0}{z_0}\right)^n.
    \end{equation*} Muestra que $f'(z) = 1/z$.
  7. Determina la función suma y el dominio de convergencia de las siguientes series de potencias.
    a) $\displaystyle \sum_{n=0}^\infty \frac{(-1)^{n+1}}{n!} z^{3n}$.
    b) $\displaystyle \sum_{n=1}^\infty \frac{z^{2n+1}}{(2n-1)!}$.
    c) $\displaystyle \sum_{n=0}^\infty \frac{2^{n+1}(z-i)^{n+2}}{(n+1)!}$.
  8. Se definen a los números de Bernoulli $B_n$ a través de la serie de potencias:
    \begin{equation*}
    \frac{z}{e^z -1} = \displaystyle \sum_{n=0}^\infty \frac{B_n}{n!} z^n.
    \end{equation*}a) Prueba la fórmula recursiva:
    \begin{equation*}
    \frac{B_0}{n! \, 0!} + \frac{B_1}{(n-1)! \, 1!} + \cdots + \frac{B_{n-1}}{1! \, (n-1)!} = \left\{ \begin{array}{lcc}
    1 & \text{si} & n=1, \\
    \\ 0 & \text{si} & n>1.
    \end{array}
    \right.
    \end{equation*}Entonces $B_0=1$.

    b) Calcula $B_1$, $B_2$, $B_3$, $B_4$.

    c) Muestra que $B_n=0$ si $n$ es un número impar distinto de $1$.
  9. Define a la función $f:\mathbb{R} \to \mathbb{R}$ como:
    \begin{equation*}
    f(x) = \left\{ \begin{array}{lcc}
    0 & \text{si} & x\leq 0, \\
    \\ e^{-1/x} & \text{si} & x>0.
    \end{array}
    \right.
    \end{equation*}Muestra que $f$ es infinitamente diferenciable y que $f^{(n)}=0$ para todo $n\in\mathbb{N}$.

Más adelante…

Esta entrada es la última de la tercera unidad, correspondiente al tema de series de números complejos. En ella hemos abordado de manera general algunas de las funciones complejas elementales vistas como series de potencias, cabe mencionar que muchas de las propiedades referentes a estas funciones las hemos estudiado a detalle en la segunda unidad. Es importante notar que muchas de las definiciones dadas en esta entrada coinciden con las definiciones de estas funciones como series para el caso real, por lo que resulta natural la extensión de estas funciones al caso complejo.

En la siguiente entrada iniciamos con la cuarta unidad, correspondiente con el tema de integración compleja, en la cual veremos algunos de los resultados más importantes para las funciones complejas que sin duda son fundamentales en la teoría de la variable compleja en sí, mismos que nos permitirán caracterizar de manera clara a las funciones complejas y distinguirlas de las funciones reales.

Entradas relacionadas

Variable Compleja I: Series de potencias y funciones

Por Pedro Rivera Herrera

Introducción

Las funciones vistas como series de potencias tienen un comportamiento bueno, en el sentido de que son funciones continuas y diferenciables, aunque aquí es donde radica una propiedad importante y es que la derivada de una serie de potencias es también una serie de potencias, por lo que resultará que las funciones dadas como series de potencias son infinitamente diferenciables.

Por el corolario 16.1 tenemos que la derivada de un polinomio complejo, digamos:
\begin{equation*}
p(z) = c_0 + c_1 z + \cdots + c_n z^n,
\end{equation*}está dada por el polinomio complejo:
\begin{equation*}
p'(z) = c_1 + 2c_2 z + \cdots + n c_n z^{n-1}.
\end{equation*}Intuitivamente, esto nos dice que la función suma $f$, definición 28.6, dada por una serie de potencias, es decir:
\begin{equation*}
f(z) = \sum_{n=0}^\infty c_n z^n, \tag{30.1}
\end{equation*}debería tener como derivada:
\begin{equation*}
f'(z) = \sum_{n=0}^\infty n c_n z^{n-1}.
\end{equation*}Si esto se cumple, entonces tendríamos que $f$ sería una función diferenciable término a término, pero ¿cuándo es posible esto? Para responder esta pregunta recurriremos a los conceptos de la entrada anterior sobre lo que es una serie de potencias así como los conceptos de convergencia de series de números complejos y de series de funciones vistos en las entradas anteriores, pues como veremos a continuación, para que la función suma $f$ propuesta en (30.1) satisfaga lo anterior, bastará con que la serie de potencias que la define sea convergente en algún dominio.

Proposición 30.1. (Continuidad de una serie de potencias.)
Sea $\displaystyle\sum_{n=0}^\infty c_n (z-z_0)^n$ una serie de potencias con radio de convergencia $R>0$ y disco de convergencia $B(z_0,R)$. Definimos:
\begin{equation*}
f(z) := \sum_{n=0}^\infty c_n (z-z_0)^n, \quad \forall z\in B(z_0, R).
\end{equation*}Entonces $f$ es continua en $B(z_0,R)$.

Demostración. Dadas las hipótesis, sea $a \in B(z_0,R)$. Definimos:
\begin{equation*}
r := \frac{R – |z_0 – a|}{2} > 0,
\end{equation*}entonces $\overline{B}(a, r) \subset B(z_0, R)$.

Dado que la serie converge uniformemente en $\overline{B}(a, r)$, proposición 29.2, y para cada $n\in\mathbb{N}$ la función $f_n(z) = c_n(z-z_0)^n$ es continua en $\mathbb{C}$, entonces se sigue del corolario 28.2 que $f$ es continua en $\overline{B}(a, r)$.

Como $a$ es un punto interior de $\overline{B}(a, r)$, entonces $f$ es continua en $a \in B(z_0, R)$. Dado que $a$ era aribitrario, entonces $f$ es continua en $B(z_0, R)$.

$\blacksquare$

Lema 30.1.
Sea $\displaystyle\sum_{n=0}^\infty c_n (z-z_0)^n$ una serie de potencias con radio de convergencia $R>0$. Entonces la serie de potencias:
\begin{equation*}
\displaystyle\sum_{n=1}^\infty n c_n z^{n-1},
\end{equation*}tiene el mismo radio de convergencia $R>0$.

En general, para cada $k\geq 1$ la serie de potencias:
\begin{equation*}
\sum_{n=k}^\infty n(n-1)\cdots (n-k+1) c_n z^{n-k} = \sum_{n=k}^\infty \frac{n!}{(n-k)!} c_n z^{n-k},
\end{equation*}también tiene el mismo radio de convergencia $R>0$.

Demostración. Sin pérdida de generalidad probaremos el resultado para $z_0 = 0$.

El resultado general se sigue fácilmente al aplicar inducción sobre $k$, por ejemplo, el caso cuando $k=2$ se obtiene al aplicar el resultado para $k=1$ a la serie $\displaystyle\sum_{n=1}^\infty n c_n z^{n-1}$, por lo que esta última parte del resultado se deja como ejercicio al lector.

