Álgebra Moderna I: Primer Teorema de Isomorfía y Diagrama de Retícula

Por Cecilia del Carmen Villatoro Ramos

Introducción

La estrella de esta entrada es el primero de los cuatro Teoremas de Isomorfía que veremos. Como el nombre indíca, estos teoremas relacionan dos conjuntos a través de una isomorfía, pero no sólo eso, los conjuntos que se relacionan son cocientes de grupos. Entonces, a través de estos teoremas veremos cómo se pueden describir los cocientes de conjuntos.

En particular, con el Primer Teorema de Isomorfía no se encuentra un ejemplo específico como en el resto de Teoremas de Isomorfía. Sin embargo, se usa en la prueba del resto de teoremas, así que al final de esta unidad te quedará muy claro cómo se usa y para qué sirve. Normalmente se usa definiendo un homomorfismo clave para que al aplicarlo en el grupo obtengamos los cocientes necesarios.

Si quieres reforzar algunos temas que usaremos mucho a lo largo de estas entradas, puedes revisar los conceptos de Subgrupo Normal, Cociente de grupos, Isomorfísmos y Núcleo e Imagen de un Homomorfismo. Será de mucha ayuda que los tengas presente.

Por último, junto con los Teoremas de Isomorfía usaremos una ayuda visual llamada Diagrama de Retícula, es importante para describir las relaciones entre los distintos grupos, subgrupos y subgrupos normales que estaremos manejando.

El Teorema que vamos a tratar

Teorema. (Primer Teorema de Isomorfía)
Sean $G,\bar{G}$ grupos, $\varphi: G\to \bar{G}$ un homomorfismo. Entonces
\begin{align*}
G/\text{Núc }\varphi \cong \text{Im }\varphi.
\end{align*}

Demostración.
Sea $G,\bar{G}$ grupos, $\varphi: G\to \bar{G}$ un homomorfismo, $N =\text{Núc }\varphi$.

En la entrada anterior probamos que $N \unlhd G$.

Para probar que son isomorfos, tenemos que dar un isomorfismo entre ellos. Primero construiremos una función que vaya de $G/N$ a $\text{Im }\varphi$. Sea
\begin{align*}
\psi : G/N &\to \text{Im }\varphi \\
a N &\mapsto \varphi(a) \quad \forall a \in G.
\end{align*}

Nuestra función $\psi$ agarra una clase $aN$ de $G/N$ y la manda a $\varphi(a)$, pero no queda claro que si nos agarramos otro representante de la clase, digamos $b$, sucederá que $\varphi(a) = \varphi(b)$. Esto tenemos que probarlo.

Tomemos $a,b\in G$ tales que $aN = bN$. Entonces,

\begin{align*}
aN = bN &\Leftrightarrow a^{-1}b\in N \\
&\Leftrightarrow \varphi(a^{-1}b) = e_{\bar{G}}\\
& \Leftrightarrow \varphi(a^{-1}) \varphi(b) = e_{\bar{G}}\\
& \Leftrightarrow (\varphi(a))^{-1}\varphi(b) = e_{\bar{G}} &\text{Propiedades de homomorfismos}\\
& \Leftrightarrow \varphi(b) = \varphi(a).
\end{align*}
En realidad todas las equivalencias anteriores son producto de las propuedades de homomorfismos que ya vimos. Las implicaciones de ida ($\Rightarrow$) nos dicen que $\psi$ está bien definida, como queríamos probar. Pero las implicaciones de regreso ($\Leftarrow$) nos dicen algo más: nuestra $\psi$ es inyectiva.

Por lo tanto $\psi$ está bien definida y es inyectiva.

Ahora nos falta ver que en efecto $\psi$ es un homomorfismo y es suprayectiva.

Además, para $a,b\in G$.
\begin{align*}
\psi(aNbN) = \psi(abN) = \varphi(ab) = \varphi(a)\varphi(b) = \psi(aN)\psi(bN).
\end{align*}
Lo anterior sale de la definición de $\psi$ y de que $\varphi$ es un homomorfismo. Así $\psi$ es un homomorfismo.

Finalmente, si $c \in \text{Im }\varphi$, $c = \varphi(a)$ con $a\in G$. Entonces, por definición:
\begin{align*}
c = \varphi(a) = \psi(aN) \in \text{Im }\psi.
\end{align*}

Así, $\psi$ es suprayectiva.

Por lo tanto tenemos que $\psi$ es un homomorfismo inyectivo y suprayectivo, es decir, $\psi$ es un isomorfismo. En consecuencia, $G/N \cong \text{Im }\varphi$.

$\blacksquare$

Diagrama de retícula

A partir de las siguientes entradas comenzaremos a usar algo llamado diagrama de retícula. Este diagrama es una manera de representar la relación de ser subgrupo. Se escribe el nombre de los conjuntos a relacionar, dos conjuntos están unidos con una arista si uno es subgrupo del otro. Donde el conjunto que esté más abajo es el subgrupo del que queda arriba, de esta manera el diagrama está ordenado tal que el grupo más general está hasta arriba.

Veamos un ejemplo: Sea $G$ un grupo y $H,K$ subgrupos de $G$. Si consideramos $HK$, sabemos que es subgrupo de $G$, pero además, sabemos que $H\leq HK$ y $K\leq HK$. Por último, consideremos $H\cap K$, este es un subgrupo más pequeño de $G$ que, a su vez, es subrupo de $H$ y $K$.

Todo esto se puede resumir en el siguiente diagrama de retícula:

Diagrama de Retícula.

¿Por qué no unimos $H$ con $G$? Pues porque este diagrama es transitivo, es decir como $H \leq HK \leq G$, está implícito que $H \leq G$. Tampoco unimos un grupo consigo mismo.

Además, si un subgrupo es subgrupo normal, anotaremos el símbolo $\unlhd$.

Observemos que si $H\unlhd G$, quiere decir que para todo elemento en $H$, al ser conjugado con elementos de $G$, sigue siendo elemento de $H$. En particular, si conjugamos a un elemento de $H$ con un elemento de $HK$ seguimos obteniendo un elemento de $H$. Esto nos dice que $H$ también es normal en $HK$. En el diagrama, la propiedad de ser normal se escribe de la siguiente manera:

Diagrama de Retícula donde se muestra una relación de Subgrupo Normal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $G$ un grupo cíclico con $G = \left<a\right>$. Considera el homomorfosmo $\varphi: \z \to G$ dado por $\varphi(m) = a^m$ para toda $m\in \z$.
    • Si $a$ es de orden finito con $o(a) = n$ ¿qué concluyes al aplicar el 1er Teorema de Isomorfía? ¿Qué relación existe entre dos grupos cíclicos finitos de orden $n$?
    • Si $a$ es de orden infinito ¿qué concluyes al aplicar en 1er Teorema de Isomorfía? ¿Qué relación existe entre dos grupos cíclicos infinitos?

Opcional

Puedes revisar los siguientes videos que hablan de homomorfismos:

Más adelante…

Uno de los principales usos del Primer Teorema de Isomorfía es definiendo una $\varphi$ ideal para que el núcleo y la imágen de $\varphi$ sean justo lo que queremos probar. Esto lo veremos en la siguiente entrada, donde lo usamos para probar el Segundo Teorema de Isomorfía.

El diagrama de retícula se volverá fundamental sobretodo cuando veamos el Cuarto Teorema de Isomorfía, porque veremos cómo relacionar muchos subgrupos con grupos cocientes correspondientes.

