Archivo del Autor: Miguel Ángel Rodríguez García

Cálculo Diferencial e Integral II: Área de una superficie de revolución

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos como calcular el volumen de una superficie de revolución por el método de capas cilíndricas, ahora, en esta entrada veremos como calcular el área de una superficie de revolución.

Área de una superficie de revolución

Consideremos una región delimitada por el eje $x$, las rectas $x=a$ y $x=b$ y la curva que tiene como función $y=f(x)$, continua en el intervalo $[a , b]$, giramos esta región alrededor del eje $x$ obteniendo una superficie de revolución como en la figura $(1)$.

Figura 1: Aproximación de un cono al area $\Delta S_{i}$

Dividimos el intervalo $[a , b]$ en $n$ subintervalos en donde el i-ésimo subintervalo es $[x_{i-1}, x_{i}]$ y sea $\Delta S_{i}$ el valor del área superficial del i-ésimo subintervalo $[x_{i-1}, x_{i}]$ lo podemos calcular viéndolo como un tronco cónico (encerrado en líneas puntuadas, figura $(1)$) en donde su área de superficial es:

$$S=\pi (r_{1}+r_{2})g \tag{1}$$

Donde $g$ es la generatriz del tronco cónico, $r_{1}$ y $r_{2}$ son los radios respecto al eje de rotación.

Para dar correspondencia a la figura $(1)$, sea $g_{i}= \Delta L_{i}$ la generatriz del i-esimo tronco cónico, que se aproxima a la gráfica $y=f(x)$ como se muestra en la figura $(1)$ en el intervalo $[x_{i-1}, x_{i}]$, por lo que el área superficial del i-esimo tronco cónico designado como $\Delta S_{i}$, lo podemos aproximar mediante la relación $(1)$ como:

$$\Delta S_{i}\approx \pi (f(x_{i-1})+f(x_{i}))\Delta L_{i}$$

Pero $\Delta L_{i}$ lo podemos aproximar por la definición de la longitud de arco en el intervalo $[x_{i-1}, x_{i}]$, así:

$$\Delta L_{i}\approx \sqrt{1+(f'(x_{i})^{2})}\Delta x$$

Con $\Delta x=x_{i}-x_{i-1}$, por tanto:

$$\Delta S_{i}\approx \pi (f(x_{i-1})+f(x_{i}))\sqrt{1+(f'(x_{i})^{2})}\Delta x \tag{2}$$

Por otro lado, en el curso de Cálculo I, se vio el desarrollo de Taylor de una función $f(x)$, por lo que la definición del desarrollo en Taylor está dado de la forma:

$$y(x+h)\approx y(x)+hy'(x)+\frac{h^{2}y^{\prime \prime}(x)}{2!}+….$$

Aplicando lo anterior para $f(x_{i-1})$ suponiendo que $\Delta^{n} x$ es pequeño respecto al término $\Delta x$, se tiene que:

$$f(x_{i-1})=f(x_{i-1}+x_{i}-x_{i})=f(x_{i}-\Delta x) \approx f(x_{i})-f'(x_{i})\Delta x$$

Substituyendo en $\Delta S_{i}$ $(2)$, tenemos que:

$$\Delta S_{i}\approx \pi \sqrt{1+(f'(x_{i})^{2})} (f(x_{i-1})+f(x_{i}))\Delta x=\pi \sqrt{1+(f'(x_{i})^{2})}\Delta x (f(x_{i})-f'(x_{i})\Delta x+f(x_{i}))$$

$$=\pi \sqrt{1+(f'(x_{i})^{2})}\Delta x (2f(x_{i})-f'(x_{i})\Delta x)=\pi \sqrt{1+(f'(x_{i})^{2})}\Delta x 2f(x_{i})-\pi \sqrt{1+(f'(x_{i})^{2})}\Delta^{2} x f'(x_{i})$$

Observemos que cuando $n$ es demasiado grande el termino $\Delta^{2} x$ es pequeño respecto al término $\Delta x$, por lo que para $n$ lo suficientemente grande podemos despreciar el termino $\Delta^{2}x$, así:

$$\Delta S_{i}\approx 2 \pi f(x_{i}) \sqrt{1+(f'(x_{i})^{2})}\Delta x$$

Sumando todas las $n$ áreas superficiales y tendiendo $n \to \infty$ tenemos que el área de superficie $A_{s}$ es:

$$A_{s}=\lim_{n \to \infty} \sum_{i=1}^{n} \Delta S_{i}=\lim_{n \to \infty} \sum_{i=1}^{n} 2 \pi f(x_{i}) \sqrt{1+(f'(x_{i})^{2})}\Delta x$$

Se define el área superficial de un sólido de revolución si una función $f(x)\geq 0$ es continua en el intervalo $[a, b]$ y gira alrededor del eje $x$ como:

$$A_{s}=\int_{a}^{b} 2 \pi y \sqrt{1+\left ( \frac{dy}{dx} \right )^{2}}dx =\int_{a}^{b} 2 \pi f(x) \sqrt{1+(f'(x)^{2})}dx \tag{3}$$

Análogamente, se define el área superficial de un sólido de revolución alrededor del eje $y$ como:

$$A_{s}=\int_{c}^{d} 2 \pi x \sqrt{1+\left ( \frac{dx}{dy} \right )^{2}}dy =\int_{c}^{d} 2 \pi f(y) \sqrt{1+(f'(y)^{2})}dy \tag{4}$$

Ejemplos

  • Determinar el área de la superficie generada al hacer girar la curva $2\sqrt{x}$, donde $1 \leq x \leq 2$ alrededor del eje x.
Figura 2: Grafica de la función $f(x)=2\sqrt{x}$ y su correspondiente superficie de revolución.

