Cálculo Diferencial e Integral II: Criterios de convergencia para las integrales impropias.

Introducción

En las secciones anteriores vimos las integrales impropias de primer, segundo tipo y tercer tipo, aprendiendo como dar solución a cada una de ella. En esta sección veremos distintos criterios para estudiar la convergencia o divergencia de las integrales impropias. Comencemos enunciando algunos teoremas de convergencia importantes para estas integrales.

Criterios de convergencia

Comencemos con el siguiente teorema.

Teorema: La integral $\int_{1}^{\infty}f(x)dx$ converge $\Leftrightarrow \forall \space \epsilon \space >0 \space \space \exists \space r$ tal que si $x, \space x^{‘} > r$ entonces:

$$\bigg| \int_{x^{‘}}^{x}f(t)dt \bigg|<\epsilon$$

Demostración:

Sea $\epsilon > 0, \space \int_{a}^{\infty}f(x)dx$ converge:

$$\Leftrightarrow \int_{a}^{\infty}f(x)dx=L \Leftrightarrow \lim_{x \to \infty}\int_{a}^{x}f(t)dt=L$$

$$\Leftrightarrow \exists \space r \space tal \space que \space si \space x, \space x^{‘} > r$$

Por definición de limite:

$$\Rightarrow \bigg| \int_{a}^{x}f(t)dt-L \bigg|<\frac{\epsilon }{2} \space \space y \space \space \bigg| \int_{a}^{x^{‘}}f(t)dt-L \bigg|<\frac{\epsilon }{2}$$

$$\Leftrightarrow \bigg| \int_{a}^{x}f(t)dt-L \bigg|<\frac{\epsilon }{2} \ \space \space y \space \space \bigg|L-\int_{a}^{x^{‘}}f(t)dt \bigg|<\frac{\epsilon }{2}$$

Ya que sabemos que: $|a-b|=|b-a|$, entonces:

$$\Leftrightarrow -\frac{\epsilon }{2}<\int_{a}^{x}f(t)dt-L <\frac{\epsilon }{2} \ \space \space y \space \space -\frac{\epsilon }{2}<L-\int_{a}^{x^{‘}}f(t)dt<\frac{\epsilon }{2}$$

$$\Leftrightarrow -\epsilon<\int_{a}^{x}f(t)dt-\int_{a}^{x^{‘}}f(t)dt<\epsilon$$

$$\Leftrightarrow -\epsilon<\int_{x}^{x^{‘}}f(t)dt<\epsilon$$

$$\Leftrightarrow \bigg| \int_{x}^{x^{‘}}f(t)dt \bigg|<\epsilon$$

$$\Leftrightarrow \bigg| \int_{x^{‘}}^{x}f(t)dt \bigg|<\epsilon$$

$$\therefore \int_{1}^{\infty}f(x)dx \space \space converge $$

$\square$

Lema: Sea una función $f(x)$ continua en $[a,b)$ entonces la integral impropia $\int_{a}^{b}f(x)dx$ es convergente $\Leftrightarrow \forall \space \epsilon \space >0 \space \space \exists \space \delta >0 \space \space tal \space que \space si \space \space 0<b-x<\delta \space \space y \space \space 0<b-x^{‘}<\delta$ entonces:

$$\bigg| \int_{x^{‘}}^{x}f(t)dt \bigg|<\epsilon$$

Demostración:

$\int_{a}^{b}f(x)dx$ es convergente:

$$\Leftrightarrow \int_{a}^{b}f(x)dx=L \Leftrightarrow \lim_{x \to b^{-}} \int_{a}^{b}f(x)dx=L$$

$$\exists \space \delta >0 \space tal \space que \space si \space \space 0<b-x<\delta \space \space y \space \space 0<b-x^{‘}<\delta$$

$$\Rightarrow \bigg| \int_{a}^{x}f(t)dt-L \bigg|<\frac{\epsilon }{2} \space \space y \space \space \bigg| \int_{a}^{x^{‘}}f(t)dt-L \bigg|<\frac{\epsilon }{2}$$