Entradas relacionadas

Investigación de Operaciones: Forma canónica y forma estándar de un problema lineal

Por Aldo Romero

Introducción

En las entradas anteriores hemos dado ejemplos de varios problemas de aplicación que pueden ser planteados mediante un problema de programación lineal. Una vez que llegamos a un modelo, se pueden tener restricciones de los tipos $\leq$, $=$ y $\geq$. Además, puede haber restricciones de signo sobre las variables. Puede que se les pida ser no positivas, no negativas o irrestrictas (no restringidas) en signo. Lo que haremos ahora es ver cómo podemos llegar a un cierto formato (forma estándar o forma canónica).

Forma canónica de un problema lineal

A continuación introducimos el primer formato que nos facilitará el trabajo.

Definición. Se dice que un problema de programación lineal está en forma canónica si cumple simultáneamente las siguientes tres propiedades:

  1. El problema es de maximización.
  2. Las restricciones del problema son todas del tipo $\leq$ (menor o igual).
  3. Las variables de decisión son no negativas.

Así, tenemos entonces que un problema en forma canónica se ve como sigue:

\begin{align*}
Max \quad z &= c_1x_1+\ldots+c_nx_n\\
s.a.&\\
&\left\{\begin{matrix} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \leq b_1\\
a_{21}x_1+a_{22}x_2+\ldots + a_{2n}x_n \leq b_2\\
\vdots \\
a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n\leq b_n. \\
x_1\geq 0, x_2\geq 0, \ldots, x_n\geq 0.\end{matrix}\right.
\end{align*}

En términos matriciales, esto podemos reescribirlo de manera mucho más compacta como sigue:

\begin{align*}
Max \quad z &= c\cdot x\\
s.a.&\\
Ax &\leq b\\
x &\geq 0,\\
\end{align*}

en donde:

  • $c=(c_1,\ldots,c_n)\in \mathbb R^n$ es el vector de costos (vector renglón)
  • $x = (x_1,\ldots,x_n)\in \mathbb R^n$ es el vector de variables de decisión (vector columna),
  • $A=[a_{ij}]$ es la matriz de restricciones, que es una matriz de $m \times n$ y
  • $b=(b_1,\ldots,b_m) \in \mathbb R^m$ es el vector de constantes que acotan las combinaciones lineales de variables.

Todo problema de programación lineal puede ser expresado en forma canónica; es decir, puede definirse un problema en forma canónica equivalente a él. En efecto:

  • Si el problema es de minimización, puede considerarse en vez de $z$ la función $z’ = -z$ y en el problema equivalente se busca maximizar $z’$.
  • Si una restricción es del tipo $\geq$ puede ser mutiplicada por -1 para obtener una del tipo $\leq$.
  • Una ecuación puede ser substituida por una desigualdad del tipo $\leq$ y otra del tipo $\geq$. Luego, la del tipo $\geq$ puede ser substituida por una del tipo $\leq$ como en el punto anterior.
  • Para una variable $x_i\leq 0$ puede definirse $x_i’ = -x_i$, resultando $x_i’ \geq 0$. Claramente hay una biyección entre elegir el valor de $x_i$ y $x_i’$.
  • Para una $x_i$ no restringida pueden ser definidas dos variables no negativas $x_i’$ y $x_i^\ast$ tales que $x_i’-x_i^\ast = x_i$. Para cualquier $x_i$ dado podemos construir dichas variables, y viceversa, para $x_i’$ y $x_i^\ast$ se puede construir $x_i$.

Ejemplo de pasar un problema a forma canónica

Transformaremos el siguiente modelo a su forma canónica
\begin{align*}
Min \quad z &= x_1-3x_2+7x_3\\
&s.a.\\
3x_1+&x_2+3x_3 &\leq 40\\
x_1+&9x_2-7x_3 &\geq 50\\
5x_1+&3x_2 &= 20\\
&5x_2 + 8x_3 &\leq 80\\
x_1, x_2 &\geq 0, \quad x_3 \quad libre.\\
\end{align*}

Primeramente se definen las variables no negativas $x_3’$ y $x_3^{\ast}$, tales que $x’_3-x_3^{\ast} = x_3$, con objeto de satisfacer el punto (3) de la definición. Para satisfacer el punto (1) se considera la función:
\begin{align*}
z’ &= -z \\&= -x_1+3x_2-7x_3\\&=-x_1+3 x_2-7 x’_3+7x_3^{\ast}
\end{align*}

y se busca maximiza ésta (equivalente a minimizar $z$). Finalmente se realizan cambios en las restricciones para satisfacer el punto (2). La primera y cuarta desigualdad cumplen con la definición por lo que no se modifican (más allá de la sustitución de $x_3$ por $x’_3-x_3^{\ast}$); la segunda desigualdad se multiplica por $-1$ para obtener una del tipo $\leq$: $$ x_1 + 9x_2 – 7x_3 \geq 50 \quad \Leftrightarrow \quad -x_1 – 9x_2 + 7x_3 \leq -50.$$

Substituyendo las nuevas variables se obtiene: $$-x_1-9x_2+7x’_3-7x_3^{\ast}\leq -50.$$

Para la tercera desigualdad se tiene lo siguiente:

\begin{align*}
5x_1+3x_2 &= 20\\
&\Leftrightarrow\\
5x_1 + 3x_2 \leq 20 \quad& y \quad 5x_1 + 3x_2 \geq 20\\
&\Leftrightarrow\\
5x_1 + 3x_2 \leq 20 \quad& y \quad -5x_1 – 3x_2 \leq -20.\\
\end{align*}

Finalmente el problema queda expresado en forma canónica como:

\begin{align*}
Max \quad z’ &= -x_1+3x_2-7x’_3+7x_3^{\ast}\\
&s.a.\\
3x_1+&x_2+3x’_3-3x_3^{\ast} &\leq 40\\
-x_1-&9x_2+7x’_3-7x_3^{\ast} &\leq -50\\
5x_1+&3x_2 &\leq 20\\
-5x_1-&3x_2 &\leq -20\\
&5x_2+8x’_3-8x_3^{\ast} &\leq 80\\
x_1, x_2&, x’_3, x_3^{\ast} \geq 0.\\
\end{align*}

Forma estándar de un problema lineal

Definición. Se dice que un problema de programación lineal está en forma estándar si

  1. Todas las restricciones son ecuaciones.
  2. Todas las variables son no negativas.
  3. La función objetivo puede pedirse que se optimice maximizándola, o minimizándola.

De esta manera, un problema en forma estándar se ve como sigue:

\begin{align*}
Max\, (\text{o } Min) \quad z &= c_1x_1+\ldots+c_nx_n\\
s.a.&\\
&\left\{\begin{matrix} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1\\
a_{21}x_1+a_{22}x_2+\ldots + a_{2n}x_n = b_2\\
\vdots \\
a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n= b_n\\
x_1\geq 0, x_2\geq 0, \ldots, x_n\geq 0.
\end{matrix}\right.\\
\end{align*}

En notación matricial, el problema en forma canónica queda expresado de la siguiente manera:

\begin{align*}
Max\, (\text{o } Min) \quad z &= cx\\
&s.a.\\
Ax &= b\\
x &\geq 0\\
\end{align*}

en donde $c, x, A$ y $b \geq 0$ son como se mencionó antes.

Así como cualquier problema de programación lineal puede ser expresado en forma canónica, también cualquier problema de programación lineal puede expresarse en forma estándar. Una restricción del tipo $\leq$ ($\geq$) puede ser transformada en una ecuación sumando (o restando) una variable no negativa que recibe el nombre de variable de holgura.

