Teoría de los Conjuntos I: Buen orden en los naturales

Por Gabriela Hernández Aguilar

Introducción

En esta entrada demostraremos que el conjunto de los números naturales es un conjunto bien ordenado.

Resultados previos

A continuación demostraremos el siguiente lema que nos dice que la intersección de dos números naturales resulta ser un número natural.

Lema. Si $n,m\in \mathbb{N}$, entonces $n\cap m\in \mathbb{N}$.

Demostración.

Sean $n,m\in \mathbb{N}$.

$n\cap m$ es un conjunto transitivo: En la entrada de construcción de números naturales se demostró que intersección de conjuntos transitivos es transitivo. Como $n$ y $m$ son naturales, entonces son transitivos. Así, $n\cap m$ también lo es.

$n\cap m$ es un orden total con la pertenencia:

Notemos la relación de pertenencia en $n\cap m$ es la relación $\in_{n\cap m}=\in_n\cap((n\cap m)\times(n\cap m))$. En efecto, si $x\in_{n\cap m}y$, entonces, $x\in y$ y $x,y\in n\cap m$; en particular, $x\in y$ y $x,y\in n$, es decir, $x\in_ny$. Esto muestra que $\in_{n\cap m}\subseteq \in_n\cap((n\cap m)\times(n\cap m))$. Por otro lado, si $x\in_n y$ y $x,y\in n\cap m$, entonces, $x\in y$ y $x,y\in n\cap m$, es decir, $x\in_{n\cap m}y$. Esto demuestra la igualdad mencionada.

Asimetría de $\in_{n\cap m}$.

Sean $z,w\in n\cap m$ tales que $z\in_{n\cap m} w$. Dado que $z\in_{n\cap m}w$, entonces $z\in_nw$. De este modo, $w\notin_{n\cap m} z$, ya que de lo contrario, $w\in_n z$, lo cual contradice que $\in_n$ sea una relación asimétrica. Por lo tanto, $\in_{n\cap m}$ es asimétrica.

Transitividad de $\in_{n\cap m}$.

Sean $z,w,y\in n\cap m$ tales que $z\in_{n\cap m} w$ y $w\in_{n\cap m} y$. Entonces, $z\in_n w$ y $w\in_n y$, por lo que $z\in_n y$ por la transitividad de $\in_n$. Así pues $z\in_n y$ y $z,y\in n\cap m$, y en consecuencia $z\in_{n\cap m}y$.

$\in_{n\cap m}$-comparables.

Sean $z,w\in n\cap m$. En particular, $z,w\in n$. Luego, por ser $(n, \in_n)$ un orden total, $z\in_n w$ o $w\in_n z$ o $z=w$. En consecuencia, $z\in_{n\cap m}w$ o $w\in_{n\cap m}z$ o $z=w$. Por lo tanto, los elementos de $n\cap m$ son $\in_{n\cap m}$-comparables.

Cualquier subconjunto $B$ no vacío de $n\cap m$ tiene elemento mínimo y máximo.

Veamos que $B$ tiene mínimo. Lo del máximo quedará como uno de los ejercicos. Dado que $B\subseteq n\cap m$, entonces, en particular, $B\subseteq n$. Dado que $n$ es un número natural y $B$ es un subconjunto no vacío de $n$, $B$ tiene mínimo con respecto a $\in_n$.

Sea $a=\min(B)$ con respecto a $\in_n$. Luego, $a\in_nx$ para todo $x\in B\setminus\set{a}$. Así pues, si $x\in B\setminus\set{a}$ es cualquier elemento, entonces, $a\in_n x$ y, como $a,x\in n\cap m$ pues $B\subseteq n\cap m$, se sigue, $a\in_{n\cap m}x$. Por lo tanto, $a=\min(B)$ en el orden $\in_{n\cap m}$.

Por lo tanto, si $n,m\in \mathbb{N}$, entonces $n\cap m\in \mathbb{N}$.

$\square$

En la tarea moral te corresponde probar que cualquier subconjunto no vacío de $n\cap m$ tiene elemento máximo.

Antes de demostrar nuestro resultado principal, probaremos otros dos resultados auxiliares.

Lema. Si $n, m$ son naturales distintos $n\subsetneq m$, entonces $n\in m$.

Demostración.

Sean $n,m\in \mathbb{N}$ distintos tales que $n\subsetneq m$. Como, $m\setminus n\subseteq m$ y $m\setminus n\not=\emptyset$, existe $k=\min(m\setminus n)$ con respecto a $\in_{m}$.

Afirmación. $k=n$.

Demostración de la afirmación.

$\subseteq$) Sea $y\in k$, entonces $y\in m$ por ser $m$ un conjunto transitivo. Luego, $y\in n$, pues de lo contrario $y\in m\setminus n$ y así, $y$ sería un elemento en $m\setminus n$ tal que $y\in k$, pero esto es imposible pues $k=\min(m\setminus n)$. Por lo tanto, $y\in n$ y, por ende, $k\subseteq n$.

$\supseteq$) Sea $y\in n$. Como $n\subseteq m$, entonces $y\in m$. Ahora, por ser $m$ un natural, $m$ está ordenado totalmente por la pertenencia. Así que, $y,k\in m$, o bien $y\in k$ o bien $k\in y$ o bien $y=k$. No puede ocurrir que $k\in y$, pues de ser así se tendría que $k\in n$ ya que $y\in n$ y $n$ es transitivo por ser un número natural. Así, tendríamos $k\notin m\setminus n$, lo cual contradice la elección de $k$. Ahora, no puede ocurrir que $k=y$, pues nuevamente tendríamos que $k\in n$ y ya vimos que esto conduce a una contradicción. Luego, tiene que ocurrir que $y\in k$. Esto demuestra que $n\subseteq k$.