Dadas las hipótesis, procedemos entonces a probar el caso cuando $k=1$. Para $z\in B(0,R)$, tomamos $r = \dfrac{|\,z\,|+R}{2}>0$, tal que $|\,z\,|<r<R$, entonces del lema de Abel se sigue que la serie $\displaystyle \sum_{n=0}^\infty c_n r^n$ converge absolutamente, por lo que existe $K>0$ tal que $|\,c_n r^n\,|\leq K$ para todo $n\in\mathbb{N}$. Sea:
\begin{equation*}
q := \frac{|\,z\,|}{r} < 1,
\end{equation*}entonces:
\begin{equation*}
|\,n c_n z^{n-1}\,| = n \, |\,c_n \,| \left|\, \frac{z}{r}\,\right|^{n-1} r^{n-1} \leq \frac{nK}{r} q^{n-1}, \quad \forall n\geq 1.
\end{equation*}Dado que $0\leq q < 1$, tenemos que:
\begin{equation*}
\lim_{n\to\infty} \dfrac{\dfrac{(n+1)Kq^n}{r}}{\dfrac{nK q^{n-1}}{r}} = q \lim_{n\to\infty} \left(1+\dfrac{1}{n}\right) = q < 1,
\end{equation*}por lo que la serie $\displaystyle\sum_{n=1}^\infty n K q^{n-1} r^{-1}$ converge, entonces la serie $\displaystyle\sum_{n=0}^\infty |\,n c_n z^{n-1} \, |$ converge, proposición 27.4(1), y por tanto, proposición 27.3, la serie $\displaystyle\sum_{n=1}^\infty n c_n z^{n-1}$ converge.

Por último, notemos que si $|\,z\,|>R$, entonces la serie $\displaystyle \sum_{n=0}^\infty |c_n z^n|$ diverge ya que la serie $\displaystyle \sum_{n=0}^\infty c_n z^n$ diverge y dado que:
\begin{equation*}
\left|\,n c_n z^{n-1}\,\right| \geq \frac{|c_n z^n|}{|\,z\,|}, \quad \forall n\geq 1,
\end{equation*}entonces, proposición 27.4(2), la serie $\displaystyle \sum_{n=1}^\infty n c_n z^{n-1}$ diverge.

Por lo tanto, dichas series tienen el mismo radio de convergencia.

$\blacksquare$

Observación 30.1.
Sean $z, z_0 \in\mathbb{C}$ distintos. Notemos que para todo $n\geq 2$ se cumple que:\begin{equation*}
\frac{z^n – z_0^n}{z – z_0} – n z_0^{n-1} = (z-z_0)\sum_{m=1}^{n-1} m z_0^{m-1} z^{n-m-1}.
\end{equation*}

Proposición 30.2.
Sean $z_0\in\mathbb{C}$ fijo y $f:B(z_0, R) \to \mathbb{C}$ una función dada por la serie de potencias:
\begin{equation*}
f(z) = \displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n,
\end{equation*}con radio de convergencia $R>0$. Entonces $f$ puede diferenciarse término a término dentro de su dominio de convergencia, es decir:
\begin{equation*}
f'(z) = \sum_{n=1}^\infty n c_n (z-z_0)^{n-1}.
\end{equation*}

Demostración. Sin pérdida de generalidad probaremos el resultado para $z_0 = 0$, ya que en otro caso basta con que consideremos a la función:
\begin{equation*}
F(z) = \sum_{n=0}^\infty c_n z^{n},
\end{equation*}la cual cumple que $f(z) = F(z-z_0)$, entonces $f$ es diferenciable si y solo si lo es la función $F$ y las derivadas de $f$ en $z_0$ son las derivadas de $F$ en $0$.

Dadas las hipótesis, por el lema anterior tenemos que la serie $g(z) = \displaystyle\sum_{n=1}^\infty n c_n z^{n-1}$ es absolutamente convergente para $|\,z\,| < R$.

Veamos que para $z_0\in B(0,R)$ se cumple que:
\begin{equation*}
f'(z_0) = \lim_{z \to z_0} \frac{f(z) – f(z_0)}{z – z_0} = g(z_0),
\end{equation*}o equivalentemente que:
\begin{equation*}
\lim_{z \to z_0} \left[ \frac{f(z) – f(z_0)}{z – z_0} – g(z_0)\right] = 0.
\end{equation*}Una vez fijo $z_0\in B(0,R)$, tomemos $r=\dfrac{|\,z_0\,|+R}{2}$, entonces $|\,z_0\,|<r<R$ y sea $z\in B(0,r)\setminus\{z_0\}$. Dado que las series que definen a las funciones $f$ y $g$ son convergentes, entonces de la proposición 27.2 y la observación 30.1 tenemos que:
\begin{align*}
\frac{f(z) – f(z_0)}{z – z_0} – g(z_0) & = \dfrac{\displaystyle \sum_{n=0}^\infty c_n z^n – \displaystyle\sum_{n=0}^\infty c_n z_0^n}{z – z_0} – \sum_{n=1}^\infty n c_n z_0^{n-1}\\
& = \sum_{n=0}^\infty c_n \left(\frac{z^n – z_0^n}{z – z_0}\right) – \sum_{n=1}^\infty n c_n z_0^{n-1}\\
& = \sum_{n=1}^\infty c_n \left( \frac{z^n – z_0^n}{z – z_0} – n z_0^{n-1} \right)\\
& = \sum_{n=2}^\infty c_n \left( \frac{z^n – z_0^n}{z – z_0} – n z_0^{n-1} \right)\\
& = \sum_{n=2}^\infty c_n (z-z_0)\sum_{m=1}^{n-1} m z_0^{m-1} z^{n-m-1}.
\end{align*}Dado que $z, z_0 \in B(0,r)$, entonces se cumple que:
\begin{align*}
\left| (z-z_0)\sum_{m=1}^{n-1} m z_0^{m-1} z^{n-m-1} \right| & \leq |\,z-z_0\,| \sum_{m=1}^{n-1} m |z_0|^{m-1} |z|^{n-m-1}\\
& < |z-z_0| \, r^{n-2} \sum_{m=1}^{n-1} m\\
& = |z-z_0| \, r^{n-2} \left( \frac{n(n-1)}{2}\right).
\end{align*}Por lo que:
\begin{equation*}
\left|\frac{f(z) – f(z_0)}{z – z_0} – g(z_0)\right| < \frac{|\,z-z_0\,|}{2} \sum_{n=2}^\infty n(n-1)|c_n| r^{n-2}, \quad \forall z\in B^*(0,r).
\end{equation*}Por el lema 30.1 tenemos que la series:
\begin{equation*}
\sum_{n=0}^\infty c_n z^n \quad \text{y} \quad \sum_{n=2}^\infty n(n-1) c_n z^{n-2},
\end{equation*}tienen el mismo radio de convergencia, es decir, $R>0$, y en particular ambas son absolutamente convergentes. Puesto que $r<R$, entonces la serie $\displaystyle \sum_{n=2}^\infty n(n-1)|c_n| r^{n-2}$ converge. Por lo tanto, dado que $z\in B(0,r)\setminus\{z_0\}$ al tomar el límite tenemos:
\begin{equation*}
\lim_{z\to z_0} \left|\frac{f(z) – f(z_0)}{z – z_0} – g(z_0)\right| < \lim_{z\to z_0} \frac{|\,z-z_0\,|}{2} \sum_{n=2}^\infty n(n-1)|c_n| r^{n-2} = 0,
\end{equation*}de donde se sigue el resultado.