Ejemplo de pasar un problema a forma estándar

Retomemos el problema ejemplo anterior, antes de expresarlo en forma canónica.

\begin{align*}
Min \quad z &= x_1-3x_2+7x_3\\
&s.a.\\
3x_1+&x_2+3x_3 &\leq 40\\
x_1+&9x_2-7x_3 &\geq 50\\
5x_1+&3x_2 &= 20\\
&5x_2 + 8x_3 &\leq 80\\
x_1, x_2 &\geq 0, \quad x_3 \quad libre.\\
\end{align*}

Vamos a expresarlo ahora en forma estándar. Como lo hicimos anteriormente, hacemos la sustitución $x=x’_3-x_3^\ast$ para que la variable libre se convierta en dos con restricciones de ser no negativas.

Para satisfacer (1) se introducen las variables de holgura, $x_4$, $x_5$ y $x_6$ que pediremos que sean no negativas. A la primera desigualdad le sumamos $x_4$. A la quinta le sumamos $x_6$. Y finalment, a la segunda le restamos $x_5$. Esto transforma las desigualdades en igualdades. De esta manera, el problema queda expresado de la siguiente manera:

\begin{align*}
Min \quad z &= x_1 – 3x_2+7x’_3-7x_3^\ast\\
&s.a.\\
3x_1 + &x_2 + 3x’_3 – 3x_3^\ast + x_4 &= 40\\
x_1 + &9x_2 – 7x’_3 + 7x_3^\ast – x_5 &= 50\\
5x_1 + &3x_2 &= 20\\
&5x_2 + 8x’_3 – 8x_3^\ast + x_6 &= 80\\
x_1,&x_2,x’_3,x_3^\ast,x_4,x_5,x_6 \geq 0.\\
\end{align*}

Más adelante…

Las formas que estudiamos en esta entrada nos ayudarán posteriormente para plantear soluciones para problemas de programación lineal.

Mientras tanto, en la siguiente entrada hablaremos de algunos otros conceptos relativos a la teoría de problemas lineales y posibles propiedades que puede tener una asignación de variables. Diremos qué es una solución básica, una solución factible y un punto extremo para un problema lineal.

Tarea moral

  1. ¿Cuál sería la forma estándar del problema de maximizar $x+y$ sujeto a $x-y\leq 8$ y $y\leq 0$? ¿Y su forma canónica?
  2. Transforma el siguiente problema de programación lineal a su forma canónica y a su forma estándar:
    \begin{align*}
    Max \quad z &= -2x_1 + 3x_2 – 2x_3\\
    &s.a.\\
    4x_1 – &x_2 – 5x_3 &= 10\\
    2x_1 + &3x_2 + 2x_3 &\geq 12\\
    x_1 &\geq 0, \quad x_2, x_3 \quad irrestrictas\\
    \end{align*}
  3. Revisa nuevamente las entradas anteriores y encuentra las formas canónicas y formas estándar de los problemas que hemos planteado hasta ahora.
  4. La forma estándar (o bien la forma canónica) de un programa lineal «es equivalente» al problema original. Justifica esta afirmación formalmente. Es decir, explica por qué una solución $x_1,\ldots,x_n$ que optimiza el problema original está asociada a una solución de su forma estándar (o canónica) y viceversa.
  5. Imagina que tenemos un sistema de ecuaciones de la forma $Ax=B$ con $A$ matriz en $M_{m,n}(\mathbb{R})$ y $b$ vector en $\mathbb{R}^m$. Queremos encontrar de todas las posibles soluciones al sistema aquella que minimiza la suma de las entradas de $x$. Plantea esto como un problema lineal y transfórmalo a su forma canónica y a su forma estándar.

Entradas relacionadas

Cálculo Diferencial e Integral III: Polinomio característico

Por Alejandro Estrada

Introducción

En la entrada anterior estudiamos las representaciones matriciales de una transformación lineal. Vimos cómo dadas bases de espacios dominio y codominio, existe un isomorfismo entre matrices y transformaciones lineales. Así mismo, planteamos la pregunta de cómo encontrar bases para que dicha forma matricial sea sencilla. Vimos que unos conceptos cruciales para entender esta pregunta son los de eigenvalor, eigenvector y eigenespacio. Lo que haremos ahora es introducir una nueva herramienta que nos permitirá encontrar los eigenvalores de una transformación: el polinomio característico.

A partir del polinomio característico daremos un método para encontrar también a los eigenvectores y, en algunos casos especiales, encontrar una representación de una transformación lineal como matriz diagonal. Todo lo que hacemos es una versión resumida de lo que se puede encontrar en un curso más completo de álgebra lineal. Dentro del blog, te recomendamos consultar las siguientes entradas:

Polinomio característico

Pensemos en el problema de hallar los eigenvalores de una transformación lineal $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$. Si $\lambda \in \mathbb{R}$ es uno de estos eigenvalores, queremos poder encontrar vectores $v\neq 0$ tales que $T(v)=\lambda v$. Esto sucede si y sólo si $\lambda v-T(v)=0$, lo cual sucede si y sólo si $(\lambda \text{Id}-T)(v)=0$, en donde $\text{Id}:\mathbb{R}^n\to \mathbb{R}^n$ es la transformación identidad de $\mathbb{R}^n$ en $\mathbb{R}^n$. Tenemos de esta manera que $v$ es un eigenvector si y sólo si $v\in \ker(\lambda\text{Id}-T)$.

Si existe $v\neq 0$ tal que $v\in \ker(\lambda \text{Id}-T)$; entonces $\ker(\lambda \text{Id}-T)\neq \{ 0\}$ por lo cual la transformación $\lambda \text{Id}-T$ no es invertible, pues no es inyectiva. Así, en ninguna base $\text{Mat}_\beta(\lambda \text{Id}-T)$ es invertible, y por tanto su determinante es $0$. Estos pasos son reversibles. Concluimos entonces que $\lambda\in \mathbb{R}$ es un eigenvalor de $T$ si y sólo si en alguna base $\beta$ se cumple que $\det(\text{Mat}_\beta(\lambda \text{Id} – T))=0.$ Esto motiva la siguiente definición.

Definición. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal. Llamamos a $\det(\text{Mat}_\beta(\lambda \text{Id} – T))$ el polinomio característico de $T$ en la base $\beta$.

Por la discusión anterior, los escalares que cumplen $\det(\text{Mat}_\beta(\lambda \text{Id} – T))=0$ son los eigenvalores $T$. Para obtener los correspondientes eigenvectores, basta con resolver $\text{Mat}_\beta(T)X=rX$, lo cual es un sistema de ecuaciones en el vector de variables $X$. Las soluciones $X$ nos darán las representaciones matriciales de vectores propios $v\in V$ en la base $\beta$.

Por el momento parece ser que cargamos mucha notación, pues debemos considerar la base en la que estamos trabajando. Un poco más adelante veremos que en realidad la base no importa mucho para determinar el polinomio característico. Pero por ahora, veamos un ejemplo concreto de las ideas platicadas hasta ahra.