Tenemos que $a=1$, $b=2$ y la curva que tiene como función $f(x)=2\sqrt{x}$, derivando obtenemos:

$$\frac{dy}{dx}f(x)=\frac{1}{\sqrt{x}}$$

La gráfica la vemos en la figura $(2)$, así, utilizamos la relación $(3)$ y calculamos el área como:

$$S=\int_{1}^{2} 2\pi (2\sqrt{x}) \sqrt{1+\left ( \frac{1}{\sqrt{x}} \right )^{2}}dx$$

Vemos que:

$$\sqrt{1+\left ( \frac{1}{\sqrt{x}} \right )^{2}}=\sqrt{1+\frac{1}{x}}=\sqrt{\frac{x+1}{x}}=\frac{\sqrt{x+1}}{\sqrt{x}}$$

Sustituyendo esta expresión:

$$S=\int_{1}^{2} 2\pi (2\sqrt{x}) \frac{\sqrt{x+1}}{\sqrt{x}} dx= \int_{1}^{2} 4\pi \sqrt{x+1} dx$$

Utilizando el método de sustitución tenemos que esta integral nos da por resultado:

$$S=4\pi \frac{2}{3}\left [ (x+1)^{2/3} \right ]\bigg|_{1}^{2}=\frac{8 \pi}{3}(3\sqrt{3}-2\sqrt{2})$$

  • El segmento de recta $x=1-y$, $0 \leq y \leq 1$ se hace girar alrededor del eje $y$ para generar el cono de la figura $(3)$, determinar el área de su superficie lateral (la cual excluye el área de la base).
Figura 3: Grafica de la recta $x=1-y$ y su correspondiente superficie de revolución.

Tenemos que $c=0$, $d=1$ y la función de la curva:

$$x=1-y \Rightarrow \frac{dx}{dy}=-1 \Rightarrow \sqrt{1+\left ( \frac{dx}{dy} \right )^{2}}=\sqrt{1+(-1)^{2}}=\sqrt{2}$$

Utilizamos la relación $(4)$ y calculamos el área superficial como:

$$S= \int_{0}^{1} 2\pi f(y) \sqrt{2}dy=\int_{0}^{1} 2\pi (1-y) \sqrt{2}dy=2\pi \sqrt{2}\left [ y-\frac{y^{2}}{2} \right ]\bigg|_{0}^{1}=2\pi \sqrt{2}(1-\frac{1}{2})=\pi \sqrt{2}$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. El segmento de recta $y=\frac{x}{2}$, $0 \leq x \leq 4$ se hace girar alrededor del eje x para generar un cono, determinar el área de su superficie lateral.
  2. Un segmento de recta $y=\sqrt{2}$, $\frac{3}{4} \leq x \leq \frac{15}{4}$ se hace girar alrededor del eje x determinar el área de su superficie.
  3. El segmento de recta $x=\frac{y^{3}}{3}$, $0 \leq y \leq 1$ se hace girar alrededor del eje y determinar el área de su superficie.
  4. Un segmento de recta $x=2 \sqrt{4-y}$, $0 \leq y \leq \frac{15}{4}$ se hace girar alrededor del eje y determinar el área de su superficie.
  5. El segmento de recta $y= \sqrt{x+1}$, $1 \leq x \leq 5$ se hace girar alrededor del eje x determinar el área de su superficie.

Más adelante…

En esta entrada vimos como calcular el área de superficie de un sólido generado a partir de una curva respecto de un eje. En la siguiente sección trabajaremos con un teorema relacionado con el cálculo de estas áreas llamado el teorema de Pappus-Guldinus.

Entradas relacionadas

Cálculo Diferencial e Integral II: Teorema de Pappus-Guldinus

Por Miguel Ángel Rodríguez García

Introducción

En las secciones anteriores vimos como calcular tanto el volumen como el área de un sólido de revolución, en esta entrada veremos un teorema en el que podemos calcular áreas y volúmenes de sólidos de revolución con sus respectivos centroides, es decir, su centro de simetría, a este teorema se le conoce como teorema del centroide de Pappus que se divide a su vez en dos teoremas y aunque no es una aplicación directa de las integrales, podemos calcular el volumen o el área de estos sólidos de una manera más sencilla, veamos el primer teorema.

Teorema de Pappus (Volúmenes)

El volumen $V$ de un sólido de revolución generado mediante la rotación de una curva plana $C$ alrededor de un eje externo, de manera que, esta última no corte el interior de la región, es igual al producto del área $A$ por la distancia $2\pi d$ recorrida por su centroide en una rotación completa alrededor del eje:

$$V=2\pi A d$$

Demostración:

Sea un área $A$ generada mediante la rotación de una curva plana $C$ alrededor del eje $x$, consideremos un elemento $dA$ de dicha área, el volumen $dV$ generado por el elemento $dA$ es igual a:

$$dV=2 \pi ydA$$

Donde $y$ es la distancia entre el eje $x$ y el elemento $dA$, por tanto:

$$V=\int 2 \pi y dA=2 \pi \bar{y} A$$

Con $\bar{y}=d$ y $2\pi \bar{y}$ es la distancia recorrida por el centroide de $A$.

