Teoría de los Conjuntos I: Relaciones de equivalencia

Por Gabriela Hernández Aguilar

Introducción

En esta entrada hablaremos acerca de un tipo de relaciones especiales a las que llamaremos relaciones de equivalencia. Veremos algunos ejemplos de relaciones que son de equivalencia, y algunos ejemplos de otras que no lo son.

Relaciones de equivalencia

Definición. Sea R una relación en A. Decimos que R es una relación de equivalencia si se satisfacen las siguientes condiciones:

  1. Para cualquier aA, se tiene que (a,a)R (reflexividad),
  2. Para cualesquiera a,bA, se tiene que si (a,b)R, entonces (b,a)R (simetría),
  3. Para cualesquiera a,b,cA, se tiene que si (a,b)R y (b,c)R, entonces (a,c)R (transitividad).

Algunos ejemplos

Ejemplo.

Sea A={a,b}. La relación R={(a,a),(b,b),(a,b),(b,a)} es relación de equivalencia. En efecto, podemos verificar que R es una relación en A y se verifican las propiedades. En este caso es sencillo demostrarlo. Las propiedades que piden la reflexividad, simetría y transitividad son que alguna pareja esté en R. Pero R es todo el producto cartesiano A×A, así que cualquier pareja estará.

◻

Ejemplo.

Sea A={1,2,3}. La relación R={(1,1),(2,2),(3,3),(1,3),(3,1)} es relación de equivalencia. Veamos que cumple cada una de las propiedades.

  1. Reflexividad.
    Los elementos de A son 1,2,3 y en efecto (1,1),(2,2),(3,3) son elementos de R.
  2. Simetría.
    Verifiquemos que se cumple para cada uno de los pares en R.
    (1,1)R y en efecto (1,1)R.
    (2,2)R y en efecto (2,2)R.
    (3,3)R y en efecto (3,3)R.
    (1,3)R y en efecto (3,1)R.
    (3,1)R y en efecto (1,3)R.
  3. Transitividad.
    Aquí tenemos muchas posibilidades por verificar. Estrictamente hablando, hay que verificar todas las siguientes posibilidades.
    -(1,1)R y (1,1)R y, en efecto, (1,1)R.
    -(1,1)R y (1,3)R y, en efecto, (1,3)R.
    -(2,2)R y (2,2)R y, en efecto, (2,2)R.
    -(3,3)R y (3,3)R y, en efecto, (3,3)R.
    -(3,3)R y (3,1)R y, en efecto, (3,1)R.
    -(1,3)R y (3,3)R y, en efecto, (3,3)R.
    -(1,3)R y (3,1)R y, en efecto, (1,1)R.
    -(3,1)R y (1,1)R y, en efecto, (3,1)R.
    -(3,1)R y (1,3)R y, en efecto, (3,3)R.

Así, R es relación de equivalencia en X=.

◻

Ejemplo.

Sea R= la relación vacía pensada como una relación en X=. Veamos que R es relación de equivalencia. En efecto, podemos verificar las propiedades:

  1. Reflexividad.
    No existe xX, así que por vacuidad para todo xX se cumple que (x,x)R.
  2. Simetría.
    Como la R es la relación vacía, no hay (x,y)R. Así, por vacuidad (x,y) implica que (y,x)R.
  3. Transitividad.
    También se cumple por vacuidad, pues no es posible encontrar (x,y)R y (y,z)R.

Por lo tanto, R es relación de equivalencia en X=.

◻

En este último ejemplo fue muy importante que X=. Una de las propiedades falla si no es el caso. ¿Cuál?

Relaciones casi de equivalencia

La definición de relación de equivalencia nos pide verificar tres propiedades: reflexividad, simetría y transitividad. Uno podría preguntarse si es necesario pedir las tres propiedades o si dos de ellas ya implican la tercera. Los siguientes ejemplos muestran que pedir cada cosa es necesario, pues para cualquier combinación de dos propiedades y la negación de la tercera, podemos encontrar un ejemplo.

Ejemplo. (Simétrica y transitiva pero no reflexiva).

Sea X un conjunto no vacío. La relación vacía en X no es relación de equivalencia. En efecto, podemos verificar que es simétrica y transitiva por un argumento por vacuidad (como hicimos arriba), pero no es una relación reflexiva, dado que al tomar xX arbitrario,se tiene que (x,x).

◻

Ejemplo. (Reflexiva y simétrica pero no transitiva).

Sea X={a,b,c} y sea R={(a,a),(b,b),(c,c),(a,b),(b,a),(a,c),(c,a)}. Tenemos que R no es relación de equivalencia, pues aunque es reflexiva y simétrica no es transitiva. La razón por la cual no es transitiva es que (c,a)R y (a,b)R, pero (c,b)R.

◻

Ejemplo. (Reflexiva, transitiva pero no simétrica).

Sea X={a,b,c} y sea R={(a,a),(b,b),(c,c),(a,b)}. Tenemos que R no es relación de equivalencia, pues aunque es reflexiva y transitiva no es simétrica. Para ver esto último, notamos que (a,b)R, pero (b,a)R.