Ejemplo: Consideremos $T:\mathbb{R}^{3}\rightarrow \mathbb{R}^{3}$ dada por $T(x,y,z)=(2x+z,y+x,-z)$. Calculemos su representación matricial con respecto a la base canónica $\beta$. Para ello, realizamos las siguientes evaluaciones:
\begin{align*}
T(1,0,0)&=(2,1,0)\\
T(0,1,0)&=(0,1,0)\\
T(0,0,1)&=(1,0,-1),
\end{align*}

de donde: $$\text{Mat}_\beta=\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Calculando el polinomio característico obtenemos: \[ det\begin{pmatrix} \lambda-2 & 0 & -1 \\ -1 & \lambda-1 & 0 \\ 0 & 0 & \lambda+1 \end{pmatrix}= (\lambda-2)(\lambda-1)(\lambda+1). \]

Las raíces de $(\lambda-2)(\lambda-1)(\lambda+1)$ son $\lambda_{1}=2$, $\lambda_{2}=1$, y $\lambda_{3}=-1$. Pensemos ahora en quiénes son los eigenvectores asociados a cada eigenvalor. Tomemos como ejemplo el eigenvalor $\lambda=2$. Para que $(x,y,z)$ represente a un eigenvector en la base canónica, debe pasar que:

\[ \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2\begin{pmatrix} x \\ y \\ z \end{pmatrix},\]

lo cual sucede si y sólo si:

\[\begin{pmatrix} 0 & 0 & 1 \\ 1 & -1& 0 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.\]

De aquí, podemos llegar a la siguiente forma escalonada reducida del sistema de ecuaciones:

\[\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.\]

En esta forma es sencillo leer las soluciones. Tenemos que $z$ es variable pivote con $z=0$, que $y$ es variable libre, y que $x$ es variable pivote dada por $x=-y$. Concluimos entonces que todos los posibles eigenvectores para el eigenvalor $2$ son de la forma $(-y,y,0)$, es decir $E_2=\{(-y,y,0): y \in \mathbb{R}\}$.

Queda como tarea moral que encuentres los eigenvectores correspondientes a los eigenvalores $1$ y $-1$.

$\triangle$

Matrices similares

En la sección anterior definimos el polinomio de una transformación lineal en términos de la base que elegimos para representarla. En realidad, la base elegida no es muy importante. Demostraremos un poco más abajo que dos representaciones matriciales cualesquiera de una misma transformación lineal tienen el mismo polinomio característico. Para ello, comencemos con la siguiente discusión.

Comencemos con lo siguiente. Sea $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ una transformación lineal y sean $\beta_1=\{ e_{1}, \dots , e_{n}\}$, $\beta_2=\{ u_{1}, \dots , u_{n}\}$ dos bases (ordenadas) de $\mathbb{R}^n$. Supongamos que:

\begin{align*}
A&=\text{Mat}_{\beta_1}(T)=[a_{ij}]\\
B&=\text{Mat}_{\beta_2}(T)=[b_{ij}].
\end{align*}

Por cómo se construyen las matrices $A$ y $B$, tenemos que:

\begin{align*}
T(e_j)&=\sum_{i=1}^n a_{ij} e_i\quad\text{para $j=1,\ldots,n$}\\
T(u_k)&=\sum_{j=1}^n b_{jk} u_j\quad\text{para $k=1,\ldots,n$}.
\end{align*}

Como $\beta$ es base, podemos poner a cada un de los $u_k$ de $\beta’$ en términos de la base $\beta$ mediante combinaciones lineales, digamos:

\begin{equation}
u_{k}=\sum_{j=1}^{n}c_{jk}e_{j}
\label{eq:valor-u}
\end{equation}

en donde los $c_{jk}$ son escalares para $j=1,\ldots, n$ y $k=1,\ldots,n$. La matriz $C$ de $n\times n$, con entradas $c_{jk}$ representa a una transformación lineal invertible, ya que es una transformación que lleva uno a uno los vectores de una base a otra. Afirmamos que $CB=AC$. Para ello, tomaremos una $k$ en $[n]$ y expresaremos $T(u_k)$ de dos formas distintas.

Por un lado, usando \eqref{eq:valor-u} y cómo es cada $T(e_k)$ en la base $\beta$ tenemos que:

\begin{align*}
T(u_k)&=\sum_{j=1}^n c_{jk} T(e_j)\\
&=\sum_{j=1}^n c_{jk} \sum_{i=1}^n a_{ij} e_i\\
&=\sum_{j=1}^n \sum_{i=1}^n (c_{jk} a_{ij} e_i)\\
&=\sum_{i=1}^n \sum_{j=1}^n (c_{jk} a_{ij} e_i)\\
&=\sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} c_{jk}\right) e_i.
\end{align*}

Por otro lado, usando $\eqref{eq:valor-u}$ y cómo es cada $T(u_k)$ en la base $\beta’$:

\begin{align*}
T(u_k)&=\sum_{j=1}^nb_{jk} u_j\\
&=\sum_{j=1}^n b_{jk} \sum_{i=1}^{n}c_{ji}e_{j} \\
&=\sum_{j=1}^n \sum_{i=1}^n (b_{jk} c_{ij} e_i)\\
&=\sum_{i=1}^n \sum_{j=1}^n (b_{jk} c_{ij} e_i)\\
&=\sum_{i=1}^n \left(\sum_{j=1}^n c_{ij} b_{jk} \right) e_i.
\end{align*}

Comparemos ambas expresiones para $T(u_k)$. La primera es una combinación lineal de los $e_i$ y la segunda también. Como $T(u_k)$ tiene una única expresión como combinación lineal de los $e_i$, entonces los coeficientes de la combinación lineal deben coincidir. Concluimos que para cada $i$ se cumple:

$$\sum_{j=1}^n a_{ij} c_{jk}=\sum_{j=1}^n c_{ij} b_{jk}.$$

Pero esto precisamente nos dice que la entrada $(i,k)$ de la matriz $AC$ es igual a la entrada $(i,k)$ de la matriz $CB$. Con esto concluimos que $AC=CB$, como queríamos.

En resumen, obtuvimos que para dos matrices $A$ y $B$ que representan a la misma transformación lineal, existe una matriz invertible $C$ tal que: $B=C^{-1}AC$. Además $C$ es la matriz con entradas dadas por \eqref{eq:valor-u}.

Introduciremos una definición que nos permitirá condensar en un enunciado corto el resultado que hemos obtenido.

Definición. Dos matrices $A$ y $B$ se llamarán similares (o semejantes), cuando existe otra matriz $C$ invertible tal que $B=C^{-1}AC$.

Sintetizamos nuestro resultado de la siguiente manera.

Proposición. Si dos matrices representan a la misma transformación lineal, entonces estas matrices son similares.

El converso de la proposición también se cumple, tal y como lo afirma elsiguiente resultado.

Proposición. Sean $A$ y $B$ matrices similares. Entonces $A$ y $B$ representan a una misma transformación lineal $T$, quizás bajo distintas bases.

Demostración: Supongamos que las matrices $A$ y $B$ son similares con $B=C^{-1}AC$, donde las matrices $A$, $B$, $C$ están dadas por entradas $A=[a_{ij}]$ $B=[b_{ij}]$, $C=[c_{jk}]$. Tomemos una base ordenada $\beta=\{e_{1}, \dots ,e_{n}\}$ de $\mathbb{R}^n$. Consideremos la transformación lineal $T\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^n)$ dada por $$T(e_j)=\sum_{i=1}^n a_{ij} e_i.$$

De esta manera $T$ tiene forma matricial $A$ en la base $\beta$.

Construyamos ahora una nueva base ordenada de $\mathbb{R}^n$ dada por vectores $u_k$ para $k=1,\ldots,n$ construidos como sigue:

$$u_{k}=\sum_{j=1}^{n}c_{jk}e_{j}.$$

Como $C$ es invertible, en efecto tenemos que $\beta’:=\{u_1,\ldots,u_n\}$ también es base de $\mathbb{R}^n$. Además, de acuerdo a las cuentas que hicimos anteriormente, tenemos que precisamente la forma matricial de $T$ en la base $\beta’$ será $B$.

Así, hemos exhibido una transformación $T$ que en una base tiene representación $A$ y en otra tiene representación $B$.

$\square$

Juntando ambos resultados en uno solo, llegamos a lo siguiente.

Teorema. Dos matrices $A$ y $B$ en $M_n(\mathbb{R})$ son similares si y sólo si representan a una misma transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$.

El polinomio característico no depende de la base

Teorema. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal en un espacio sobre $\mathbb{R}$ de dimensión finita. Sean $\beta$ y $\beta’$ bases de $\mathbb{R}^n$. Entonces se obtiene lo mismo calculando el polinomio característico de $T$ en la base $\beta$, que en la base $\beta’$.