$\blacksquare$

Ejemplo 30.2.
Estudiemos la convergencia de la serie:
\begin{equation*}
\sum_{n=1}^\infty \frac{n}{5^n}(z-i)^{n-1}.
\end{equation*}Solución. Notemos que dicha serie resulta de derivar a la serie:
\begin{equation*}
\sum_{n=0}^\infty \frac{1}{5^n}(z-i)^{n},
\end{equation*} la cual es una serie geométrica convergente si:
\begin{equation*}
\left| \frac{z-i}{5}\right|<1 \quad \Longleftrightarrow \quad |z-i|<5,
\end{equation*} es decir, su dominio de convergencia es el disco $B(i,5)$. Entonces, de la proposición 30.2, al ser una serie geométrica, se sigue que ambas series tienen el mismo dominio de convergencia.

Por último, para obtener la suma de la serie dada tenemos que:
\begin{align*}
f(z) & = \sum_{n=0}^\infty \frac{1}{5^n}(z-i)^{n}\\
& = \dfrac{1}{1- \dfrac{z-i}{5}}\\
& = \dfrac{5}{5+i-z}, \quad \forall z \in B(i,5),
\end{align*}por lo que:\begin{align*}
f'(z) &= \sum_{n=1}^\infty \frac{n}{5^n}(z-i)^{n-1}\\
& = \dfrac{5}{(5+i-z)^2}, \quad \forall z \in B(i,5).
\end{align*}

Observación 30.2.
Aunque una serie de potencias y su derivada tienen el mismo radio de convergencia, es importante hacer énfasis en que su dominio de convergencia no necesariamente es el mismo.

Ejemplo 30.3.
Consideremos a las series:
\begin{equation*}
\displaystyle\sum_{n=1}^\infty\dfrac{z^n}{n} \quad \text{y} \quad \displaystyle\sum_{n=1}^\infty z^{n-1}.
\end{equation*}De acuerdo con el ejercicio 7(a) de la entrada anterior, sabemos que la primera serie de potencias tiene radio de convergencia $R=1$ y su dominio de convergencia es el conjunto:
\begin{equation*}
\overline{B}(0,1) \setminus\{1\} = \left\{z\in\mathbb{C} : |\,z\,|\leq 1 \,\, \text{y} \,\, z\neq 1 \right\}.
\end{equation*}Mientras que la segunda serie, que es su derivada, también tiene radio de convergencia $R=1$, pero al ser una serie geométrica su dominio de convergencia es el disco abierto $B(0,1)$, que es distinto al dominio de la primera serie.

Corolario 30.1 (Existencia de las derivadas de todos los órdenes de una serie de potencias.)
Sean $z_0\in\mathbb{C}$ fijo y $f:B(z_0, R) \to \mathbb{C}$ una función dada por la serie de potencias:
\begin{equation*}
f(z) = \displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n,
\end{equation*}con radio de convergencia $R>0$. Entonces todas las derivadas de orden superior de $f$, es decir:
\begin{equation*}
f’, f^{(2)}, f^{(3)}, \ldots, f^{(k)}, \ldots
\end{equation*}existen para todo $z$ en su dominio de convergencia y dichas derivadas están dadas por:
\begin{align*}
f^{(k)}(z) & = \sum_{n=k}^\infty n(n-1)\cdots (n-k+1) c_n (z-z_0)^{n-k}\\
& = \sum_{n=k}^\infty \frac{n!}{(n-k)!} c_n (z-z_0)^{n-k}.
\end{align*}En particular:
\begin{equation*}
c_k = \frac{f^{(k)}(z_0)}{k!}, \quad k\in\mathbb{N}.
\end{equation*}

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Corolario 30.2. (Unicidad del desarrollo en series de potencias.)
Sean $R>0$ y $z_0 \in \mathbb{C}$ fijo. Si para todo $z\in\mathbb{C}$ tal que $|z-z_0|<R$ se cumple que:
\begin{equation*}
\displaystyle \sum_{n=0}^\infty a_n (z-z_0)^n = \displaystyle \sum_{n=0}^\infty b_n (z-z_0)^n,
\end{equation*}entonces $a_n = b_n$ para todo $n\in\mathbb{N}$. En particular, si $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n = 0$, entonces $c_n = 0$ para todo $n\in\mathbb{N}$.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 30.4.
Para todo $|\,z\,|<1$ definimos a la función:
\begin{equation*}
f(z) = \displaystyle \sum_{n=0}^\infty z^n = \frac{1}{1-z}.
\end{equation*}De acuerdo con el corolario 30.1, derivando repetidamente y cambiando los índices de las sumas, es fácil verificar que para todo $k\in\mathbb{N}$ y todo $|\,z\,|<1$ se cumple que:
\begin{equation*}
f^{(k)}(z) = \displaystyle \sum_{n=0}^\infty (n+k)(n+k-1) \cdots (n+1) z^n = \frac{k!}{(1-z)^{k+1}}.
\end{equation*}Entonces, para todo $|\,z\,|<1$:
\begin{align*}
f'(z) &= \frac{1}{(1-z)^2} = \displaystyle \sum_{n=0}^\infty (n+1) z^n,\\
f»(z) &= \frac{2}{(1-z)^3} = \displaystyle \sum_{n=0}^\infty (n+2)(n+1) z^n,\\
f^{(3)} &= \frac{6}{(1-z)^4} = \displaystyle \sum_{n=0}^\infty (n+3)(n+2)(n+1) z^n.
\end{align*}Además:
\begin{equation*}
f^{(k)}(0) = k! \quad \Longrightarrow \quad c_k = 1, \quad \forall k\in\mathbb{N}.
\end{equation*}

Ejemplo 30.5.
Determinemos la función suma y el dominio de convergencia de la siguiente serie:
\begin{equation*}
\displaystyle \sum_{n=0}^\infty n^2 z^n.
\end{equation*}

Solución. Notemos que para todo $n\in\mathbb{N}$ se cumple que:
\begin{equation*}
n^2 = (n+2)(n+1)-3(n+1)+1.
\end{equation*}De acuerdo con el ejemplo anterior, tenemos que para $|\,z\,|<1$ las series:
\begin{equation*}
\displaystyle \sum_{n=0}^\infty z^n, \quad \displaystyle \sum_{n=0}^\infty (n+1) z^n \quad \text{y} \quad \displaystyle \sum_{n=0}^\infty (n+2)(n+1) z^n,
\end{equation*}son convergentes, entonces, de la proposición 27.2(2) se sigue:
\begin{align*}
\displaystyle \sum_{n=0}^\infty n^2 z^n & = \displaystyle \sum_{n=0}^\infty \left[(n+2)(n+1)-3(n+1)+1\right] z^n\\
& = \displaystyle \sum_{n=0}^\infty (n+2)(n+1) z^n – 3 \displaystyle \sum_{n=0}^\infty (n+1) z^n + \displaystyle \sum_{n=0}^\infty z^n\\
& = \frac{2}{(1-z)^3} – \frac{3}{(1-z)^2} + \frac{1}{1-z}\\
& = \frac{z^2 + z}{(1-z)^3}.
\end{align*}Por lo tanto, para todo $z\in B(0,1)$ la función suma de la serie dada es:
\begin{equation*}
f(z) = \frac{z^2 + z}{(1-z)^3}.
\end{equation*}

Definición 30.1. (Funciones par e impar.)
Sea $f(z) = \displaystyle \sum_{n=0}^\infty c_n z^n$ una serie con radio de convergencia $R>0$. Se define a la serie:
\begin{equation*}
f(-z) = \displaystyle \sum_{n=0}^\infty c_n (-z)^n = \displaystyle \sum_{n=0}^\infty (-1)^n c_n z^n.
\end{equation*}Se dice que $f$ es par si $c_n=0$ para todo $n$ impar y que $f$ es impar si $c_n=0$ para todo $n$ par.

