Álgebra Lineal II: Espacios hermitianos y bases ortogonales complejas

Por Diego Ligani Rodríguez Trejo

En la entrada anterior nos dedicamos a revisar una serie de resultados relacionados con bases ortogonales, ortonormales y el proceso de Gram-Schmidt, como ya habrás notado la forma de operar de este curso indica que terminemos revisando estos conceptos aplicados a espacios vectoriales complejos, veremos rápidamente las demostraciones que sean idénticas al caso real para enfocarnos un poco más a las que tengan cambios importantes.

Como es de esperarse de la entrada final, juntaremos la gran parte de los conceptos vistos en esta unidad y los resultados vistos en las últimas dos entradas, pero ahora enfocándonos en espacios hermitianos, de los que daremos también su definición.

Bases ortonormales complejas

Definición

Sea V un espacio vectorial complejo, diremos que V es un espacio hermitiano si V es de dimensión finita y con un producto interno hermitiano ,, es decir, una forma sesquilineal hermitiana ,:V×VC tal que x,x>0 para cualquier vector x no cero.

Con esto diremos que dos vectores son ortogonales en V si x,y=0-

Las definiciones de familia y base ortogonal/ortonormal son análogas al caso real.

En adelante consideremos a V un espacio hermitiano.

Ejemplo

Si V=Cn su base canónica {e1,,en} es una base ortonormal y {2e1,,2en} es una base ortogonal. Además, con el producto interno canónico
x,y=i=1nxiyi
V es un espacio hermitiano.

Como en la entrada anterior, nuestra primera proposición será:

Proposición

Sea V, cualquier familia ortogonal (vi)iIV de vectores no cero es linealmente independiente.

Demostración

Sean {v1,,vn} y {α1,,αn} tal que
0=v=i=1nαnvn
Tomando j tal que 1jn, calculando v,vj tenemos que esto es 0 ya que v=0 además utilizando la linealidad conjugada en la primera entrada
tenemos que
0=v,vj=i=1nαivi,vj
Notemos que por la ortogonalidad vi,vj=0 excepto cuando i=j, utilizando esto
0=v,vj=αjvj,vj
Además, sabemos que vj,vj>0 por como definimos el producto interno, en particular esto implica que vj,vj0 por lo que
αj=0
Lo que implica a su vez que αj=0, repitiendo este proceso para cada αi obtendremos la independencia lineal.

◻

Más aún, si n=dim(V) y tenemos β una familia ortonormal de n vectores no nulos contenida en V esta es linealmente independiente, lo que a su vez implica que es una base de V, incluso más, como β ya era ortonormal tenemos que β es una base ortonormal.

Un par de detalles que es importante notar, este resultado no nos asegura la existencia de una base ortonormal en algún espacio, simplemente nos brinda un camino para encontrarla (encontrar un conjunto de vectores ortonormales con dim(V) elementos).

Proposición

Sea V, β={u1,,un} una base ortonormal y x=i=1nuixi, y=i=1nuiyi dos vectores en V, prueba que
x,y=i=1nxiyi.
Demostración
Calculemos directamente x,y,
x,y=i=1nxiui,y
Utilizando que , es lineal conjugada en la primera entrada
x,y=i=1nxiui,y
Haciendo un proceso análogo en la segunda entrada
x,y=i,j=1nxiyjui,uj
Ahora, utilizando la ortogonalidad, el producto ui,uj será cero excepto cuando i=j por lo que
x,y=i=1nxiyiui,ui
Finalmente, utilizando la normalidad, tenemos que ui,ui=||ui||2=1 por lo tanto
x,y=i=1nxiyi.

◻

Este último resultado es una motivación más para encontrar bases ortonormales, así enfoquémonos en esa búsqueda, siguiendo el camino del caso real, demos un análogo al teorema de Gram-Schmidt.

Proposición (Teorema de Gram-Schmidt)

Sean v1,v2,,vd vectores linealmente independientes en V un espacio vectorial complejo (no necesariamente de dimensión finita), con producto interior ,. Existe una única familia de vectores ortonormales e1,e2,,ed en V tales que para todo k=1,2,,d
span(e1,e2,,ek)=span(v1,v2,,vk).
La demostración detallada la puedes encontrar aquí (Proceso de Gram-Schmidt) por lo que no la revisaremos, algo que si vale la pena observar es que el teorema tiene dos diferencias con la versión anterior.

Primero, nuestra versión está escrita para un espacio vectorial complejo, pero para nuestra suerte la demostración anterior no requiere ninguna propiedad de los números reales que no posean los complejos, también una gran diferencia es que nuestra versión puede parecer un tanto más débil al remover que ek,vk>0 para cualquier k{1,,d}, esto sucede debido a que no podemos traspasar el mismo orden que teníamos en los reales al conjunto de los complejos que recordemos es el contradominio de ,.

Mencionando esto vale la pena preguntar, ¿Por qué cuando se definió espacio hermitiano hablamos de orden entonces? ¿Podrías dar una versión de este teorema únicamente para espacios hermitianos donde aún tengamos que ek,vk>0 para cualquier k{1,,d}?

Concluyamos esta sección con uno de los resultados más importantes y que curiosamente será nada más que un corolario.

Proposición

Todo espacio hermitiano tiene una base ortonormal.

Bases ortonormales y ortogonalidad

Empecemos revisando que si tomamos un conjunto ortonormal podemos obtener una base ortonormal a partir de este.

