Archivo del Autor: Armando Arzola Pérez

Geometría Moderna II: Puntos autocorrespondientes y regla geométrica de la falsa posición

Por Armando Arzola Pérez

Introducción

Se seguirá viendo resultados y problemas relacionados con la razón cruzada, en esta entrada se abordará los Puntos autocorrespondientes y la regla geométrica de la falsa posición.

Puntos Autocorrespondientes

Sean A,B,C y A,B,C dos conjuntos de puntos en una misma línea recta, por ende para un punto cualquiera D en la recta le corresponde un punto D que nos dará como resultado {ABCD}={ABCD}.

Problema. El problema cae en la siguiente incógnita ¿Existirá un punto D que se corresponda al mismo?, de tal forma que {ABCD}={ABCD}.

Demostraremos que puede haber uno, dos o ningún punto, a este punto existente se le llamará punto autocorrespondiente con respecto a las dos razones cruzadas.

Solución. Trácese cualquier circunferencia en el plano y tómese un punto X en esta, y únanse los puntos A,B,C,A,B,C a X, y las intersecciones con la circunferencia y estas rectas se denotarán como A1,B1,C1,A1,B1,C1.

Puntos autocorrespondientes 1

Notese que tenemos un hexagono inscrito con lados A1C1, A1B1, C1A1, B1C1, B1A1, B1C1, y la existencia del punto D depende de que este hexágono cumpla el Teorema de Pascal.
El Teorema de Pascal dice que «Los puntos de intersección de los lados opuestos de un hexágono inscrito en una circunferencia son colineales». Es de esta forma que la intersección de A1B1 y A1B1 se cortan en P, B1C1 y B1C1 en Q, A1C1 y A1C1 en R, de esta forma se tiene la recta PQ la cual corta a la circunferencia en D1 y E1.

Puntos autocorrespondientes 2

Ahora las rectas XD1 y XE1 cortarán la recta de los haces en los puntos D y E correspondientemente, estos son los dos puntos buscados. Sea S la intersección de PQ con A1A1.

Puntos autocorrespondientes 3

Entonces se tienen las siguientes igualdades:

{ABCD}=X{A1B1C1D1}

por propiedad 1 de razón cruzada de la circunferencia se tiene:

X{A1B1C1D1}=A1{A1B1C1D1}

Por razón cruzada se tiene:

A1{A1B1C1D1}={SPRD1}=A1{A1B1C1D1}

Por razón cruzada por la circunferencia:

A1{A1B1C1D1}=X{A1B1C1D1}={ABCD}

Por lo tanto, {ABCD}={ABCD} y es equivalente para E.

◻

Ahora, si PQ es tangente a la circunferencia, solo existirá un punto autocorrespondiente, y si la recta PQ no corta a la circunferencia, entonces no existe ningún punto autocorrespondiente.

Regla geométrica de la falsa posición

Esta regla viene del siguiente problema:

Problema. Construir un triángulo el cual sus lados pasan por los vértices de un triángulo dado y cuyos vértices se encuentran en los lados de otro triángulo dado.

Solución. El triángulo a encontrar debe tener sus lados, los cuales deben pasar por los vértices del triángulo PQR, y sus vértices en los lados del triángulo ABC.

Falsa posición 1

Sea un punto D en QR, trácese DA que corte a PR en E, EB que corte PQ en F, y FC que corte a QR en D, si D y D son el mismo ya tendríamos el triángulo buscado. Por lo cual se vuelve a hacer lo mismo para D1 obteniendo D1 y D2 obteniendo D2, si estos son puntos iguales ya lo tendríamos resuelto, pero no es así, por ende se construirán los puntos autocorrespondientes a partir de D,D1,D2,D,D1,D2.
Si estos puntos M y N existen, y pasamos por uno de ellos, en este caso M para construir el triángulo buscado, nos daríamos cuenta de que regresamos a M y estaría solucionado, pero como menciones estos triángulos existen si existen los puntos autocorrespondientes.