Ejemplo 30.6.
De acuerdo con la definición 30.1, veamos que $f$ es par si y solo si $f(-z) = f(z)$.

Solución. Dadas las hipótesis tenemos lo siguiente.

$\Rightarrow)$ Si $f$ es par, tenemos que $c_n = 0$ para todo $n$ impar. Además $(-1)^n = 1$ si $n$ es par, entonces:
\begin{equation*}
f(-z) = \displaystyle \sum_{n=0}^\infty (-1)^n c_n z^n = \displaystyle \sum_{n \, \, \text{par}} (-1)^n c_n z^n = \displaystyle \sum_{n \, \, \text{par}} c_n z^n = f(z).
\end{equation*}

$(\Leftarrow$ Si $f(-z) = f(z)$ entonces:
\begin{equation*}
\displaystyle \sum_{n=0}^\infty (-1)^n c_n z^n = \displaystyle \sum_{n=0}^\infty c_n z^n.
\end{equation*}De acuerdo con el ejercicio 8(d) de la entrada anterior, tenemos que ambas series tienen el mismo radio de convergencia, por lo que ambas son series convergentes, entonces:
\begin{equation*}
\displaystyle \sum_{n=0}^\infty \left[ 1- (-1)^n\right] c_n z^n = 0.
\end{equation*}Como $1 – (-1)^n = 2$ si $n$ es impar tenemos que:
\begin{equation*}
\displaystyle \sum_{n \, \, \text{impar}} 2 c_n z^n = 0,
\end{equation*}entonces, corolario 30.2, $c_n = 0$ para todo $n$ impar.

$\blacksquare$

Ejemplo 30.7.
Determinemos la serie de potencias y el dominio de convergencia de la función:
\begin{equation*}
f(z) = \frac{1}{(1-z)(2-z)}.
\end{equation*}

Solución. Aplicando fracciones parciales tenemos que:
\begin{align*}
f(z) & = \frac{1}{(1-z)(2-z)}\\
& = \frac{1}{1-z} – \frac{1}{2-z}\\
& = \frac{1}{1-z} – \dfrac{1}{2}\frac{1}{1-\dfrac{z}{2}}.
\end{align*}Notemos que si $|\,z\,|<1$ entonces:
\begin{align*}
f(z) & = \sum_{n=0}^\infty z^n – \frac{1}{2} \sum_{n=0}^\infty \left(\frac{z}{2}\right)^n\\
& = \sum_{n=0}^\infty \left[1-\left(\frac{1}{2}\right)^{n+1}\right]z^n.
\end{align*}

En este punto es crucial que recordemos la observación 16.4 en la cual mencionamos que es posible definir de manera equivalente el concepto de función analítica a través del desarrollo en serie de potencias, ya que de acuerdo con el corolario 30.1 tenemos que una función dada a través de una serie de potencias es infinitamente diferenciable

Definición 30.2. (Función analítica.)
Sea $U \subset \mathbb{C}$ un conjunto abierto. Una función $f: U \to \mathbb{C}$ es analítica en $U$ si y solo si para cada $z_0\in U$ existe una sucesión de números complejos $\{c_n\}_{n\geq 0} \subset U$ y un número real $r>0$ tal que:
\begin{equation*}
f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n, \quad \forall z\in B(z_0, r).
\end{equation*}

Observación 30.3.
Notemos que en la definición 30.2 no hemos asumido que $B(z_0, r)$ es necesariamente el mayor disco de convergencia en $U$ con centro en $z_0$. Además, los números $c_0, c_1, \ldots,$ en $U$ dependen de $z_0$.

Observación 30.4.
Debe ser claro que una consecuencia inmediata de la definición 30.2 es que una función analítica $f$ hereda todas las propiedades locales de una serie de potencias como las operaciones entre series, entre otras propiedades importantes estudiadas en la unidad anterior.

Corolario 30.3.
Sean $f$ y $g$ dos funciones analíticas en algún dominio $D$ y $c\in\mathbb{C}$ una constante. Entonces $c f$, $f + g$ y $f g$ son funciones analíticas en $D$. Más aún, la suma finita, el producto finito y las combinaciones lineales finitas de funciones analíticas son también analíticas.

Demostración. Se sigue de la definición anterior y de las propiedades de las series vistas en la entrada 27.

$\blacksquare$

Ejemplo 30.7.
Si $p:\mathbb{C}\to\mathbb{C}$ es un polinomio complejo, entonces $p$ una función analítica en $\mathbb{C}$.

Verificar este hecho es sencillo si consideramos que para todo $n\in\mathbb{N}$ se cumple que $z^n=(z-z_0+z_0)^n$, con $z_0\in\mathbb{C}$ fijo y utilizamos la fórmula binomial:
\begin{equation*}
(z+z_0)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} z^k z_0^{n-k},
\end{equation*}por lo que se deja como ejercicio al lector.

Asimismo cada función racional, digamos $r=p/q$, donde $p$ y $q$ son dos polinomios complejos, es analítica en $\mathbb{C}\setminus Q$, con $Q$ el conjunto de los ceros del polinomio $q$.

Ejemplo 30.8.
Sea $U = \mathbb{C} \setminus\{1\}$. Definimos a la función $f:U \to \mathbb{C}$ como:
\begin{equation*}
f(z) = \frac{1}{1-z}.
\end{equation*}Veamos que $f$ es analítica de acuerdo con la definición 30.2.

Solución. Sabemos que para todo $z \in B(0,1)$ y $z_0 = 0$ podemos ver a $f$ como la serie geométrica:
\begin{equation*}
f(z) = \frac{1}{1-z} = \sum_{n=0}^\infty z^n.
\end{equation*}Sea $z_0 \in U$, entonces tenemos que:
\begin{align*}
f(z) = \dfrac{1}{1-z} & = \dfrac{1}{1-z_0} \left(\dfrac{1}{1-\dfrac{z-z_0}{1-z_0}}\right)\\
&= \dfrac{1}{1-z_0} \, \displaystyle \sum_{n=0}^\infty \left(\frac{z-z_0}{1-z_0}\right)^n\\
& = \sum_{n=0}^\infty \frac{(z-z_0)^n}{(1-z_0)^{n+1}},
\end{align*}para todo $z\in B(z_0, r) \subset U$, donde $r=|1-z_0|$.