Por lo tanto, $n=k$ y, en consecuencia, $n\in m$.

$\square$

Lema. Si $n$ y $m$ son naturales, entonces $n\in m$ o $m\in n$ o $n=m$, es decir, $n,m$ son $\in$-comparables.

Demostración.

Sean $n,m\in\mathbb{N}$. Tenemos los siguientes casos:

Caso 1. Si $n=m$ no hay más que probar.

Caso 2. $n\not=m$.

Consideremos a la intersección $n\cap m$. Luego, $n\cap m\subseteq m$ y $n\cap m\subseteq n$. Si $n\cap m=m$, entonces $m\subseteq n$, pero $m\not=n$, por lo que $m\subsetneq$ y por el lema anterior tenemos que $m\in n$. Si $n\cap m=n$, entonces $n\subseteq m$, pero $n\not=m$, por lo que $n\subset m$ y, en consecuencia, $n\in m$.

Por tanto, si $n\not=m$, entonces $n\in m$ o $m\in n$. En consecuencia, cualesquiera dos números naturales son $\in$-comparables.

$\square$

Los naturales están bien ordenados

Estamos listos para probar el resultado principal de esta entrada.

Teorema. $(\mathbb{N}, \leq)$ es un conjunto bien ordenado.

Demostración.

Veamos primero que $\leq$ en $\mathbb{N}$ es reflexiva, antisimétrica y transitiva. Luego, veremos que $\mathbb{N}$ es un conjunto bien ordenado con $\leq$.

Reflexividad.

Sea $n\in \mathbb{N}$. Dado que $n=n$ se cumple que $n\leq n$.

Antisimetría.

Sean $n,m\in \mathbb{N}$. Supongamos que $n\leq m$ y $m\leq n$. Como $n\leq m$, sabemos que $n\in m$ o $n=m$. El caso $n\in m$ lleva a una contradicción, pues como $m\leq n$ entonces o $m=n$ (y llegamos a la contradicción $n\in n$) o $m\in n$ (y llegamos a la contradicción $n\in m$ y $m\in n$). Así, $n=m$.

Los argumentos anteriores muestran que $\leq$ es una relación antisimétrica en $\mathbb{N}$.

Transitividad.

Sean $n,m,l\in \mathbb{N}$. Supongamos que $n\leq m$ y $m\leq l$. Veamos que $n\leq l$
Dado que $n\leq m$, entonces $n\in m$ o $n=m$ y como $m\leq l$, entonces $m\in l$ o $m=l$.
Caso 1: Si $n\in m$ y $m\in l$, entonces $m\subseteq l$ por ser $l$ un conjunto transitivo y así, $n\in l$.
Caso 2: Si $n\in m$ y $m=l$, entonces $n\in l$.
Caso 3: Si $n=m$ y $m\in l$, entonces $n\in l$.
Caso 4: Si $n=m$ y $m=l$, entonces $n=l$.
En cualquier caso ocurre que $n\in l$ o $n=l$, es decir, $n\leq l$.

Por lo tanto, $\leq$ es una relación transitiva. Estas propiedades nos permiten concluir que $\leq$ es un orden parcial en $\mathbb{N}$.

Para mostrar que $\mathbb{N}$ es un conjunto bien ordenado con $\leq$, sólo resta probar que cualquier subconjunto no vacío de $\mathbb{N}$ tiene elemento mínimo con respecto a $\leq$.

Buen orden.

Sea $B\not=\emptyset$ tal que $B\subseteq \mathbb{N}$ y veamos que $B$ tiene elemento mínimo. Dado que $B\not=\emptyset$, podemos fijar $x\in B$. Luego, $x\in \mathbb{N}$ y por tanto $s(x)\in \mathbb{N}$. Consideremos $s(x)\cap B$ conjunto no vacío pues $x\in s(x)$ y $x\in B$. Notemos además que $s(x)\cap B$ es subconjunto no vacío de $s(x)$, por lo que $s(x)\cap B$ tiene elemento mínimo con respecto a $\in$ en $s(x)$.

Sea $k=\min(s(x) \cap B)$. Afirmamos que $k=\min(B)$ en $\leq$. En efecto, si $n\in B$, entonces $n\in s(x)\cap B$ o $n\notin s(x)$; si $n\in s(x)\cap B$, entonces $n=k$ o $k\in n$ pues $k=\min(s(x)\cap B)$ con respecto a $\in$. Supongamos ahora que $n\notin s(x)$. Por un lema visto en esta entrada, y dado que $n$ y $s(x)$ son naturales tales que $n\notin s(x)$ , entonces $s(x)\in n$ o $s(x)=n$. Si $n=s(x)$, entonces $k\in n$ pues $k\in s(x)$. Finalmente, si $s(x)\in n$, entonces $s(x)\subseteq n$ por ser $n$ conjunto transitivo y, en consecuencia, $k\in n$, ya que $k\in s(x)$. En cualquier caso tenemos que $k\leq n$, lo que demuestra que $k=\min(B)$ con respecto a la relación $\leq$ definida en $\mathbb{N}$.

Por lo tanto, $(\mathbb{N}, \leq)$ es un conjunto bien ordenado.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitirá reforzar el contenido visto en esta sección:

  1. Sea $X$ un subconjunto no vacío de $\mathbb{N}$, demuestra que $\bigcap X\in \mathbb{N}\cap X$. (Nota que esta es una generalización del primer lema que probamos en esta entrada).
  2. Muestra que cualquier subconjunto no vacío de $n\cap m$ tiene elemento máximo.

Más adelante…

En la siguiente entrada haremos una breve pausa en funciones compatibles. Esto nos servirá más adelante para probar el teorema de recursión. Dicho teorema será de utilidad para definir recursivamente a la suma y el producto en el conjunto de los números naturales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.