Falsa posición 2

◻

Más adelante…

Se verán tres teoremas importantes respecto al tema de Razón Cruzada, los cuales son Teoremas de Pascal, Brianchon y Pappus.

Entradas relacionadas

Geometría Moderna II: Razón Cruzada por la Circunferencia

Por Armando Arzola Pérez

Introducción

Como ya se vio, la razón cruzada tiene varias propiedades, desde seis tipos de razón cruzada hasta la construcción del cuarto elemento, pero falta analizar su relación con la circunferencia.

Propiedades de razón cruzada por la circunferencia

Se abordarán 3 propiedades en relación con una circunferencia dada.

Propiedad. Sean cuatro puntos en una circunferencia (con cíclicos) cualesquiera A,B,C,D, si unimos estos puntos a dos puntos O y O que están en la misma circunferencia, entonces los haces O{ABCD} y O{ABCD} tienen iguales razones cruzadas.

Razón cruzada por la circunferencia propiedad 1

Demostración. Las razones cruzadas son:

O{ABCD}=sen(AOC)/sen(COB)sen(AOD)/sen(DOB)=k y

O{ABCD}=sen(AOC)/sen(COB)sen(AOD)/sen(DOB)=k.

Notemos la igualdad de ángulos correspondientes de los dos haces AOC=AOC, COB=COB, DOB=180DOB y AOD=180AOD.

Por lo cual los ángulos formados serán iguales o suplementarios, por ello los senos de los ángulos serán iguales.

sen(AOC)/sen(COB)sen(AOD)/sen(DOB)=sen(AOC)/sen(COB)sen(AOD)/sen(DOB)

O{ABCD}=k=k=O{ABCD}.

◻

Propiedad. Sea C(O,r) una circunferencia en la cual se tienen cuatro puntos fijos A,B,C,D por los cuales pasan tangentes por cada uno de estos y cortan la tangente en un punto variable X, entonces la razón cruzada de los cuatro puntos de intersección es una constante.

Es decir, {ABCD} es constante independientemente de X.

Razón cruzada por la circunferencia propiedad 2

Demostración. Se tiene por teorema visto de razón que {ABCD}=O{ABCD}, entonces:

O{ABCD}=sen(AOC)sen(COB)/sen(AOD)sen(DOB)

Ahora, como los lados correspondientes de los ángulos COB y CXB son perpendiculares, entonces los senos de estos ángulos son iguales, esto ocurre de igual manera para los otros ángulos de los haces O{ABCD} y X{ABCD}.

sen(AOC)sen(COB)/sen(AOD)sen(DOB)=sen(AXC)sen(CXB)/sen(AXD)sen(DXB)
O{ABCD}=X{ABCD}

Observemos que esto ocurre para cualquier X entonces X{ABCD}=X{ABCD}, y por ende se tiene {ABCD}=O{ABCD}=X{ABCD}.
Por lo tanto, {ABCD}=cte independientemente de X.

◻

Propiedad. Sea un haz el cual tiene su vértice fuera de una circunferencia C(O,r) y la cual sus cuatro líneas cortan a la circunferencia en los pares de puntos A,A, B,B, C,C y D,D. Si se tienen dos puntos distintos E y E sobre la circunferencia, entonces las razones cruzadas de los haces E{ABCD} y E{ABCD} son iguales.

Razón cruzada por la circunferencia propiedad 3

Demostración. Unamos los puntos A,B,C,D a A y A,B,C,D a A, esto nos dará las intersecciones de AB y AB en un punto X, AC y AC en un punto y, AD y AD en un punto Z, los cuales están en la polar del vértice O del haz dado, por lo cual se tiene por propiedad 1 de razón cruzada en la circunferencia:

E{ABCD}=E{ABCD}=A{ABCD}

Por propiedad de razón cruzada:

A{ABCD}={wxyz}=A{wxyz}=A{ABCD}

Y por propiedad 1 de razón cruzada en la circunferencia:

A{ABCD}=E{ABCD}

Por lo tanto, E{ABCD}=E{ABCD} .