Por lo tanto, $f$ es analítica en $U$.

Tarea moral

  1. Demuestra los corolarios 30.1 y 30.2.
  2. Completa la demostración del lema 30.1.
  3. Verifica la observación 30.1.
  4. Sea $f$ una función analítica en un dominio $D$ y supón que:
    \begin{equation*}
    f(z_1) = f(z_2) = \cdots = f(z_n) = w,
    \end{equation*}para distintos puntos $z_1, z_2, \ldots, z_n \in D$. Muestra que:
    \begin{equation*}
    F(z) = \frac{f(z) – w}{(z-z_1) \cdots (z-z_n)},
    \end{equation*}es una función analítica en $D$ con una definición adecuada de $F$ en $z_1, z_2, \ldots, z_n \in D$.
  5. Sea $f$ una función analítica y distinta de cero en un dominio $D$. Prueba que $1/f$ es analítica en $D$.
    Hint: Procede de la siguiente forma.

    Toma a $z_0\in D$ fijo y define:
    \begin{equation*}
    f(z) = \sum_{n=0}^\infty c_n(z-z_0)^n,
    \end{equation*}para todo $z\in B(z_0,\rho) \subset D$, con $\rho>0$.

    Define la sucesión de coeficientes $\{b_n\}_{n\geq 0} \subset D$ recursivamente como $b_0 = 1/c_0$ y para $n\geq 1$:
    \begin{equation*}
    c_0 b_n + c_1 b_{n-1} + \cdots + c_n b_0 = 0.
    \end{equation*}

    Define a la función:
    \begin{equation*}
    g(z) = \sum_{n=0}^\infty b_n(z-z_0)^n.
    \end{equation*}Elige a $r$, con $0<r<\rho$, tal que:
    \begin{equation*}
    \sum_{n=1}^\infty |a_n| r^n \leq |a_0|.
    \end{equation*}a) Prueba por inducción que $|b_n|r^n \leq |b_0|$.
    b) Muestra que $g$ converge en $B(z_0, r)$.
    c) Prueba que $f(z)g(z)=1$ en $B(z_0, r)$, de donde:
    \begin{equation*}
    \left(\frac{1}{f}\right)(z) = \sum_{n=0}^\infty b_n(z-z_0)^n.
    \end{equation*}
  6. Supón que la serie de potencias $f(z) = \displaystyle \sum_{n=0}^\infty c_n z^n$ tiene radio de convergencia $R>0$ y $f'(0)=c_1 \neq 0$. Demuestra que para algún $0 < r \leq R$ la función $f$ es inyectiva en $B(0,r)$.

    Hint: Procede como en la prueba de la proposición 30.2, observa que si $0<r<R$ y $z,w\in B(0,r)$, entonces:
    \begin{equation*}
    f(z) – f(w) = c_1(z-w) + (z-w) \sum_{n=2}^\infty c_n \sum_{m=1}^n w^{m-1} z^{n-m},
    \end{equation*}de donde:
    \begin{equation*}
    |\,f(z) – f(w)\,| > \frac{|c_1|}{2} |\,z-w\,|.
    \end{equation*}
  7. Determina la función suma y el dominio de convergencia de las siguientes series de potencias.
    a)$\displaystyle \sum_{n=0}^\infty (3+4i)^n \, z^n$.
    b) $\displaystyle \sum_{n=1}^\infty n(n+1) \, z^n$.
    c) $\displaystyle \sum_{n=0}^\infty (n^3 -1) \, z^n$.
    Hint: Considera el ejemplo 30.4, el inciso anterior y observa que para todo $n\in\mathbb{N}$ se cumple que:\begin{equation*}
    n^3 = (n+3)(n+2)(n+1) – 6n(n+1)-5(n+1)-1.
    \end{equation*}d) $\displaystyle \sum_{n=1}^\infty (-1)^n(n+1) \, z^n$.
  8. Considera las siguientes series y en cada caso prueba lo que se te pide.
    a) \begin{equation*}
    f(z) = \sum_{n=0}^\infty \frac{z^{2n}}{(2n)!}.
    \end{equation*}Muestra que su radio de convergencia es $R=\infty$ y prueba que $f(z) = f»(z)$.
    b) \begin{equation*}
    f(z) = \sum_{n=0}^\infty \frac{z^{2n}}{(n!)^2}.
    \end{equation*}Muestra que su radio de convergencia es $R=\infty$ y prueba que $z^2 f»(z) + z f'(z) = 4z^2 f(z)$.
    c) \begin{equation*}
    f(z) = z – \frac{z^3}{3} + \frac{z^5}{5} – \frac{z^7}{7} + \cdots .
    \end{equation*}Muestra que su radio de convergencia es $R=1$ y prueba que $f'(z) = 1/(z^2+1)$.
  9. Considera la definición 30.1 y prueba que una función $f(z) = \displaystyle \sum_{n=0}^\infty c_n z^n$ es impar si y solo si $f(-z) = -f(z)$.
  10. Determina la serie de potencias y su dominio de convergencia de la función:
    \begin{equation*}
    f(z) = \frac{1}{(1+z)(2+z)}.
    \end{equation*}

Más adelante…

En esta entrada hemos probado uno de los resultados más importantes referentes a las funciones analíticas y es que dichas funciones tienen un desarrollo como serie de potencias. Este hecho es crucial pues nos garantiza que una función analítica es de clase $C^\infty$, lo cual nos será de gran utilidad en la última unidad de este curso al hablar de series de Taylor y series de Laurent que serán claves en la teoría de las funciones complejas pues nos permitirán dar de manera explícita un desarrollo en series de potencias para toda función compleja analítica.

La siguiente entrada corresponde con la última de esta tercera unidad y en ella abordaremos algunas de las funciones complejas elementales vistas como series de potencias, en particular de la función exponencial compleja que como hemos visto en la unidad anterior resulta fundamental para la definición de las demás funciones complejas elementales, por lo que a través de su desarrollo en series de potencias justificaremos su definición así como el uso de la notación $e^z$ y $\operatorname{exp}(z)$ de manera indistinta al hacer una extensión de la función real para el caso complejo.

Entradas relacionadas

Cálculo Diferencial e Integral III: Multiplicadores de Lagrange

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior buscábamos optimizar un campo escalar $f$. Retomaremos este problema, pero ahora agregando restricciones al dominio de $f$. Para ello hablaremos del método de los multiplicadores de Lagrange, el cual nos permitirá dar una solución bajo ciertas condiciones de diferenciabilidad.

Esto en general es lo mejor que podremos hacer. En realidad, los problemas de este estilo son muy difíciles y no tienen una solución absoluta. Si no tenemos las condiciones del teorema de Lagrange, es posible que se tengan que hacer cosas mucho más compliadas para obtener óptimos exactos, o bien que se tengan que hacer aproximaciones numéricas.

En la demostración del teorema de los multiplicadores de Lagrange usaremos el teorema de la función implícita, lo cual es evidencia adicional de lo importante y versátil que es este resultado.