Demostración. Tomemos $A=\text{Mat}_{\beta}(T)$ y $B=\text{Mat}_{\beta’}(T)$. Como $A$ y $B$ representan a la misma transformación lineal $T$, entonces son similares y por lo tanto existe $C$ invertible con $B=C^{-1}AC$.

Para encontrar el polinomio característico de $T$ en la base $\beta$, necesitamos $\Mat_{\beta}(\lambda\text{Id}-T)$, que justo es $\lambda I -A$. Así mismo, en la base $\beta’$ tenemos $\lambda I – B$. Debemos mostrar que el determinante de estas dos matrices es el mismo. Para ello, procedemos como sigue:

\begin{align*}
\det(\lambda I -B) &= \det (\lambda C^{-1}C – C^{-1} A C)\\
&=\det(C^{-1}(\lambda I – A) C)\\
&=\det(C^{-1})\det(\lambda I – A) \det(C)\\
&=\det(C^{-1})\det(C)\det(\lambda I-A)\\
&=\det(I)\det(\lambda I-A)\\
&=\det(\lambda I-A).
\end{align*}

Aquí estamos usando que el determinante es multiplicativo. Cuando reordenamos expresiones con $\det$, lo hicimos pues los determinantes son reales, cuyo producto es conmutativo.

$\square$

Este teorema nos permite hablar de el polinomio característico de una transformación lineal.

Concluimos esta entrada con un resultado que relaciona al polinomio característico de una transformación lineal, con la posibilidad de que exista una base cuya representación matricial sea diagonal.

Teorema. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal. Supongamos que el polinomio característico de $T$ tiene raíces distintas $\lambda_{1}, \dots ,\lambda_{n}$. Entonces se cumple lo siguiente:

  1. Si tomamos un eigenvector $u_i$ para cada eigenvalor $\lambda_i$, entonces $u_{1},\dots ,u_{n}$ forman una base $\beta$ para $\mathbb{R}^n$.
  2. Con dicha base $\beta$, se cumple que $\text{Mat}_\beta(T)$ es una matriz diagonal con entradas $\lambda_{1},\dots ,\lambda_{n}$ en su diagonal.
  3. Si $\beta’$ es otra base de $V$ y $A=\text{Mat}_{\beta’}(T)$, entonces $\text{Mat}_\beta(T) = C^{-1}AC$ para una matriz invertible $C$ con entradas dadas por \eqref{eq:valor-u}.

La demostración de este resultado queda como tarea moral.

Más adelante…

En la entrada planteamos entonces un método para encontrar los eigenvectores de una transformación $T$: 1) la transformamos en una matriz $A$, 2) encontramos el polinomio característico mediante $\det(\lambda I – A)$, 3) encontramos las raíces de este polinomio, 4) cada raíz es un eigenvalor y las soluciones al sistema lineal de ecuaciones $(\lambda I – A) X=0$ dan los vectores coordenada de los eigenvectores.

Como platicamos en la entrada, una condición suficiente para que una transformación de $\mathbb{R}^n$ a sí mismo sea diagonalizable es que tenga $n$ eigenvalores distintos. Otro resultado muy bonito de álgebra lineal es que si la transformación tiene alguna forma matricial simétrica, entonces también es diagonalizable. A esto se le conoce como el teorema espectral para matrices simétricas reales. En otros cursos de álgebra linealidad se estudia la diagonalizabilidad con mucho detalle. Aquí en el blog puedes consultar el curso de Álgebra Lineal II.

Otra herramienta de álgebra lineal que usaremos en el estudio de la diferenciabilidad y continuidad de las funciones de $\mathbb{R}^{n}$ a $\mathbb{R}^{m}$ son las formas bilineales y las formas cuadráticas. En la siguiente entrada comenzaremos con estos temas.

Tarea moral

  1. Encuentra los eigenvectores faltantes del ejemplo de la sección de polinomio característico.
  2. Considera la transformación lineal $T(x,y,z)=(2x+z,y+x,-z)$ de $\mathbb{R}^3$ en $\mathbb{R}^3$. Nota que es la misma que la del ejemplo de la entrada. Encuentra su representación matricial con respecto a la base $\{(1,1,1),(1,2,3),(0,1,1)\}$ de $\mathbb{R}^3$. Verifica explícitamente que, en efecto, al calcular el polinomio característico con esta base se obtiene lo mismo que con la dada en el ejemplo.
  3. Demuestra que si $A$ y $B$ son dos representaciones matriciales de una misma transformación lineal $T$, entonces $\det(A)=\det(B)$.
  4. Sea $T:\mathbb{R}^{3}\to \mathbb{R}^{3}$ dada por $T(x,y,z)=(x+y+z,x,y)$. Encuentra los eigenvalores correspondientes a la transformación, y responde si es posible representarla con una matriz diagonal. En caso de que sí, encuentra explícitamente la base $\beta$ en la cual $\text{Mat}_{\beta}(T)$ es diagonal.
  5. Demuestra el último teorema de la entrada. Necesitarás usar resultados de la entrada anterior.

Entradas relacionadas

Cálculo Diferencial e Integral III: Representaciones matriciales, eigenvalores y eigenvectores

Por Alejandro Estrada

Introducción

Como se ha mencionado anteriormente el objetivo de introducir ideas de álgebra lineal en cálculo diferencial es poder establecer una transformación lineal que sea la mejor aproximación lineal en un punto a una función dada. Esto nos ayudará a entender a la función dada en el punto términos de otra funcion «más simple». Pero así mismo, las transformaciones lineales pueden ellas mismas pensarse en términos de transformaciones más sencillas. En esta entrada revisaremos esta idea y la conectaremos con la noción de eigenvectores.

Por un lado, recordaremos cómo es que una transformación lineal puede ser representada mediante una matriz una vez que se ha elegido una base del espacio vectorial. Luego, hablaremos de cómo elegir, de entre todas las bases, aquella que nos de una representación matricial lo más sencilla posible.

Representación matricial de las transformaciones lineales

Comencemos esta entrada repasando la importante relación entre transformaciones lineales y matrices. Denotaremos como $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ al espacio vectorial de transformaciones lineales de $\mathbb{R}^n$ a $\mathbb{R}^m$.

Si tomamos cualquier transformación lineal $T\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$, entonces los valores de $T$ en cualquier vector de $\mathbb{R}^n$ quedan totalmente determinados por los valores de $T$ en los elementos de alguna base $\beta$ para $V$. Tomemos $\gamma=\{w_{1},\dots ,w_{m}\}$ una base ordenada para $W$, y $\beta=\{e_{1},\dots ,e_{n}\}$ una base ordenada para $V$. Para cada $e_{k}$ tenemos:

$$\begin{equation} T(e_{k})=\sum_{i=1}^{m}t_{ik}w_{i} \end{equation},$$

para algunos escalares $t_{1k},\dots ,t_{mk}$ que justo son las componentes de $T(e_{k})$ en la base $\gamma$. Con estos escalares, podemos considerar la matriz: \[ \text{Mat}_{\gamma,\beta}(T)= \begin{pmatrix} t_{11} & \dots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{m1} & \dots & t_{mn} \end{pmatrix} \]

Esta es llamada la representación matricial de la transformación $T$ con respecto a las bases $\beta$ y $\gamma$. Esta matriz ayuda a calcular $T$ en cualquier vector de $V$ como explicamos a continuación.