$\square$

Teorema 2 de Pappus (Áreas)

El área $A$ de una superficie de revolución generada mediante la rotación de una curva plana $C$ alrededor de un eje externo, es igual a su longitud $L$, multiplicada por la distancia $2\pi d$ recorrida por su centroide en una rotación completa alrededor del eje, entonces:

$$A=2\pi L d$$

Demostración:

Sea $L$ la longitud de una curva plana $C$ que rota alrededor del eje $x$ y consideremos un elemento $dL$ de dicha longitud. El área $dA$ generada por el elemento $dL$ es igual a:

$$dA= 2 \pi y dL$$

Donde $y$ es la distancia del elemento $dL$ al eje $x$, por tanto:

$$A=\int 2 \pi y dL=2 \pi \bar{y} L$$

Con $\bar{y}=d$ y $2\pi \bar{y}$ es la distancia recorrida por el centroide $L$.

$\square$

Veamos unos ejemplos de como aplicar el teorema de Pappus-Guldinus.

Ejemplos

  • Un toroide se forma al hacer girar un círculo de radio $r$ respecto a una recta en el plano del círculo que es la distancia $R>r$ desde el centro del círculo. Encuentre el volumen del toroide.

El círculo tiene área $A=\pi r^{2}$, por simetría su centroide es su centro, por tanto, la distancia recorrida por el centroide durante una rotación está dada como $d=2\pi R$.

Por el teorema de Pappus (volumen), el volumen del toroide es:

$$V=Ad=(\pi r^{2})(2\pi R)=2\pi ^{2}r^{2}R$$

  • Calcule el área de la superficie del toro del ejercicio anterior.

Del segundo teorema de Pappus (Área) tenemos que:

$$A=2\pi L d=2 \pi (r)(2\pi R)=4\pi ^{2} rR$$

  • Calcula el área de la superficie generada por una circunferencia cuyo radio es de $3m$, girando $2\pi$ alrededor de una recta tangente.

Tenemos que la longitud es $L=2 \pi (3)=6 \pi$

Por el segundo teorema de Pappus calculamos el área de la superficie como:

$$A=2 \pi L d=2 \pi (6 \pi) (3)=36 \pi ^{2}$$

  • Calcula el centroide de un alambre semicircular de radio $R$, que gira alrededor del eje $x$.

Para calcular el centroide podemos utilizar cualquiera de los dos teoremas de Pappus, en este caso, es fácil calcular el centroide por el teorema de Pappus de áreas, veamos:

Sabemos que el área generada es:

$$A=4 \pi R^{2}$$

Y la longitud es:

$$L=\pi R$$

Por el teorema de Pappus (áreas), tenemos que:

$$4 \pi R^{2}=2 \pi \bar{y} (\pi R) \Rightarrow \bar{y}=\frac{2R}{\pi}$$

  • Calcule el volumen del sólido generado por un cuadrado de lado $a=3$ que gira alrededor del eje $y$.

Sabemos que el área lo calculamos como:

$$A=a^{2}=3^{2}=9$$

Sabemos que el centroide de un cuadrado está justo en el centro, o a la mitad de cada cara, por lo que:

$$\bar{y}=1.5$$

Así, calculando el volumen por el teorema de Pappus para volúmenes, tenemos que:

$$V=2\pi A \bar{y}=2\pi (9)(1.5)=27 \pi$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Hallar el volumen y el área de la superficie de un solido de una esfera de radio r.
  2. Hallar el volumen de un solido de un cono con altura h y radio r.
  3. Calcule el volumen del solido obtenido al hacer girar el triangulo con vértices $(2, 3)$, $(2, 5)$ y $(5, 4)$ respecto al eje x.
  4. La región cuadrada con vértices $(0, 2)$, $(2, 0)$, $(4, 2)$ y $(2, 4)$ se hace girar alrededor del eje $x$ para generar un solido. Determine el volumen y el área de la superficie del sólido.
  5. Localice el centroide de una región semicircular entre la semicircunferencia $y=\sqrt{a^{2}-x^{2}}$ y el eje x.

Más adelante…

Vimos en esta sección el teorema de Pappus con el que se puede calcular el volumen, centroide y el área de un solio de revolución, en la siguiente sección veremos una aplicación más de la integral, en este caso, en el área de la física, que es cálculo de momentos y centros de masa.

Entradas relacionadas

Cálculo Diferencial e Integral II: Cálculo de volúmenes por medio de casquillos cilíndricos

Por Miguel Ángel Rodríguez García

Introducción

En la entrada anterior aprendimos a calcular el volumen de un sólido generado por rotación alrededor de un eje a través del método de los discos y el método de las arandelas, en esta entrada ahora veremos como calcular el volumen de un sólido por el método de casquillos cilíndricos o capas cilíndricas.