Un ejemplo para motivar la teoría

Imagina que tenemos la función $f(x,y)=x^2+y^2$ y queremos encontrar su mínimo. Esto es muy fácil. El mínimo se da cuando $x=y=0$, pues en cualquier otro valor tenemos un número positivo. Pero, ¿Qué pasaría si además queremos que los pares $(x,y)$ que usamos satisfagan también otra condición?, por ejemplo, que cumplan $$2x^2+3y^2=10$$

En este caso, la respuesta ya no es obvia. Podríamos intentar encontrar el mínimo por inspección, pero suena que será difícil. Podríamos intentar usar la teoría de la entrada anterior, pero esa teoría no nos dice nada de qué hacer con nuestra condición.

La teoría que desarrollaremos a continuación nos permitirá respondernos preguntas de este estilo. En este ejemplo en concreto, puedes pensar que la solución se obtendrá de la siguiente manera: La ecuación $2x^2+3y^2=10$ nos dibuja una elipse en el plano, como se ve en la figura 1 imagen 3. Las curvas de nivel de la superficie dibujada por la gráfica de la función $f$ corresponden a circunferencias concéntricas, cuyo centro es el origen. Al ir tomando circunferencias cada vez mas grandes en el plano comenzando con el punto $(0,0)$ nos quedaremos con la primera que toque a la elipse, de hecho la tocará en dos puntos, digamos $(x_1 ,y_1)$ y $(x_2 ,y_2)$, donde $f(x_1 ,y_1)=f(x_2 ,y_2)$ sería el mínimo buscado, es decir el mínimo que sobre la superficie $f(x,y)$ cumple con la ecuación $2x^2+3y^2=10$.

Pero como ahí se da una tangencia, entonces suena que justo en ese punto $(x,y)$ hay una recta simultáneamente tangente a la curva de nivel y a la elipse. Esto nos da una relación entre gradientes. El teorema de multiplicadores de Lagrange detecta y enuncia esta relación entre gradientes con precisión y formalidad, incluso cuando tenemos más de una condición. A estas condiciones también las llamamos restricciones, y están dadas por ecuaciones.

Enunciado del teorema de multiplicadores de Lagrange

A continuación enunciamos el teorema.

Teorema (multiplicadores de Lagrange). Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}$ es un campo escalar de clase $C^{1}$. Para $m<n$, tomamos $g_{1},\dots ,g_{m}:S\in \subset \mathbb{R}^{n}\rightarrow \mathbb{R}$ campos escalares de clase $C^{1}$ en $S$. Consideremos el conjunto $S^\ast$ donde todos los $g_i$ se anulan, es decir:

$$S^\ast=\{ \bar{x}\in S|g_{1}(\bar{x})=g_2(\bar{x})=\ldots=g_m(\bar{x})=0\}.$$

Tomemos un $\bar{x}_0$ en $S^\ast$ para el cual

  1. $f$ tiene un extremo local en $\bar{x}_0$ para los puntos de $S^\ast$ y
  2. $\triangledown g_{1}(\bar{x}_{0}),\dots ,\triangledown g_{m}(\bar{x}_{0})$ son linealmente independientes.

Entonces existen $\lambda _{1},\dots ,\lambda _{m}\in \mathbb{R}$, a los que llamamos multiplicadores de Lagrange tales que:

\[ \triangledown f(\bar{x}_{0})=\lambda _{1}\triangledown g_{1}(\bar{x}_{0})+\dots +\lambda _{m}\triangledown g_{m}(\bar{x}_{0}).\]

Si lo meditas un poco, al tomar $m=1$ obtenemos una situación como la del ejemplo motivador. En este caso, la conclusión es que $\triangledown f(\bar{x}_0)=\lambda \triangledown g(\bar{x}_0)$, que justo nos dice que en $\bar{x}_0$, las gráficas de los campos escalares $f$ y $g$ tienen una tangente en común.

Demostración del teorema de multiplicadores de Lagrange

Demostración. La demostración del teorema de multiplicadores de Lagrange usa varios argumentos de álgebra lineal. Esto tiene sentido, pues a final de cuentas, lo que queremos hacer es poner un gradiente ($\triangledown f(\bar{x}_0)$) como combinación lineal de otros gradientes ($\triangledown g_1(\bar{x}_0),\ldots, \triangledown g_m(\bar{x}_0)$). A grandes rasgos, lo que haremos es:

  • Definir un espacio $W$.
  • Mostrar que $\triangledown g_1(\bar{x}_0),\ldots, \triangledown g_m(\bar{x}_0)$ generan al espacio ortogonal $W^\bot$.
  • Mostrar que $\triangledown f(\bar{x}_0)$ es ortogonal a todo vector de $W$, por lo cual estará en $W^\bot$ y así por el inciso anterior será combinación lineal de $\triangledown g_1(\bar{x}_0),\ldots, \triangledown g_m(\bar{x}_0)$.

Para construir el espacio $W$ del que hablamos, usaremos el teorema de la función implícita y la regla de la cadena. Empecemos este argumento. Consideremos la siguiente matriz:

\[ \begin{equation} \begin{pmatrix} \frac{\partial g_{1}}{\partial x_{1}}(\bar{x}_{0}) & \dots & \frac{\partial g_{1}}{\partial x_{m}}(\bar{x}_{0}) & \frac{\partial g_{1}}{\partial x_{m+1}}(\bar{x}_{0}) & \dots & \frac{\partial g_{1}}{\partial x_{n}}(\bar{x}_{0}) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_{m}}{\partial x_{1}}(\bar{x}_{0}) & \dots & \frac{\partial g_{m}}{\partial x_{m}}(\bar{x}_{0}) & \frac{\partial g_{m}}{\partial x_{m+1}}(\bar{x}_{0}) & \dots & \frac{\partial g_{1}}{\partial x_{n}}(\bar{x}_{0}) \end{pmatrix}. \end{equation}\]

Dado que los vectores $\triangledown g_1(\bar{x}_0),\ldots, \triangledown g_m(\bar{x}_0)$ son linealmente independientes, el rango por renglones de esta matriz es $m$, de modo que su rango por columnas también es $m$ (tarea moral). Sin perder generalidad (quizás tras hacer una permutación de columnas, que permuta las entradas), tenemos que las primeras $m$ columnas son linealmente independientes. Así, la matriz

\[ \begin{pmatrix} \frac{\partial g_{1}}{\partial x_{1}}(\bar{x}_{0}) & \dots & \frac{\partial g_{1}}{\partial x_{m}}(\bar{x}_{0}) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{m}}{\partial x_{1}}(\bar{x}_{0}) & \dots & \frac{\partial g_{m}}{\partial x_{m}}(\bar{x}_{0}) \end{pmatrix}\]

es invertible. Hagamos $l=n-m$ y reetiquetemos las variables coordenadas $x_1,\ldots,x_m$ como $v_1,\ldots,v_m$, y las variables coordenadas $x_{m+1},\ldots,x_n$ como $u_1,\ldots, u_l$. Escribiremos $\bar{x}_0=(\bar{v}_0,\bar{u}_0)$ para referirnos al punto al que hacen referencia las hipótesis. Esto nos permite pensar $\mathbb{R}^{n}=\mathbb{R}^{m}\times \mathbb{R}^{l}$ y nos deja en el contexto del teorema de la función implícita. Como la matriz anterior es invertible, existen $U\subseteq \mathbb{R}^l$ y $V\subseteq \mathbb{R}^m$ para los cuales $\bar{u}_0\in U$, $\bar{v}_0\in V$ y hay una única función $h=(h_1,\ldots,h_m):U\to V$ de clase $C^1$ tal que para $\bar{u}\in U$ y $\bar{v}\in V$ se cumple que $g(\bar{v},\bar{u})=0$ si y sólo si $\bar{v}=h(\bar{u})$.