◻

Algunas propiedades de relaciones de equivalencia

Proposición. Sean R1 y R2 relaciones de equivalencia en A. Se tiene que R1R2 es relación de equivalencia.

Demostración.

Supongamos que R1 y R2 son relaciones de equivalencia en A. Veamos que R1R2 es una relación de equivalencia en A, para ello debemos verificar que R1R2 es reflexiva, simétrica y transitiva.

Afirmación 1. R1R2 es reflexiva.

Sea aA, veamos que (a,a)R1R2.
Como aA y R1 es relación de equivalencia en A, entonces en particular es reflexiva, de modo que (a,a)R1.

Luego, como aA y R2 es reflexiva por ser relación de equivalencia se cumple que (a,a)R2. Por lo tanto, (a,a)R1 y (a,a)R2, esto es (a,a)R1R2.

Por lo tanto, R1R2 es reflexiva.

Afirmación 2. R1R2 es simétrica.

Sea (a,b)R1R2, veamos que (b,a)R1R2.

Como (a,b)R1R2, entonces (a,b)R1 y (a,b)R2. Luego, (b,a)R1 y (b,a)R2 por ser R1 y R2 relaciones simétricas respectivamente. Por lo tanto, (b,a)R1R2.

Por lo tanto, R1R2 es simétrica.

Afirmación 3. R1R2 es transitiva.

Sean (a,b),(b,c)R1R2, veamos que (a,c)R1R2.

Como (a,b)R1R2, entonces (a,b)R1 y (a,b)R2. Luego, como (b,c)R1R2 entonces (b,c)R1 y (b,c)R2.

Así, (a,b)R1 y (b,c)R1 y por la transitividad de R1 se sigue que (a,c)R1.

De forma similar, como (a,b)R2 y (b,c)R2 se sigue que (a,c)R2 por transitividad de R2.

De los argumentos anteriores se tiene que (a,c)R1R2.

Por lo tanto, R1R2 es transitiva.

De la Afirmación 1, Afirmación 2 y Afirmación 3 concluimos que R1R2 es relación de equivalencia en A.

◻

Proposición. Si R es una relación sobre un conjunto X que cumple con las propiedades

  1. (x,x)R para todo xX y
  2. Si (x,y)R y (y,z)R, entonces (z,x)R,

entonces R es relación de equivalencia.

Demostración.

Supongamos que R es una relación tal que (x,x)R para todo xX y si (x,y)R y (y,z)R, entonces (z,x)R. Veamos que R es relación de equivalencia.

Tenemos que R es reflexiva pues por hipótesis (x,x)R para todo xX. Luego, si (x,y)R, veamos que (y,x)R para probar que R es simétrica. Dado que (x,y)R entonces x,yX y por reflexividad (y,y)R. Así, por hipótesis tenemos que (y,x)R.

Ahora veamos que R es transitiva. Supongamos que (x,y)R y (y,z)R y mostremos que (x,z)R. Como (x,y)R y (y,z)R, entonces (z,x)R y por simetría de R se tiene que (x,z)R.

◻

Tarea moral

La siguiente lista de ejercicios te será útil para verificar por tu cuenta que ciertas relaciones son de equivalencia:

  1. Demuestra que IdA es una relación de equivalencia para A un conjunto cualquiera.
  2. En el texto tomamos como ejemplo a X={a,b,c} y R={(a,a),(b,b),(c,c),(a,b),(b,a),(a,c),(c,a)} y mencionamos que R era reflexiva y simétrica. Demuéstralo explícitamente.
  3. También tomamos X={a,b,c} y R={(a,a),(b,b),(c,c),(a,b)} y mencionamos que era reflexiva y transitiva. Haz todos los casos para mostrar que esto es cierto.
  4. Construye R una relación tal que R sea reflexiva pero no sea ni simétrica ni transitiva.
  5. Demuestra o da un contraejemplo a las siguientes afirmaciones:
    • Si R1 y R2 son relaciones de equivalencia en A, entonces R1R2 es relación de equivalencia en A.
    • Si R1 es relación de equivalencia en A, R2 es relación de equivalencia en B y AB=, entonces R1R2 es relación de equivalencia en AB.
  6. Un clásico argumento falso para demostrar que la reflexividad no es necesaria en la definición de relación de equivalencia es «argumentar» que si tenemos (x,y) en la relación, por simetría tenemos (y,x) y entonces por transitividad al tener (x,y) y (y,x) podemos deducir que tenemos (x,x). ¿Cuál es el problema con este argumento?
  7. Sea X un conjunto y R una relación simétrica y transitiva en X, tal que para todo xX se tenga que exista un y tal que (x,y)R. Demuestra que R es relación de equivalencia.

Más adelante…

En la siguiente entrada seguiremos tratando a las relaciones de equivalencia. Esta vez hablaremos acerca de los elementos del conjunto en el cual hay una relación de equivalencia y cómo podemos estudiarlos según estén relacionados con otros elementos. Definiremos una nueva noción llamada clase de equivalencia. En una clase de equivalencia se encontrarán todos aquellos elementos que estén relacionados con un mismo elemento bajo la relación de equivalencia dada.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.