Método de casquillos cilíndricos o capas cilíndricas

Supongamos que tenemos una curva dada por $f(x)$ en un intervalo $[a.b]$, dividiendo este intervalo en subintervalos $[x_{i-1}, x_{i}]$ y para aproximarse a esta curva lo aproximamos por un polígono a una distancia $r_{1}$ y $r_{2}$ del eje $y$ y ancho $\Delta x$ como se muestra en la figura $(1)$.

Figura 1: Un cascarón cilíndrico por superficie de revolución generado por el polígono rojo para aproximar a $f(x)$.

Giramos estas figuras alrededor del eje $y$, la superficie de revolución generado por el polígono es un cascarón cilíndrico de radio exterior $r_{2}$ y radio interior $r_{1}$ como se muestra en la figura $(2)$ (puedes ver mejor la figura haciendo clic sobre la imagen), el volumen $V$ se calcula restando el volumen $V_{2}$ que corresponde al cilindro exterior y $V_{1}$ correspondiente al cilindro interior, por lo que se obtiene que:

$$V=V_{2}-V_{1}=\pi r_{2}^{2}h-\pi r_{1}^{2}h=\pi (r_{2}^{2}-r_{1}^{2})h=\pi (r_{2}+r_{1})(r_{2}-r_{1})h$$

Multiplicamos $\frac{2}{2}$, entonces:

$$V=2\pi \frac{r_{2}+r_{1}}{2}h(r_{2}-r_{1})$$

Sea $r=\frac{r_{2}+r_{1}}{2}$ que es el radio del cascarón cilíndrico y sea $\Delta x=r_{2}-r_{1}$ su grosor, entonces el volumen del cascarón cilíndrico se obtiene como:

$V=2\pi hr \Delta x$

Figura 2: Aproximación de un cascarón cilíndrico al volumen de una superficie de revolución generado por $f(x)$.

Dividimos el intervalo $[a, b]$ en $n$ subintervalos $[x_{i-1},x_{i}]$ con anchura $\Delta x$ y sea $\bar{x_{i}}$ el punto medio del i-ésimo subintervalo, el sólido generado por el i-ésimo polígono es un cascarón cilíndrico cuyo radio promedio es $\bar{x_{i}}$, altura $f(\bar{x_{i}})$ y espesor $\Delta x$ de modo que el volumen es:

$$V_{i}=2\pi \bar{x_{i}}f(\bar{x_{i}}) \Delta x$$

Un volumen aproximado de $S$ se obtiene al sumar los volúmenes de $n$ cascarones cilíndricos, así:

$$V\approx \sum_{i=1}^{n}V_{i}=\sum_{i=1}^{n}2\pi \bar{x_{i}}f(\bar{x_{i}}) \Delta x$$

Si tenemos que $n \to \infty$ entonces el volumen del sólido que se obtiene al girar alrededor del eje $y$, la región bajo la curva $f(x)$ desde $a$ hasta $b$ está dada como:

$$V=\lim_{n \to \infty}\sum_{i=1}^{n}2\pi \bar{x_{i}}f(\bar{x_{i}}) \Delta x=\int_{a}^{b}2\pi xf(x)dx$$

con $0\leq a\leq b$, a veces, el volumen $V$ se suele escribir como:

$$V=2\pi \int_{a}^{b}R(x)h(x)dx \tag{1}$$

Donde $R(x)$ es la distancia al eje de rotación y $h(x)$ es la altura de corte.

Análogamente, se puede definir el volumen del sólido que se obtiene al girar alrededor del eje $x$, la región bajo la curva $f(y)$ dentro del intervalo $c$ hasta $d$ como:

$$V=2\pi \int_{c}^{d}R(y)h(y)dy \tag{1}$$

Veamos unos ejemplos.

Ejemplos

  • Encuentra el volumen del sólido de revolución respecto al eje $y$ de la región acotada debajo de la grafica $f(x)=1-2x+3x^{2}-2x^{3}$ en $[0, 1]$
Figura 3: Grafica de la función $f(x)$ (figura de la izquierda), superficie de revolución generada por $f(x)$ (figura de la derecha).

Graficamos la función $f(x)$ en la figura $(3)$ (figura de la izquierda), y la figura de la derecha es el sólido de revolución que es generado por esta función, vemos que la altura está dada por la función $h(x)=f(x)=1-2x+3x^{2}-2x^{3}$ en $[0, 1]$ y el radio $R(x)$ es $x$ por lo que utilizamos la relación $(1)$ para calcular el volumen como:

$$V=2\pi \int_{0}^{1}x(1-2x+3x^{2}-2x^{3})dx=2\pi \int_{0}^{1}(x-2x^{2}+3x^{3}-2x^{4})dx$$

$$=2\pi \left ( \frac{x^{2}}{2}-\frac{2}{3}x^{3}+\frac{3}{4}x^{4}-\frac{2}{5}x^{5} \right )\bigg|_{0}^{1}=2\pi (\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{2}{5})=\frac{11\pi}{20}$$

  • Encuentra el volumen del sólido de revolución respecto al eje $y$ de la región acotada debajo de las graficas $f(x)=x(5-x)$ y $g(x)=8-x(5-x)$

Veamos donde se intersecan estas funciones, para esto igualamos las funciones:

$x(5-x)=8-5x-x^{2} \Rightarrow 2x^{2}-10x+8=0 \Rightarrow x^{2}-5x+4=0 \Rightarrow (x-4)(x-1)=0$

Por lo que vamos a integrar de $x=1$ a $x=4$.