Definamos ahora la función $H:U\subseteq \mathbb{R}^{l}\rightarrow \mathbb{R}^{m}\times \mathbb{R}^{l}$ como $H(\bar{u})=(h(\bar{u}),\bar{u})$, la cual es de clase $C^{1}$ en $U$.

Por cómo construimos $h$, sucede que $(h(\bar{u}),\bar{u})\in S^{*}$ para toda $\bar{u}\in U$. Por definición, esto quiere decir que para toda $i=1,\ldots,m$ tenemos que $$(g_{i}\circ H)(\bar{u})=0$$ para toda $\bar{u}\in U$. Esto quiere decir que $g_i\circ H$ es una función constante y por lo tanto su derivada en $\bar{u}_0$ es la transformación $0$. Pero otra forma de obtener la derivada es mediante la regla de la cadena como sigue:

\begin{align*} D(g_{i}\circ H)(\bar{u}_{0})&=Dg_{i}(H(\bar{u}_{0}))DH(\bar{u}_{0})\\ &=Dg_{i}(\bar{v}_{0},\bar{u}_{0})DH(\bar{u}_{0}).\end{align*}

En términos matriciales, tenemos entonces que el siguiente producto matricial es igual al vector $(0,\ldots,0)$ de $l$ entradas (evitamos poner $(\bar{v}_0,\bar{u}_0)$ para simplificar la notación):

\[ \begin{equation}\begin{pmatrix} \frac{\partial g_{i}}{\partial v_{1}}& \dots & \frac{\partial g_{i}}{\partial v_{m}} & \frac{\partial g_{i}}{\partial u_{1}} & \dots & \frac{\partial g_{i}}{\partial u_{l}} \end{pmatrix}\begin{pmatrix} \frac{\partial h_{1}}{\partial u_{1}} & \dots & \frac{\partial h_{1}}{\partial u_{l}} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_{m}}{\partial u_{1}} & \dots & \frac{\partial h_{m}}{\partial u_{l}} \\ 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}\end{equation},\]

para cada $i=1,\ldots, m$. Nos gustaría escribir esta conclusión de manera un poco más sencilla, para lo cual introducimos los siguientes vectores para cada $j=1,\ldots, l$:

\[ \bar{w}_{j}=\left( \left( \frac{\partial h_{1}}{\partial u_{j}}(\bar{u}_{0}),\dots ,\frac{\partial h_{m}}{\partial u_{j}}(\bar{u}_{0}) \right), \hat{e}_{j}\right).\]

Cada uno de estos lo pensamos como vector en $\mathbb{R}^m\times \mathbb{R}^l$. Además, son $l$ vectores linealmente independientes, pues sus entradas $\hat{e}_j$ son linealmente independientes. El espacio vectorial $W$ que generan es entonces un subespacio de $\mathbb{R}^m\times \mathbb{R}^l$, con $\dim(W)=l$.

De la ecuación $(2)$ tenemos que $\triangledown g_{i}(\bar{v}_{0},\bar{u}_{0})\cdot \bar{w}_{j}=0$ para todo $i=1,\dots ,m$, y $j=1,\dots ,l$. Se sigue que $\triangledown g_{i}(\bar{v}_{0},\bar{u}_{0})\in W^{\perp}$, donde $W^{\perp}$ es el complemento ortogonal de $W$ en $\mathbb{R}^{m}\times \mathbb{R}^{l}$. Pero además, por propiedades de espacios ortogonales tenemos que

\begin{align*}
\dim(W^{\perp})&=\dim(\mathbb{R}^{m}\times \mathbb{R}^{l})-dim(W)\\
&=m+l-l\\
&=m.
\end{align*}

Así $\dim(W^{\perp})=m$, además el conjunto $\left\{ \triangledown g_{i}(\bar{v}_{0},\bar{u}_{0}) \right\}_{i=1}^{m}$ es linealmente independiente con $m$ elementos, por tanto este conjunto es una base para $W^{\perp}$. Nuestra demostración estará terminada si logramos demostrar que $\triangledown f(\bar{v}_0,\bar{u}_0)$ también está en $W^\perp$, es decir, que es ortogonal a todo elemento de $W$.

Pensemos qué pasa al componer $f$ con $H$ en el punto $\bar{u}_0$. Afirmamos que $\bar{u}_0$ es un extremo local de $f\circ H$. En efecto, $(f\circ H)(\bar{u}_0)=f(g(\bar{u}_0),\bar{u}_0)=(\bar{v}_0,\bar{u}_0)$. Si, por ejemplo $(\bar{v}_0,\bar{u}_0)$ diera un máximo, entonces los valores $f(\bar{v},\bar{u})$ para $(\bar{v},\bar{u})$ dentro de cierta bola $B_\delta(\bar{v}_0,\bar{u}_0)$ serían menores a $f(\bar{v}_0,\bar{u}_0)$. Pero entonces los valores cercanos $\bar{u}$ a $\bar{u}_0$ cumplen $(f\circ H)(\bar{u})=f(h(\bar{u}),\bar{u})$, con $(\bar{u},h(\bar{u}))$ en $S^\ast$ y por lo tanto menor a $f(\bar{v}_0,\bar{u}_0)$ (para mínimos es análogo).

Resumiendo lo anterior, $\bar{u}_{0}$ es extremo local de $f\circ H$. Aplicando lo que aprendimos en la entrada anterior, la derivada de $f\circ H$ debe anularse en $\bar{u}_0$. Pero por regla de la cadena, dicha derivada es

\begin{align*}\triangledown (f\circ H)(\bar{u}_{0})&=D(f\circ H)(\bar{u}_{0})\\ &=Df(H(\bar{u}_{0}))DH(\bar{u}_{0})\\ &=Df(h(\bar{u}_{0}),\bar{u}_{0})DH(\bar{u}_{0})\\
&=Df(\bar{v}_0,\bar{u}_{0})DH(\bar{u}_{0})
\end{align*}

Viéndolo como multiplicación de matrices, el siguiente producto es el vector $(0,0,\ldots,0)$ de $l$ entradas:

\[ \begin{pmatrix} \frac{\partial f}{\partial v_{1}} & \dots & \frac{\partial f}{\partial v_{m}} & \frac{\partial f}{\partial u_{1}} & \dots & \frac{\partial f}{\partial u_{l}} \end{pmatrix}\begin{pmatrix} \frac{\partial h_{1}}{\partial u_{1}} & \dots & \frac{\partial h_{1}}{\partial u_{l}} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_{m}}{\partial u_{1}} & \dots & \frac{\partial h_{m}}{\partial u_{l}} \\ 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}=0 \]