Para cada $v\in V$, podemos expresarlo como combinación lineal de elementos de la base $\beta$digamos que $v=\sum_{i=1}^{n} v_{i}e_{i}$. Mediante estos coeficientes, podemos entonces asociar a $v$ al siguiente vector columna de $\mathbb{R}^n$ \[ [v]_{\beta}=\begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}, \]

al que llamamos el vector de coordenadas de $v$ con respecto a la base $\beta$.

Realicemos por un lado el siguiente cálculo:

\[ \text{Mat}_{\gamma,\beta}(T)[v]_{\beta}=\begin{pmatrix} t_{11} & \dots & t_{1n}\\ \vdots & \ddots & \vdots \\ t_{m1} & \dots & t_{mn} \end{pmatrix} \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}=\begin{pmatrix} \displaystyle\sum_{k=1}^{n}t_{1k}v_{k} \\ \vdots \\ \displaystyle\sum_{k=1}^{n}t_{mk}v_{k}.\end{pmatrix} \]

Por otro lado tenemos lo siguiente:

\begin{align*}
T(v)&=T \left( \sum_{k=1}^{n}v_{k}e_{k} \right)\\&=\sum_{k=1}^{n}v_{k}T(e_{k})\\&=\sum_{k=1}^{n}v_{k}T\left( \sum_{i=1}^{m}t_{ik}w_{i} \right)\\&=\sum_{i=1}^{m}\left( \sum_{k=1}^{n}v_{k}t_{ik} \right)w_{i}.
\end{align*}

Juntando ambos cálculos: \[ [T(v)]_{\gamma}=\begin{pmatrix} \sum_{k=1}^{n}v_{k}t_{1k} \\ \vdots \\ \sum_{k=1}^{n}v_{k}t_{mk} \end{pmatrix} = \text{Mat}_{\gamma,\beta}(T)[v]_{\beta}.\]

En otras palabras, aplicar $T$ a un vector $v$ equivale a multiplicar $\text{Mat}_{\gamma,\beta}$ por el vector columna asociado a $v$ en la base $\beta$.

Isomorfismo entre transformaciones lineales y matrices

Con las operaciones de suma y multiplicación por escalar que vimos en la entrada de Matrices, se tiene que $M_{m,n}\left( \mathbb{R} \right)$ es un espacio vectorial sobre $\mathbb{R}$. De igual manera $\mathcal{L}(V,W)$ es un espacio vectorial sobre $\mathbb{R}$ con las siguientes operaciones:

  • Si $T$ y $U$ son dos transformaciones, la transformación $T+U$ es aquella que envía a todo vector $v\in V$ al vector $T(v)+U(v)$.
  • Si $r\in \mathbb{R}$ la transformación $rT$ es la que a todo $v\in V$ lo envía al vector $rT(v)$.

Queda como ejercicio que verifiques que esto dota efectivamente a $\mathcal{L}(V, W)$ de estructura de espacio vectorial.

A continuación veremos que estos dos espacios vectoriales son, prácticamente, el mismo. Lo que haremos es construir una función $\Phi :M_{m,n}\left( \mathbb{R} \right) \to\mathcal{L}(V,W)$ que sea biyectiva y que preserve las operaciones de suma y de producto escalar.

Para ello, tomemos una base $\beta=\{e_1,\ldots,e_n\}$ de $\mathbb{R}^{n}$ y una base $\gamma=\{u_1,\ldots,u_m\}$ de $\mathbb{R}^n$. Tomemos una matriz $A\in M_{m,n}(\mathbb{R})$. Explicaremos a continuación cómo construir la transformación $\Phi(A)$, para lo cual diremos qué hace en cada elemento de la base $\beta$. Tomaremos aquella transformación lineal $T_A\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ tal que

$$T_A(e_j)=\sum_{i=1}^n a_{ij} u_i.$$

Tomamos entonces $\varphi(A)=T_A$. Veamos que $\varphi$ tiene todas las propiedades que queremos.

  • $\Phi$ es suprayectiva. Si tenemos una transformación $T:\mathbb{R}^n\to \mathbb{R}^m$, entonces por la construcción anterior se tiene que su forma matricial $A:=\text{Mat}_{\gamma,\beta}(T)$ justo cumple $T_A=T$, de modo que $\Phi(A)=T$.
  • $\Phi$ es inyectiva. Si $A$ y $B$ son matrices distintas, entonces difieren en alguna entrada, digamos $(i,j)$. Pero entonces $T_A$ y $T_B$ difieren ya que $T_A(e_j)\neq T_B(e_j)$ ya que en las combinaciones lineadas creadas hay un coeficiente distinto. Así, $\Phi(A)\neq \Phi(B)$.
  • $\Phi $ es lineal. Para $r\in \mathbb{R}$, $A$ y $B$ matrices con entradas $a_{ij}$ y $b_{ij}$, respectivamente, se cumple que $\Phi \left( rA+B \right)=T_{(rA+B)}$ y entonces se satisface para cada $j=1,\dots ,n$ lo siguiente:
    \begin{align*}
    (rA+B)[e_{j}]_{\beta}&=rA[e_{j}]_{\beta}+B[e_{j}]_{\beta}\\&=r[T_A(e_{i})]_{\gamma}+[T_{B}(e_{i})]_{\gamma}.
    \end{align*}
    Por tanto para cada $e_{i}$ tenemos que $$T_{(rA+B)}(e_{i})=rT_{A}(e_{i})+T_{B}(e_{i})$$ y en consecuencia $$T_{(rA+B)}=rT_{A}+T_{B}.$$ Así $$\Phi (rA+B)=r\Phi (A)+\Phi(B).$$

Todo lo anterior implica que $M_{m,n}\left( \mathbb{R} \right)\simeq \mathcal{L}(V,W)$, es decir, que ambos espacios vectoriales son isomorfos.

En búsqueda de una matriz sencilla

Por lo que hemos platicado hasta ahora, a cada transformación lineal le corresponde una matriz, y viceversa. De hecho, esta asociación respeta operacionescomo la suma y el producto escalar. Esta equivalencia está dada a partir de la función $\Phi$ encontrada en la sección anterior.

Si $\Phi $ es biyectiva, ¿por qué hablamos entonces de encontrar una representación matricial simple para una transformación lineal $T$? Esto parecería no tener sentido, pues a cada transformación le corresponde una y sólo una matriz. Sin embargo, esto es cierto únicamente tras haber fijado las bases $\beta$ y $\gamma$ para $\mathbb{R}^n$ y $\mathbb{R}^m$, respectivamente. Así, dependiendo de la elección de las bases las representaciones matriciales cambian y si tenemos una transformación lineal $T$, es posible que querramos encontrar bases $\beta$ y $\gamma$ en donde la representación matricial sea sencilla.

Nos enfocaremos únicamente en transformaciones lineales que van de un espacio vectorial a sí mismo. Tomemos entonces $T:\mathbb{R}^n\to \mathbb{R}^n$ y una base $\beta$ de $\mathbb{R}^n$. Por simplicidad, escribiremos $\text{Mat}_{\beta, \beta}(T)$ simplemente como $\text{Mat}_{\beta}$. Hay propiedades de $T$ que podemos leer en su matriz $\text{Mat}_{\beta}$ y que no dependen de la base $\beta$ que hayamos elegido. Si con una base $\beta$ especial resulta que $\text{Mat}_{\beta}$ es muy sencilla, entonces podremos leer estas propiedades de $T$ muy fácilmente. Un ejemplo es la siguiente proposición, la cual queda como tarea moral.

Proposición. La transformación lineal $T:\mathbb{R}^n\to\mathbb{R}^n$ es invertible si y sólo si $\text{Mat}_{\beta}(T)$ es invertible.