Figura 3: Grafica de la función $f(x)$ (figura de la izquierda), superficie de revolución generada por $f(x)$ (figura de la derecha).

Graficamos las dos gráficas como se ve en la figura $(4)$ (figura de la izquierda), y la figura de la derecha es el sólido generado por estas gráficas, vemos que en el sólido generado se tiene una especie de cono en el centro, el volumen que nos interesa es lo que está afuera de ese cono. La altura de este sólido de revolución es:

$$h(x)=f(x)-g(x)=x(5-x)-8+5x-x^{2}=5x-x^{2}- -8+5x-x^{2}=-8+10x-2x^{2}$$

y

$$R(x)=x$$

Así el volumen la calculamos como:

$$V=2\pi \int_{1}^{4}x(-2x^{2}+10x-8)dx=2\pi \int_{1}^{4}(-2x^{3}+10x^{2}-8x)dx$$

$$=2\pi \left [ -\frac{1}{2}x^{4}+\frac{10}{4}x^{3}-4x^{2} \right ]\bigg|_{1}^{4}=2\pi \left [-128+\frac{640}{3}-64 \right ]-\left [-\frac{1}{2}+\frac{10}{3}-4 \right ]=45\pi$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra el volumen del solido de revolución respecto al eje $y$ de la región acotada debajo de la grafica $f(x)=2x^{2}-x^{3}$ y $y=0$
  2. Encuentre el volumen del solido de revolución respecto al eje $x$ de la región acotada debajo de la grafica $f(x)=9-x^{2}$ en $[0, 3]$
  3. Encuentra el volumen del solido de revolución respecto al eje $y$ de la región acotada debajo de la grafica $f(x)=x^{2}+1$ y las rectas $x=0$ y $x=1$
  4. Encuentre el volumen del solido de revolución respecto al eje $y$ de la región acotada debajo de las graficas $y=x$ y $y=x^{2}$
  5. Encuentra el volumen del solido de revolución que se obtiene al girar alrededor de la recta $x=2$ la región definida por $y=x-x^{2}$ y $y=0$

Más adelante…

En esta entrada aprendimos a calcular el volumen de un sólido de revolución por el método de capas cilíndricas generado alrededor de un eje o una recta específica, en la siguiente sección veremos como calcular el área de una superficie de revolución.

Entradas relacionadas

Cálculo Diferencial e Integral II: Cálculo de volúmenes por secciones transversales y por rotación alrededor de un eje

Por Miguel Ángel Rodríguez García

Introducción

En la entrada anterior vimos como calcular la longitud de arco de una curva. Otra aplicación de las integrales es calcular el volumen de sólidos de revolución, por lo que en esta entrada se aprenderá a calcular el volumen de un sólido $S$ mediante secciones transversales o también llamado el método de los discos, además, veremos el método de las arandelas o también llamado el método de los anillos.

Superficies de revolución

Antes de comenzar a estudiar el método de los discos, definiremos lo que es una superficie de revolución.

Una superficie de revolución es una figura sólida que se obtiene al girar una curva plana alrededor de un eje que se encuentra en el mismo plano, a este eje se le conoce como eje de revolución. Veamos unos ejemplos.

Figura 1: Rectángulo (Figura de la izquierda) y el cilindro de revolución (figura de la derecha).

En la figura $(1)$ tenemos un rectángulo con altura y ancho, variables (figura de la izquierda), obsérvese que está en un plano, es decir, es una figura en 2 dimensiones, si nosotros hacemos girar esta figura alrededor del eje $x$ obtenemos un cilindro como en la figura de la derecha.

En la siguiente figura $(2)$ tenemos un triángulo rectángulo isósceles (figura de la izquierda), si nosotros hacemos girar este triángulo alrededor del eje $y$ lo que obtendremos es una pirámide como el lado derecho de la figura 2.

Figura 2: Triangulo iscóceles (figura de la izquierda) y pirámide (figura de la derecha).

A estas figuras «creadas» se les conoce como superficies de revolución, a continuación veremos como calcular su volumen por el método de los discos.

Método de los discos

Supongamos que tenemos una función $f(x)$ en un intervalo $[a, b]$ y que cortamos una «rebanada» con un ancho $\Delta x$ de la función $f(x)$ como se muestra en la figura $(3)$.

Figura 3: Aproximación con un polígono regular a $f(x)$.

Al hacer girar esta función alrededor del eje $x$ obtendremos una superficie de revolución (figura $(4)$), la «rebanada» que tomamos al girarlo alrededor del eje obtendremos un cilindro de radio $r$ y ancho $\Delta x$.