◻

Más adelante…

Ahora se abordará el tema de la regla de la falsa proposición y los puntos autocorrespondientes, esto relacionado con la razón cruzada.

Entradas relacionadas

Geometría Moderna II: Construcción del cuarto elemento dada la razón

Por Armando Arzola Pérez

Introducción

Se analizó el concepto de razón cruzada como ABCD=λ dados cuatro puntos colineales, pero existen veinticuatro permutaciones de estos cuatro puntos, por lo cual se tienen razones cruzadas para cada una de estas. El detalle está en que se pueden agrupar solo en seis tipos de razón cruzada.

Proposición. Dados cuatro puntos colineales distintos A,B,C y D en una recta l y ABCD=λ.
Se tienen seis tipos de razón cruzada:

  • ABCD=BADC=CDAB=DCBA=λ
  • ABDC=BACD=CDBA=DCAB=1/λ
  • ACBD=1λ
  • ACDB=11λ
  • ADBC=λ1λ
  • ADCB=λλ1

Construcción del cuarto elemento

Dados tres puntos A,B,C colineales distintos, se requiere construir un cuarto punto D colineal con ellos tal que ABCD=λ.

Sea l cualquier recta por C, sobre esta tomemos dos puntos A y B tales que CA/CB=λ. Ahora unimos B con B y A con A, de tal forma que AABB=D, y por este punto de intersección trácese la paralela a CB que interseque la recta x por D. Es decir, DDCB=l.

Por demostrar ABCD=ACCB/ADDB=λ.

Construcción del cuarto elemento dado

Demostración. Se tiene que los triangulos BBCDBD, AACDAD, por lo cual:

BCDD=BCBD y ACDD=ACAD.

Entonces

CBDD=CBDB y CADD=ACAD.

Entonces

ACAD/CBDB=CADD/CBDD=CADD=λ.

Por lo tanto, ACDBADCB=ABCD=λ.

◻

Más adelante…

Se analizará la razón cruzada en la circunferencia.

Entradas relacionadas

Geometría Moderna II: Unidad 4 Razón Cruzada

Por Armando Arzola Pérez

Introducción

Ya se ha visto que en una hilera armónica se tienen cuatro puntos colineales A,B,C,D, donde el segmento AB está dividido por C y D en razones cuya razón es:
ACCB/ADDB=1.
En este caso A y B están separados armónicamente por C y D, pero que pasaría si estos cuatro puntos estuvieran en posiciones cualesquiera en la recta que se encuentran, es aquí donde entra la definición de razón cruzada.

Razón cruzada para hilera y haces

Definición. (Razón Cruzada) Dados cuatro puntos colineales distintos A,B,C,D en una recta, diremos que la razón cruzada es:

ACCB/ADDB={ABCD}=k con k1.

Lo denotaremos {ABCD}.

También se le conoce como razón anarmónica y razón doble.

Observación. Si los cuatro puntos son armónicos, entonces {ABCD}=1, de igual forma inversamente.

Definición. (Razón Cruzada con líneas concurrentes) Sean cuatro rectas concurrentes OA, OB, OC y OD en un punto O, que no se forme un haz armónico, entonces la razón cruzada es:

sen(AOC)sen(COB)/sen(AOD)sen(DOB),

se denotará como O{ABCD}. De igual forma, la razón cruzada de cuatro líneas concurrentes a,b,c,d se denotará {a,b,c,d}.

Observación. Dados cuatro puntos colineales A,B,C,D se tienen estos casos:

1) {ABCC}=1 esto, ya que {ABCC}=ACCB/ACCB=ACCBCBAC=1.

2) {ABCB}=0 esto ya que {ABCB}=ACCB/ABBB=ACBBCBAB=0.

3) {ABCA}= esto ya que {ABCA}=ACCB/AAAB=ACABCBAA=.

Por lo cual se puede demostrar que si la razón cruzada de cuatro puntos tiene uno de los valores 1,0, entonces dos de los puntos coinciden.