Proposición

Sea β una familia ortonormal del V esta puede ser completada a una base ortonormal de V.

Demostración

Ya que β es una familia ortonormal, en particular es ortogonal, esto nos asegura por la primer proposición de esta entrada que es linealmente independiente, sabemos que span(β)V (si fueran iguales entonces β ya sería una base ortonormal por lo que no sería necesario completarla) de esta manera sabemos que existe xV tal que xVspan(β) a su vez esto sucede si y solo si β1={x}β es linealmente independiente.

Nuevamente, si Vβ1= tenemos entonces que β1 ya es una base, finalmente el proceso de Gram-Schmidt nos arroja una base ortonormal β1y eligiendo a x como el último vector a ortonormalizar nos asegura que el proceso no afectará a los vectores de β ya que estos ya eran ortonormales desde el principio, con esto β1 es la completación que buscábamos.

Si en cambio tenemos que existe yVβ1 ortonormalicemos como arriba y repitamos el proceso, nombrando β2={y}β1.

Notemos que este proceso es finito, ya que lo tendremos que repetir a lo más dim(V)|β| veces, ya que al hacerlo terminaríamos encontrando un conjunto ortonormal con dim(V) vectores, lo que sabemos que es una base de V.

De esta manera, repitiendo este proceso la cantidad necesaria de veces, tenemos que βk es la completación buscada (con k=dim(V)|β|).

◻

Cabe observar que, con un par de argumentos extra (como garantizar la existencia de algún conjunto ortonormal), esta proposición sirve para probar el corolario previo.

Finalicemos con un resultado acerca de ortogonalidad.

Proposición

Sea W un subespacio de V y {w1,,wk} una base ortonormal de este entonces
WW=V.
Demostración

Comencemos tomando a {w1,,wk} que sabemos es un conjunto ortonormal, por la proposición anterior tenemos que este puede ser completado a una base ortonormal de V sea esta {w1,,wk,wn} y dada esta tenemos que para cualquier vV
v=i=1nviwi.
Por otro lado, definamos la siguiente función P:VV como sigue
P(v)=j=1kv,wjwj
Primero probemos que P(v)W para todo vV, para esto fijemos a j y veamos que pasa con v,wjwj. Por lo discutido en el párrafo anterior sabemos que v=i=1nviwi así
v,wjwj=i=1nviwi,wjwj
Utilizando la linealidad en la primer entrada tenemos que
v,wjwj=i=1nviwi,wjwj
Más aún recordar que {w1,,wk,wn} es ortonormal nos arroja que wi,wj=0 si ij y wi,wj=1 en caso contrario, por lo que
v,wjwj=vjwj
Con esto, sustituyendo en P(v)
P(v)=j=1kvjwj
Que notemos es una combinación lineal de {w1,,wk} por lo que es un elemento de W-

Continuando un poco aparte, veamos que sucede con wj,vP(v) para cualquier wj{w1,,wk} y cualquier vV
wj,vP(v)=wj,vwj,P(v)
Utilizando lo hecho arriba, tenemos que
wj,vP(v)=wj,i=1nwiviwj,j=1kwjvj
De nuevo utilizando la ortonormalidad en ambos productos concluimos que
wj,vP(v)=vjvj=0.
Por lo que vP(v) es ortogonal a cada wj{w1,,wk} lo que a su vez nos arroja que vP(v)W ya que al ser ortogonal a toto wj{w1,,wk}, entonces vP(v) es ortogonal a todo elemento de W.
Finalmente, tenemos que para cualquier vV
v=P(v)+(vP(v))
Con P(v)W y vP(v)W de donde se sigue que
V=W+W.
Más aún en entradas anteriores hemos mostrado que WW={0}.

Por lo tanto
V=WW.

◻

Más adelante

Finalmente con esta entrada concluimos la segunda unidad de nuestro curso, podemos ver que el análisis de formas bilineales y cuadráticas y sus análogos complejos, formas sesquilineales y hermitianas dio paso a una gran cantidad de teoría bastante interesante y en particular da origen a un tema sumamente importante que es el producto interno y esto a su vez nos permitió generalizar propiedades que ya teníamos esta vez a espacios vectoriales complejos.

Sin embargo, algo en lo que no abundamos fue el comportamiento de matrices adjuntas ( transpuestas conjugadas ) ni en el comportamiento de sus matrices asociadas, de esto nos encargaremos en la siguiente entrada, que a su vez es el inicio de la siguiente unidad en este curso.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Con la notación de la segunda proposición, demuestra que
    ||x||2=i=1n|xi|2.
  2. Por que al definir espacio hermitiano mencionamos x,x>0 si aunque x,xC.
  3. Escribe con todo detalle la prueba del teorema de Gram-Schmidt y el algoritmo para espacios vectoriales complejos.
  4. Sea C3 un espacio vectorial sobre C con el producto interno canónico, prueba que es un espacio hermitiano y aplica el proceso de Gram-Schmidt al conjunto {(i,0,1),(1,i,1),(0,1,i+1)}.
  5. En otra literatura podrías encontrar forma sesquilineal definida de manera que la primera entrada es lineal y la segunda debe ser lineal conjugada, ¿Esto afecta los resultados obtenidos en esta unidad? ¿Podrías desarrollar la misma teoría utilizando esta definición alterna?

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.