Figura 4: Superficie de revolución

Para calcular el volumen de esta superficie de revolución la «rebanamos» $n$ veces y sumamos estos pedazos, es decir:

Volumen de la superficie de revolución $\approx \sum_{i=1}^{n}$ volúmenes de los cilindros

Recordemos que el volumen de un cilindro está dado como $V=\pi r^{2}h$, entonces el volumen de nuestra superficie de revolución es:

$$V \approx \sum_{i=1}^{n}\pi r^{2}\Delta x=\sum_{i=1}^{n}\pi [f(x)]^{2}\Delta x$$

Si tomamos el límite cuando $n \to \infty$ obtenemos:

$$V=\lim_{n \to \infty}\sum_{i=1}^{n}\pi [f(x)]^{2}\Delta x=\pi \int_{a}^{b}[f(x)]^{2}dx$$

Por lo que definimos el volumen de una superficie de revolución alrededor del eje $x$ como:

$$V=\int_{a}^{b} Área(x)dx=\pi \int_{a}^{b}[R(x)]^{2}dx \tag{1}$$

Análogamente, se puede deducir lo mismo para una superficie de revolución generado por una curva plana alrededor del eje $y$. Se define el volumen de una superficie de revolución alrededor del eje $y$ como:

$$V=\pi \int_{c}^{d}[R(y)]^{2}dy \tag{2}$$

Observación: Para el método de los discos el corte siempre debe ser perpendicular al eje de rotación.

Método de las arandelas

Si la región que se hace girar para generar el sólido de revolución no se acerca al eje de rotación, ni está en él, tendremos que al girarlo sobre el eje se obtendrá un agujero en su centro, es decir, un sólido de revolución con un agujero alrededor del eje de rotación. Si utilizamos el mismo método visto anteriormente para calcular su volumen, en vez de discos, tendremos que las secciones transversales perpendiculares al eje de rotación son arandelas, el área de la arandela está dada como:

$$A=\pi R^{2}(x)-\pi r^{2}(x)=\pi\left ( R^{2}(x)-r^{2}(x) \right )$$

Donde $R(x)$ es el radio mayor y $r(x)$ es el radio menor de la arandela como se muestra en la figura $(5)$, por lo que nos interesa el volumen entre $R(x)$ y $r(x)$.

Figura 5: Solido de revolución generado por las funciones $R(x)$ y $r(x)$ alrededor del eje $x$.

Por consecuencia, el volumen lo podemos calcular como:

$$V=\pi \int_{a}^{b} \left ( R^{2}(x)-r^{2}(x) \right )dx \tag{3}$$

Veamos un ejemplo.

Ejemplos

  • Calcula el volumen del sólido de revolución formado al hacer girar la región acotada por la grafica $f(x)=\sqrt{\sin(x)}$, alrededor del eje $x$ y acotadas por las rectas $x=0$ y $x=\pi$.

En este caso obtenemos la siguiente figura $(6)$.

Figura 6: Función $f(x)=\sqrt{\sin(x)}$ (figura de la izquierda) y la superficie de revolución alrededor del eje x (figura derecha).

Utilizamos la relación $(1)$, ya que la función gira alrededor del eje $x$, por lo que el volumen de este sólido de revolución es:

$$V=\pi \int_{0}^{\pi}\left ( \sqrt{\sin(x)}\right )^{2}dx=\pi \int_{0}^{\pi}\sin(x)dx=\pi (-\cos(x))\bigg|_{0}^{\pi}=\pi -(-1-1)=2 \pi$$

  • Determinar el volumen del sólido de revolución generado alrededor de $y=g(x)=1$ por la función $y=\sqrt{x}$ y las rectas $x=1$ y $x=4$ (figura $(7)$).
Figura 7: Grafica de $f(x)=\sqrt{x}$ y $g(x)=1$.

Al girar la función $f(x)=\sqrt{x}$ alrededor de $y=1$ tendremos una especie de parábola.

Observamos que:

$$R(x)=f(x)-g(x)=\sqrt{x}-1 \Rightarrow R^{2}(x)=x-2\sqrt{x}+1$$

Por ende, utilizamos la relación $(1)$ para calcular el volumen como:

$$V=\pi \int_{1}^{4} \left (x-2\sqrt{x}+1 \right )dx=\pi \left ( \frac{x^{2}}{2}-2\frac{2}{3}x^{3/2}+x \right )\bigg|_{1}^{4}=\frac{7\pi}{6}$$

  • Determina el volumen del sólido de revolución acotada por las curvas $y=x^{2}+1$ y la recta $y=-x+3$ alrededor del eje $x$.

Para saber en qué intervalo vamos a integrar, igualamos las funciones:

$$x^{2}+1=-x+3 \Rightarrow x^{2}+x-2=0 \Rightarrow (x+2)(x-1)=0$$

Por lo que integramos desde $x=-2$ a $x=1$

Del eje de rotación, sea el radio menor $r(x)=x^{2}+1$ por estar más próximo a este eje en este intervalo, y sea el radio mayor $R(x)=-x+3$, como se muestra en la figura $(8)$.

Figura 8: Área de interés entre las curvas (figura de la izquierda) con su respectivo solido de revolución (figura de la derecha).