Si $A=\text{Mat}_{\beta}(T)$ fuera muy muy sencilla, por ejemplo, si fuera una matriz diagonal, entonces podríamos saber la invertibilidad de $T$ sabiendo la invertibilidad de $A$, y la de $A$ sería muy fácil de ver pues por ser matriz diagonal bastaría hacer el producto de las entradas de su diagonal para obtener su determinante y estudiar si es distinto de cero.

Motivados por el ejemplo anterior, estudiemos la siguiente pregunta: ¿toda transformación lineal se puede representar con una matriz diagonal? Si una transformación lineal se puede representar de esta manera, diremos que es diagonalizable.

Eigenvalores, eigenvectores y eigenespacios

En lo que sigue desarrollaremos el aparato conceptual que nos permitirá dar una respuesta parcial de cuándo una matriz es diagonalizable. Para ello, debemos introducir algunos conceptos y estudiarlos.

Definición. Sea $T:\mathbb{R}^n\rightarrow \mathbb{R}^m$ una transformación lineal. Diremos que un escalar $r \in \mathbb{R}$ es un eigenvalor de $T$ si existe $v\in \mathbb{R}^n\setminus\{ 0 \}$ tal que $T(v)=rv$. A dicho vector $v$ le llamaremos un eigenvector de $T$ con eigenvalor asociado $r$.

Dado un eigenvector $v\in \mathbb{R}^m$, sólo hay un eigenvalor correspondiente a este. Si $T(v)=rv$ y $T(v)=tv$, entonces $rv=tv$ de donde $(r-t)v=0_{V}$. Como $v\neq 0_{V}$, se sigue que $r=t$.

Por otro lado, para un eigenvalor $r$ puede haber más de un eigenvector con eigenvalor asociado $r$. Consideremos para un eigenvalor $r$ el conjunto $E(r)=\{ v\in V |T(v)=rv\}$. Notemos que $0_{V}\in E(r)$ y también todos los eigenvectores de $r$ están en $E(r)$. Además, $E(r)$ es un subespacio de $\mathbb{R}^n$, pues si $u,v \in E(r)$, y $a\in \mathbb{R}$, tenemos

\begin{align*}
T(au+v)&=aT(u)+T(v)\\
&=a(ru)+(rv)\\
&=r(au+v),
\end{align*}

lo cual implica que $au+v \in E(r)$.

Definición. Para una transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$ y un eigenvalor $r$ de $T$ llamaremos a

$$E(r)=\{ v\in V |T(v)=rv\}$$

el eigenespacio de $T$ correspondiente a $r$.

Cuando tenemos eigenvectores correspondientes a eigenvalores distintos, cumplen algo especial.

Proposición. Si $v_{1}, \dots ,v_{l}$ son eigenvectores de una transformación lineal $T:\mathbb{R}^n \rightarrow \mathbb{R}^n$ con eigenvalores correspondientes $r_{1}, \dots ,r_{l}$ distintos entonces $v_{1}, \dots ,v_{l}$ son linealmente independientes.

Demostración. La ruta para establecer la demostración de este teorema será por inducción sobre $l$. Para un conjunto con solo un eigenvector el resultado es evidente (¿por que?). Supongamos cierto para cualquier subconjunto de $l-1$ eigenvectores que pertenecen a eigenespacios distintos. Sean $v_{1}, \dots ,v_{l}$ eigenvectores en distintos eigenespacios y consideremos $\alpha _{1}, \dots ,\alpha_{l}$ escalares tales que:

\begin{equation}
\label{eq:comb-cero}
\sum_{k=1}^{l}\alpha _{k}v_{k}=0.
\end{equation}

Aplicamos $T$ a la igualdad anterior. Usando que cada $v_{k}$ es eigenvector correspondiente al eigenvalor $r_{k}$ obtenemos:

\begin{align*}
0=T(0)&=T\left(\sum_{k=1}^{l}\alpha _{k}v_{k} \right)\\&=\sum_{k=1}^{l}\alpha _{k}T(v_{k})\\&=\sum_{k=1}^{l}\alpha _{k}r_{k}v_{k}.
\end{align*}

Es decir,

\begin{equation}
\label{eq:aplicarT}
0=\sum_{k=1}^{l}\alpha _{k}r_{k}v_{k}
\end{equation}

Multipliquemos \eqref{eq:comb-cero} por $r_{l}$ y restemos el resultado de \eqref{eq:aplicarT} para obtener que

\begin{align*}
0=0-0&=\sum_{k=1}^{l}\alpha _{k}r_{k}v_{k}-r_{l}\sum_{k=1}^{l}\alpha _{k}v_{k}\\&=\sum_{k=1}^{l-1}\alpha _{k}(r_{k}-r_{l})v_{k}.
\end{align*}

Tenemos entonces:

\[ \sum_{k=1}^{l-1}\alpha _{k}(r_{k}-r_{l})v_{k}=0.\]

Ya que por hipótesis de inducción $v_{1}, \dots ,v_{l-1}$ son linealmente independientes entonces $\alpha _{k}(r_{k}-r_{l})=0$ para todo $k$, pero los eigenvalores son todos distintos entre sí por lo tanto para todo $k$ de $1$ a $l-1$ se tiene $r_{k}-r_{l}\neq 0$ y así $\alpha _{k}=0$. Finalmente, usando \eqref{eq:comb-cero} obtenemos $\alpha_l=0$. Por lo tanto $v_{1}, \dots ,v_{l}$ son linealmente independientes.

$\square$

Eigenvectores y transformaciones diagonalizables

Recuerda que dijimos que una transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$ es diagonalizable si existe una base $\beta$ de $\mathbb{R}^n$ tal que $\text{Mat}_{\beta}(T)$ es matriz diagonal. El siguiente resultado conecta las dos ideas que hemos estado explorando: los eigenvectores y la representabilidad sencilla de $T$.

Teorema. Sea $T:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ transformación lineal. Una matriz $T$ es diagonalizable si y sólo si existe una base de $\mathbb{R}^n$ conformada por eigenvectores de $T$.

En realidad la demostración consiste únicamente en entender correctamente cómo se construyen las matrices para una base dada.

Demostración. $\Rightarrow )$ Supongamos que $T$ tiene una representación matricial que es una matriz diagonal $A:=\text{Mat}_{\beta}(T)=\text{diag}(r_{1}, \dots ,r_{n})$ con respecto a la base $\beta=\{ v_{1}, \dots ,v_{n}\}$. Afirmamos que para cada $j=1,\ldots,n$ se tiene $v_j$ es eigevector de eigenvalor $r_j$. En efecto, la forma en la que se construyó la matriz $A$ nos dice que

\begin{align*}
T(e_j)&=\sum_{i=1}^n a_{ij} e_i \\&= a_{jj} e_j \\&= r_j e_j,
\end{align*}

en donde estamos usando que las entradas $a_{ij}$ de la matriz son cero si $i\neq j$ (por ser diagonal), y son $r_j$ si $i=j$. Por supuesto, como $e_j$ forma parte de una base, tampoco es el vector cero. Así, $e_j$ es eigenvector de eigenvalor $e_j$.

$\Leftarrow )$ Supongamos ahora que $v_{1},\dots ,v_{n}$ son una base $\beta$ de $\mathbb{R}^n$ conformada por eigenvectores de $T$ con eigenvalores asociados, digamos, $r_{1},\dots ,r_{n}$. Aquí se puede mostrar que $\text{Mat}_\beta(T)$ es diagonal. Queda como tarea moral hacer las cuentas.

$\square$

Hay una situación particular en la que podemos aprovechar el teorema anterior de manera inmediata: cuando la transformación tiene $n$ eigenvalores distintos. Esta consecuencia queda establecida en el siguiente resultado.