De donde concluimos $\triangledown f(\bar{v}_{0},\bar{u}_{0})\cdot \bar{w}_{j}=0$ para cada $j=1,\dots l$. Esto precisamente nos dice que $\triangledown f(\bar{v}_{0},\bar{u}_{0})\in W^{\perp}$. Esto es justo lo que queríamos, pues habíamos demostrado que $\left\{ \triangledown g_{i}(\bar{v}_{0},\bar{u}_{0}) \right\}_{i=1}^{m}$ es una base de $W^{\perp}$. Por ello podemos expresar a $\triangledown f(\bar{v}_{0},\bar{u}_{0})$ como combinación lineal de esta base, es decir, existen $\lambda _{1},\dots ,\lambda _{m}$ escalares tales que:

\[ \triangledown f(\bar{v}_{0},\bar{u}_{0})=\lambda _{1}\triangledown g_{1}(\bar{v}_{0},\bar{u}_{0})+\dots +\lambda _{m}\triangledown g_{m}(\bar{v}_{0},\bar{u}_{0}). \]

$\square$

¡Qué bonita demostración! Usamos el teorema de la función implícita, la regla de la cadena (dos veces), nuestros resultados para valores extremos de la entrada anterior, y un análisis cuidadoso de ciertos espacios vectoriales.

Ejemplos del método de multiplicadores de Lagrange

Veamos algunos problemas que podemos resolver con esta nueva herramienta.

Ejemplo. Determinaremos los puntos extremos de $f(x,y)=x+2y$ bajo la condición $x^{2}+y^{2}=5$. Para poner todo en términos de nuestro teorema, definimos $g(x,y)=x^{2}+y^{2}-5$. Por el teorema de multiplicadores de Lagrange, en los puntos extremos debe existir una $\lambda$ tal que $\triangledown f(x,y)=\lambda \triangledown g(x,y)$. Calculando las parciales correspondientes, debemos tener entonces

\[ \left( 1,2 \right)=\lambda \left( 2x,2y \right).\]

Adicionalmente, recordemos que se debe satisfaces $g(x,y)=0$. Llegamos entonces al sistema de ecuaciones

\[ \left \{\begin{matrix} 1-2x\lambda=0 \\ 2-2y\lambda =0 \\ x^{2}+y^{2}-5=0 \end{matrix}\right. \]

Al despejar $x$ y $y$ en ambas ecuaciones tenemos:

\[ \begin{matrix} x=\frac{1}{2\lambda} \\ y=\frac{1}{\lambda} \\ x^{2}+y^{2}-5=0 \end{matrix}.\]

Poniendo los valores de $x$ y $y$ en la tercera ecuación, llegamos a $\left( \frac{1}{2\lambda}\right)^{2}+\left( \frac{1}{\lambda}\right)^{2}-5=0$, de donde al resolver tenemos las soluciones $\lambda _{1}=\frac{1}{2}$ y $\lambda _{2}=-\frac{1}{2}$.

Al sustituir en las ecuaciones de nuestro sistema, obtenemos como puntos críticos a $(x,y)=(-1,-2)$ y $(x,y)=(1,2)$.

Si intentamos calcular el hessiano de $f$, esto no nos dirá nada (no tendremos eigenvalores sólo positivos, ni sólo negativos). Pero esto ignora las restricciones que nos dieron. Podemos hacer una figura para entender si estos puntos son máximos o mínimos. En la Figura $1$ tenemos la gráfica de $f$, intersectada con la superfice dada por $g$. Nos damos cuenta que hay un punto máximo y uno mínimo. Al evaluar, obtenemos $f(1,2)=5$ y $f(-1,-2)=-5$. Esto nos dice que el máximo en la superficie se alcanza en $(1,2)$ y el mínimo en $(-1,-2)$.

Figura 2: Ilustración del Ejemplo 1 la función $g(x,y)=x^{2}+y^{2}-5$ esta dibujada en azul esta impone restricción a la función $f$ que dibuja un plano en el espacio.

$\triangle$

Ejemplo. Veamos cómo minimizar la expresión $$f(x,y,z)=x^{2}+y^{2}+z^{2}$$ sujetos a la condición $x+y+z=1$. Una vez más, proponemos $g(x,y,z)=x+y+z-1$ para tener la situación del teorema de multiplicadores de Lagrange. Debe pasar que $\lambda$ $\triangledown f(x,y,z)=\lambda \triangledown g(x,y,z)$. El gradiente de $g(x,y,z)$ es de puros ceros unos, así que tenemos el sistema de ecuaciones:

\[ \left \{\begin{matrix} 2x=\lambda \\ 2y=\lambda \\ 2z=\lambda \\ x+y+z-1=0 \end{matrix}\right.\]

De las primeras tres ecuaciones tenemos $2x=2y=2z$ de donde $x=y=z$. Sustituyendo en la tercera ecuación, $3x-1=0$, es decir $x=y=z=\frac{1}{3}$. Ya que sólo tenemos una solución, ésta es el mínimo del conjunto de soluciones. En la figura 3 tenemos la ilustración de la solución de este problema, la esfera centrada en el origen de radio $\frac{1}{3}$ toca al plano $x+y+z=1$ en el punto $\left( \frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$

$\triangle$

Figura 3: En azul claro el plano $x+y+z=1$, inflamos esferas centradas en el origen; desde la de radio cero vamos aumentando el radio hasta tener el radio correspondiente para el cual la esfera toque tangentemente al plano.

Más adelante…

Con esta entrada cerramos el curso de Cálculo Diferencial e Integral III. ¡¡Felicidades!! Esperamos que todas estas notas te hayan sido de ayuda para estudiar, repasar o impartir la materia. Quedamos al pendiente de cualquier duda, observación o sugerencia en la sección de comentarios de las entradas.

Tarea moral

  1. Determina los extremos de la función $f(x,y)=xy+14$ bajo la restricción $x^{2}+y^{2}=18$
  2. El plano $x+y+2z=2$ interseca al paraboloide $z=x^{2}+y^{2}$ en una elipse $\mathbb{E}$. Determina el punto de la elipse con el valor mayor en el eje $z$, y el punto con el valor mínimo en el mismo eje. Sugerencia: $f(x,y,z)=x+y+2z-2$, y $g(x,y,z)=x^{2}+y^{2}-z$
  3. Determinar el máximo valor de $f(x,y,z)=x^{2}+36xy-4y^{2}-18x+8y$ bajo la restricción $3x+4y=32$
  4. Determinar los puntos extremos de la función $f(x,y,z)=x^{2}+y^{2}+z^{2}$ bajo la restricción $xyz=4$
  5. Demuestra que en una matriz $M$ su rango por columnas es igual a su rango por renglones. Sugerencia. Usa el teorema de reducción gaussiana. También, puedes revisar la entrada que tenemos sobre rango de matrices.

Entradas relacionadas