Para calcular el volumen de este sólido, utilizamos la relación $(3)$, por lo que:

$$V=\pi \int_{a}^{b} \left ( R^{2}(x)-r^{2}(x) \right )dx=\int_{-2}^{1}\pi \left [ \left ( -x+3 \right )^{2}-\left ( x^{2}+1 \right )^{2} \right ]dx$$

$$=\int_{-2}^{1}\pi \left ( 8-6x-x^{2}-x^{4} \right )dx=\pi \left [ 8x-3x^{2}-\frac{x^{3}}{3}-\frac{x^{5}}{5} \right ]\bigg|_{-2}^{1}=\frac{117\pi}{5}$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determine el volumen del solido resultante al hacer girar la región comprendida entre el eje $y$ y la curva $x=2/y$, donde $1\leq y \leq 4$, alrededor del eje y.
  2. Encuentre el volumen del solido generado al giran la región acotada por las graficas $y=\sqrt{x}$, $y=x^{2}$ en torno al eje x.
  3. Encuentre el volumen del solido generado al giran la región acotada por las graficas $y=x^{2}+1$, $y=0$, $x=0$ y $x=1$ en torno al eje y.
  4. La circunferencia $x^{2}+y^{2}=a^{2}$ se hace girar alrededor del eje y, calcular su volumen.
  5. Un fabricante diseña un objeto en forma de esfera con un radio de 5 pulgadas y con un orificio cilíndrico en su interior. El hueco tiene un radio de 3 pulgadas ¿Cuál es el volumen del objeto resultante?

Más adelante…

En esta entrada deducimos las relaciones para calcular el volumen de un sólido generado por rotación alrededor de un eje por el método del disco y también deducimos la relación para calcular el volumen de un sólido generado por rotación entre dos curvas dadas por el método del anillo, en la siguiente entrada veremos otro método para calcular el volumen de un sólido generado llamado el método de las capas cilíndricas.

Entradas relacionadas

Cálculo Diferencial e Integral II: Longitud de arco

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos como calcular el área delimitada entre dos curvas, otra aplicación de la integral es calcular la longitud de una curva a lo largo de un intervalo dado, lo cual veremos en esta sección. Comenzamos deduciendo la fórmula de la longitud de arco o también llamada la longitud de curva.

Longitud de arco

Supóngase que tenemos una curva $C$ que se define mediante la ecuación $y=f(x)$, continua en el intervalo $[a, b]$. El objetivo es medir la longitud de esa curva en el intervalo dado $[a, b]$, para esto se divide el intervalo $[a, b]$ en $n$ subintervalos con puntos extremos $x_{0}, x_{1}, …, x_{n}$ y amplitud $\Delta x$, por tanto, conseguimos un polígono con vértices $P_{0}, P_{1}, …, P_{n}$ para aproximar a la curva $C$ como se muestra en la figura $(1)$. Calculamos la distancia entre los vértices $P_{i-1}$ y $P_{i}$, para aproximarnos mejor a la curva $C$, sumamos $n$ vértices y tomamos el límite cuando $n \to \infty$, tenemos que la longitud de la curva la podemos aproximar como:

$$L=\lim_{n \to \infty} \sum_{i=1}^{n}d(P_{i-1},P_{i})$$

Figura 1: Aproximación de la longitud de la curva función $f(x)$ (azul) por medio de polígonos (líneas rojas).

Podemos reescribir a $d(P_{i-1},P_{i})$ como:

$$d(P_{i-1},P_{i})=\sqrt{(x_{i}-x_{i-1})^{2}+(y_{i}-y_{i-1})^{2}}=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$$

Utilizamos el teorema de valor medio y la aplicamos a la función $f(x)$ en el intervalo $[x_{i-1},x_{i}]$, lo cual encontramos un número $x^{*}_{i}$ tal que:

$$f(x_{i})-f(x_{i-1})=f'(x^{*}_{i})(x_{i}-x_{i-1})$$

Podemos reescribir la anterior relación como: $\Delta y=f'(x^{*}_{i})\Delta x$ así, se tiene que: $$d(P_{i-1},P_{i})=\sqrt{(\Delta x)^{2}+[f'(x^{*}_{i})\Delta x]^{2}}=\sqrt{1+[f'(x^{*}_{i})]^{2}}\sqrt{(\Delta x)^{2}}=\sqrt{1+[f'(x^{*}_{i})]^{2}}{\Delta x}$$

Por tanto:

$$L=\lim_{n \to \infty }\sum_{i=1}^{n}\sqrt{(1+[f'(x^{*}_{i})]^{2}}{\Delta x}$$

Si $n \to \infty$ entonces la fórmula de longitud de arco donde $f'(x)$ es continua en $[a, b]$ esta dada como:

$$L=\int_{a}^{b}\sqrt{1+[f'(x)]^{2}}dx \tag{1}$$

En notación de Leibniz, se puede reescribir la longitud de arco como:

$$L=\int_{a}^{b}\sqrt{1+\left ( \frac{dy}{dx} \right )^{2}}dx$$

La longitud de curva no depende de la elección de los ejes coordenados, si una curva tiene como ecuación $x=g(y)$, con $c\leq y\leq d$ y $g'(y)$ continua, entonces la longitud de arco se reescribe como.

$$L=\int_{c}^{d}\sqrt{1+\left ( \frac{dx}{dy} \right )^{2}}dy \tag{2}$$

Veamos los ejercicios a continuación para el cálculo de algunas longitudes de arco de algunos funciones en un intervalo.