Corolario. Toda transformación lineal $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ tiene a lo más $n$ eigenvalores distintos. Si $T$ tiene exactamente $n$ eigenvalores distintos, entonces los eigenvectores correspondientes forman una base para $\mathbb{R}^n$ y la matriz de $T$ relativa a esa base es una matriz diagonal con los eigenvalores como elementos diagonales.

Demostración. Queda como tarea moral.

$\square$

Al parecer los eigenvalores, eigenvectores y eigenespacios de una transformación lineal son cruciales para poder expresarla de manera sencilla. ¿Cómo los encontramos?

Más adelante

Lo que haremos en la siguiente entrada es desarrollar un método para conocer los eigenvalores de una matriz. A partir de ellos podremos encontrar sus eigenvectores. Y en ciertos casos especiales, esto nos permitirá mostrar que la transformación es diagonalizable y, de hecho, nos dará la base para la cual la matriz asociada es diagonal.

Tarea moral

  1. Considera la transformación lineal de $\mathbb{R}^{3}$ en $\mathbb{R}^{2}$, dada como $T(x,y,z)=(x+y,z+y)$. Encuentra su representación matricial con las bases canónicas de $\mathbb{R}^3$ y $\mathbb{R}^3$. Luego, encuentra su representación matricial con las bases $\{(1,2,3),(1,0,1),(0,-1,0)\}$ de $\mathbb{R}^3$ y $\{(1,1),(1,-1)\}$ de $\mathbb{R}^2$.
  2. Considera la siguiente matriz: \[ \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & -1 & 0 & 2 \\ \end{pmatrix}\] Da una transformación lineal $T:\mathbb{R}^4\to \mathbb{R}^2$ y ciertas bases $\beta$ de $\mathbb{R}^4$ y $\gamma$ de $\mathbb{R}^2$ para las cuales esta matriz sea la representación matricial de $T$ en las bases $\beta$ y $\gamma$.
  3. Fija bases $\beta$, $\gamma$ y $\delta$ para $\mathbb{R}^n$, $\mathbb{R}^m$ y $\mathbb{R}^l$. Considera dos transformaciones lineales $T:\mathbb{R}^n\to \mathbb{R}^m$ y $S:\mathbb{R}^m\to \mathbb{R}^l$. Demuestra que:
    $$\text{Mat}_{\delta, \beta} (S \circ T) = \text{Mat}_{\delta,\gamma}(S) \text{Mat}_{\gamma, \beta} (T).$$
    En otras palabras que la «composición de transformaciones corresponde al producto de sus matrices».
  4. Sea $T:\mathbb{R}^n\to\mathbb{R}^n$ una transformación lineal y $\beta$ una base de $\mathbb{R}^n$. Demuestra que $T$ es invertible si y sólo si $\text{Mat}_{\beta}(T)$ es invertible.
  5. Verifica que los vectores $v_1,\ldots,v_n$ dados en el último teorema en efecto ayudan a dar una representación matricial diagonal para $T$.
  6. La demostración del último teorema es un conjunto de sencillas consecuencias de las definiciones y teoremas desarrollados en esta entrada con respecto a los eigenvalores y eigenvectores. Intenta hacerla.

Entradas relacionadas

Teoría de los Conjuntos I: Una pequeña aplicación del Axioma de elección.

Por Gabriela Hernández Aguilar

Introducción.

Lo que haremos en esta última entrada es utilizar el axioma de elección para probar un resultado muy conocido en Álgebra lineal, específicamente, el hecho de que todo espacio vectorial tiene una base. Para comprender algunos de los términos que utilizaremos en esta sección puedes consultar el curso de https://blog.nekomath.com/al1/

Teorema. Todo espacio vectorial tiene una base.

Demostración.

Sea $V$ un espacio vectorial sobre un campo $K$. Lo que queremos mostrar es que existe un subconjunto $S$ de $V$ que genera a $V$ y que es linealmente independiente.

Si $V=\set{0}$, entonces $\emptyset$ es una base para $V$. Supongamos ahora que $V$ tiene al menos dos vectores distintos. Sea $\mathcal{F}=\set{S\subseteq V:S\ \textnormal{es un conjunto linealmente independiente}}$. Notemos que $\mathcal{F}$ es no vacío. En efecto, sea $v\in V$ un elemento distinto del vector cero. Luego, $\set{v}$ es linealmente independiente, por lo que $\set{v}\in\mathcal{F}$.

Lo que haremos ahora es probar que $\mathcal{F}$ es una familia de conjuntos de carácter finito. Sea $A$ un conjunto tal que $A\in\mathcal{F}$. Luego, $A$ es linealmente independiente y, por tanto, cualquier subconjunto de $A$ es linealmente independiente, en particular todos los subconjuntos finitos de $A$ son linealmente independientes. En consecuencia, cualquier subconjunto finito de $A$ pertence a $\mathcal{F}$. Ahora, sea $A$ un conjunto tal que todo subconjunto finito de $A$ pertenece a $\mathcal{F}$. Si $a\in A$, entonces $\set{a}\in\mathcal{F}$, por lo que $\set{a}$ es un subconjunto de $V$ linealmente independiente. En particular $a\in V$ y, por tanto, $A\subseteq V$. Ahora, sean $a_1,a_2,\ldots,a_n\in A$ cualesquiera elementos y $\alpha_1,\alpha_2,\ldots,\alpha_n$ elementos en $K$ tales que \[\alpha_1a_1+\alpha_2a_2+\cdots+\alpha_na_n=0.\]Luego, como $A_0=\set{a_1,a_2,\ldots,a_n}$ es un subconjunto finito de $A$, entonces $A_0\in\mathcal{F}$, es decir, $A_0$ es un subconjunto de $V$ linealmente independiente y, por tanto, los escalares $\alpha_1,\alpha_2,\ldots,\alpha_n$ deben ser todos $0$, ya que al ser $a_1,a_2,\ldots,a_n$ vectores linealmente independientes, la única combinación lineal de estos vectores que da como resultado al vector $0$ es la combinación lineal trivial, la cual está dada por $0a_1+0a_2+\cdots+0a_n=0$. Así pues, como los elementos $a_1,a_2,\ldots,a_n$ fueron arbitrarios en $A$ concluimos que $A$ es linealmente independiente. Por tanto, $A\in\mathcal{F}$. Esto demuestra que $\mathcal{F}$ es una familia de conjuntos de carácter finito.

Ahora, por el axioma de elección toda familia no vacía de carácter finito tiene un elemento $\subseteq-$maximal. Sea $S$ un elemento $\subseteq-$maximal en $\mathcal{F}$. Resulta que $S$ es una base para $V$. En efecto y, como $S$ es linealmente independiente, sólo basta probar que $S$ genera a $V$.

Sea $v\in V$ cualquier elemento. Si $v$ no es un elemento en el subespacio generado por $S$, entonces $S\cup\set{v}$ sería un subconjunto linealmente independiente que contiene propiamente a $S$, lo cual contradice la maximalidad de $S$ con respecto a la contención en $\mathcal{F}$. Así pues, $v$ debe ser un vector en el subespacio generado por $S$, lo que muestra que $S$ genera a $V$ y, por tanto, $S$ es una base para $V$.

$\square$

Tarea moral

  • Sea $V$ un espacio vectorial sobre un campo $K$. Muestra que todo conjunto linealmente independiente está contenido en una base de $V$.
  • Sea $V$ un espacio vectorial. Muestra que si $S$ es un subconjunto generador de $V$, entonces existe $\beta\subseteq S$ tal que $\beta$ es una base para $V$.
  • Sea $V$ un espacio vectorial con base $\beta$. Si $S$ es un conjunto linealmente independiente, muestra que existe un subconjunto $S_1$ de $\beta$ tal que $S\cup S_1$ es una base para $V$.