Teorema. (Razón Cruzada) Si se tienen cuatro puntos distintos A,B,C,D en una recta y O un punto (no está en la recta) entonces:

{ABCD}=O{ABCD}.

Demostración. Para demostrar el teorema se usará lo siguiente, si dos puntos finitos A y B distintos en una recta, sea P otro punto de la misma recta y C un punto que no está en la recta, entonces

APPB=CAsen(ACP)CBsen(PCB)

Entonces usando lo anterior:

ACCB=OAsen(AOC)OBsen(COB) y ADDB=OAsen(AOD)OBsen(DOB)

{ABCD}=ACCB/ADDB=OAsen(AOC)OBsen(COB)/OAsen(AOD)OBsen(DOB)=sen(AOC)sen(COB)/sen(AOD)sen(DOB)=O{ABCD}.

Razón cruzada

◻

Corolario. Sean dos rectas transversales a cuatro líneas de un haz, de las cuales ninguna pasa por el vértice, cortan a estas líneas en A,B,C,D y A,B,C,D respectivamente, entonces {ABCD}={ABCD}.

Demostración. {ABCD}=O{ABCD}=O{ABCD}={ABCD}.

◻

Corolario. Sean dos haces con vertices en O y O son subtendidos por la misma hilera de puntos A,B,C,D entonces O{ABCD}=O{ABCD}.

Demostración. O{ABCD}={ABCD}=O{ABCD}.

◻

Corolario. Sean l y l dos rectas en posición cualquiera y sean A,B,C,Dl y A,B,C,Dl. Si {ABCD}={ABCD} y O y O son colineales con A y A, entonces las intersecciones OB y OB, OC y OC, OD y OD son colineales.

Demostración. Sea l la recta que contiene a B y C, y sean A=lOO, D=ODOD y sea D=lOD.
Tenemos que {ABCD}={ABCD} entonces {ABCD}={ABCD}.
{ABCD}={ABCD}
O{ABCD}={ABCD}
D=D.

◻

Más adelante…

Se seguirá abordando unas propiedades de la razón cruzada y además se construirá un cuarto elemento dada una razón.

Entradas relacionadas

Geometría Moderna II: Ejercicios Unidad 3 Polos y Polares

Por Armando Arzola Pérez

Introducción

Una vez visto el tema de Polos y Polares y todos los subtemas que conlleva este, es hora de realizar unos ejercicios que se dejaran a continuación, todo con el objetivo de practicar y fortalecer el tema visto.

Ejercicios

1.- Demuestre que cualquier punto en la circunferencia es conjugado a todos los puntos de la tangente en ese punto.

2.- Dados P y Q los polos de dos rectas conjugadas p y q respectivamente, entonces demostrar que el polo de la recta PQ es el punto donde intersecan p y q.

3.- Sean tres puntos no colineales, construir la polar de un cuarto punto con respecto a la circunferencia determinada por los tres puntos dados, sin dibujar la circunferencia o cualquier arco de ella.

4.- Encontrar el lugar geométrico de un punto cuyas polares con respecto a dos circunferencias dadas forman un ángulo fijo entre ellas.

5.- Dados tres puntos colineales A, B y D se deberá encontrar el punto C tal que {ABCD} = -1 usando polos y polares.

6.- Demuestre que dadas dos rectas conjugadas que se intersecan en el exterior de una circunferencia, una es secante y la otra no.

7.- Dado un triángulo con circunferencia polar, el inverso de uno de sus lados con respecto a la circunferencia polar, es la circunferencia cuyo diámetro es la recta que une el vértice opuesto con el ortocentro.

8.- Dado un triángulo autopolar uno de sus vértices está dentro de la circunferencia y los otros dos fuera de esta, demostrarlo.

9.- Resolver el problema 7 de los 10 problemas de Apolonio.

10.- Resolver el Problema 10 de Apolonio usando polos y polares.

Más adelante…

La unidad siguiente es Razón Cruzada.

Entradas relacionadas