Ejemplos

  • Determinar la longitud de arco de la parábola dada como: $y^{2}=x^{3}$ entre los puntos $(1, 1)$ y $(4, 8)$.
Figura 2: Longitud de arco que se quiere calcular (rojo), función $f(x)=x^{3/2}$ (azul).

Tenemos que $y^{2}=x^{3} \Rightarrow y=x^{\frac{3}{2}}$

Derivando la función anterior, se tiene que:

$$\frac{dy}{dx}=\frac{3}{2}x^{1/2}$$

Así, utilizando la relación $(1)$, la longitud del arco se calcula como:

$$L=\int_{1}^{4}\sqrt{1+\left (\frac{3}{2}x^{1/2} \right )^{2}}dx$$

Integramos por el método de cambio de variable.

Sea $u=1+\frac{9}{4}x \space \Rightarrow \space du=\frac{9}{4}dx$, cambiamos los límites de integración, si $x=1 \Rightarrow u=\frac{13}{4}$, si $x=4 \Rightarrow u=10$, por tanto, la integral la reescribimos como:

$$\int_{\frac{13}{4}}^{10}\frac{4}{9}\sqrt{u}du=\frac{4}{9}\frac{2}{3}\left [ u^{2/3} \right ]\bigg|_{10}^{\frac{13}{4}}=\frac{8}{27}\left [ 10^{3/2}-\left ( \frac{13}{4} \right )^{3/2} \right ]=\frac{1}{27}\left ( 80\sqrt{10}-13\sqrt{13} \right )$$

  • Encuentre la longitud de arco de la parábola $x=y^{2}$ de $(0, 0)$ a $(1, 1)$
Figura 3: Longitud de arco que se quiere calcular (rojo), función $f(y)=y^{2}$ (azul).

Tenemos que la curva es $x=y^{2} \Rightarrow x’=2y$, en este caso tenemos que la curva es función de $f(y)$ por lo que utilizamos la relación $(2)$, así la longitud de arco lo calculamos como:

$$L=\int_{0}^{1}\sqrt{1+(2y)^{2}}dy=\int_{0}^{1}\sqrt{1+4y^{2}}dy$$

Utilizamos el método de sustitución trigonométrica, observamos en que caso se puede aplicar para resolver esta integral, por lo que hacemos la sustitución siguiente:

$$y=\frac{1}{2}\tan(\theta ) \Rightarrow dy=\frac{1}{2}\sec^{2}(\theta )d\theta$$

Así: $\sqrt{1+4y^{2}}=\sqrt{1+\tan(\theta)^{2}}=\sec(\theta)$, veamos los límites de integración:

Si $y=0 \Rightarrow \theta=0 $ y si $y=1 \Rightarrow \tan(\theta)=2 \Rightarrow \theta=arctan(2)$ por tanto:

$$L=\int_{0}^{\arctan(2)}\sec(\theta )\frac{1}{2}\sec^{2}(\theta)d\theta=\frac{1}{2}\int_{0}^{\arctan(2)}\sec^{3}(\theta)d\theta$$

Recordemos que esta integral la resolvimos en la entrada de productos de potencias de tan(x) y sec(x), por lo que:

$$L=\frac{1}{2}\int_{0}^{\arctan(2)}\sec^{3}(\theta)d\theta=\frac{1}{2}\frac{1}{2}\left [ \sec(\theta)\tan(\theta)+ln(|\sec(\theta)+\tan(\theta)|) \right ]\bigg|_{0}^{\arctan(2)}$$

$$=\frac{1}{4}\left [\sec(\arctan(2))\tan(\arctan(2))+ln(|\sec(\arctan(2))+\tan(\arctan(2))|) -0 \right]$$

Puesto que:

$$\tan(\arctan(2))=2 \Rightarrow tan^{2}(arctan(2))=4$$ y

$$\sec^{2}(\theta)=1+\tan^{2}(\theta) \Rightarrow \sec^{2}(\arctan(2))=1+4 \Rightarrow \sec(\arctan(2))=\sqrt{5}$$ Así la longitud de arco es:

$$L=\frac{\sqrt{5}}{2}+\frac{ln(\sqrt{5}+2)}{4}$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Calcule la longitud de arco de la curva que tiene como ecuación $y=ln(\cos(x))$ en $[0, \frac{\pi }{4}]$
  2. Calcule la longitud de arco de la curva que tiene como ecuación $y=1+6x^{\frac{3}{2}}$ en $[0, 1]$
  3. Calcule la longitud de arco de la curva que tiene como ecuación $x=\sin(y)$ en $0\leq y \leq \pi$
  4. Calcule la longitud de arco entre $(x_{1}, y_{1})$ y $(x_{2}, y_{2})$ de la gráfica $y=mx+b$
  5. Muestre que la longitud de la circunferencia de radio $1$ es $2\pi$, recuerde que la curva viene dada por $x^{2}+y^{2}=1$ Hint: Tome un cuarto de la curva e integre.

Más adelante…

En esta sección vimos como calcular la longitud de arco de una curva que tiene como ecuación $y=f(x)$ o $x=f(y)$ dentro de un intervalo dado. Como ya sabemos como calcular áreas, en la siguiente entrada veremos como calcular el volumen de un sólido, para esto, veremos el método de secciones transversales.

Entradas relacionadas