Hacemos el mismo procedimiento como la demostración del teorema anterior, por lo que:

$$\bigg| \int_{x^{‘}}^{x}f(t)dt \bigg|<\epsilon \space \space converge$$

$\square$

Lema: Sea $f$ continua en $[a, b]$ entonces la integral impropia $\int_{a}^{b}f(x)dx$ es convergente $\Leftrightarrow \exists \space \delta >0 \space tal \space que \space si \space 0<b-x<\delta \space y \space 0<b-x^{‘}<\delta$, entonces:

$$\bigg| \int_{x^{‘}}^{x}f(t)dt \bigg|<\epsilon$$

La demostración se dejará como ejercicio moral, ya que la demostración es muy similar a la demostración del lema anterior.

Teorema: Sea $f$ una función continua en $[a, b)$ y acotada en $[a, b]$ entonces $\int_{a}^{b}f(x)dx$ es convergente.

Demostración:

Sea $\epsilon>0$, como $f$ está acotada en $[a, b]$ entonces:

$$\exists \space M \space tal \space que \space |f(x)|\leq M \space \forall \space x \space \epsilon \space [a,b]$$

Tomamos $\delta =\frac{\epsilon }{M}$.

Sea $x, x^{‘}$ tal que si $0<b-x<\delta$ y $0<b-x^{‘}<\delta$, entonces por propiedades de la integral: [Hipervinculo: Calculo II-Propiedad de valor absoluto de la integral menor o igual que la integral del valor absoluto de una funcion]:

$$\bigg| \int_{x^{‘}}^{x}f(t)dt \bigg| \leq \int_{x^{‘}}^{x}|f(t)|dt \leq \int_{x^{‘}}^{x}Mdt=M|x-x^{‘}<\delta M$$

$$\Rightarrow \bigg| \int_{x^{‘}}^{x}f(t)dt \bigg|<\epsilon$$

$$\forall \space x, x^{‘} \space tal \space que \space \space 0<b-x<\delta \space \space y \space \space 0<b-x^{‘}<\delta$$

Por el lema anterior:

$$\int_{a}^{b}f(x)dx \space \space converge$$

$\square$

Teorema: Sea $f$ una función continua en $(a, b]$ y acotada en $[a, b]$ entonces $\int_{a}^{b}f(x)dx$ es convergente.

La demostración se dejará como tarea moral, la idea de la demostración es muy similar a la demostración del teorema anterior.

Teorema: (Criterio de comparación)

Sean $f$ y $g$ dos funciones continuas en $[a, \infty)$ tal que si $0 \leq f(x) \leq g(x) \space \forall \space x \space \epsilon [a, \infty)$, Entonces:

Si $\int_{a}^{\infty}g(x)dx$ converge entonces $\int_{a}^{\infty}f(x)dx$ converge.

Mientras que si $\int_{a}^{\infty}f(x)dx$ diverge, entonces $\int_{a}^{\infty}g(x)dx$ diverge.

La demostración se dejará como tarea moral, la idea de la demostración es usar las definiciones de límite.

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

  1. Demuestra el primer lema de esta sección.
  2. Demuestra el segundo lema de esta sección.
  3. Demuestra el teorema del criterio de la comparación.

Utiliza el criterio de la comparación para determinar la convergencia de las siguientes integrales:

  1. $$\int_{1}^{\infty}\frac{1+e^{-x}}{x}dx$$
  2. $$\int_{1}^{\infty}e^{-x^{2}}dx$$

Más adelante…

En esta sección vimos algunos teoremas y lemas para la determinación de la convergencia de las integrales impropias, por lo que son útiles en algunos casos para el mismo objetivo. Este tema es el último de esta unidad 5, por lo que comenzaremos a estudiar la unidad 6, en el cual se verán algunas aplicaciones de las integrales.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.