Archivo de la etiqueta: teorema de la función implícita

Cálculo Diferencial e Integral III: Ejemplos e intuición del teorema de la función implícita

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior revisamos el teorema de la función implícita formalmente enunciado y demostrado. En ésta lo que haremos será reflexionar sobre él y observar con más detalle su propósito y usos.

Dicho de forma simplista pero resaltando su objetivo principal el teorema de la función implícita busca establecer las condiciones bajo las cuales podemos despejar unas variables en término de otras. Da una condición en términos de cierta diferenciabilidad. Como esbozamos en la entrada anterior, lo que el teorema nos dice es cuándo es posible despejar las variables de un sistema de ecuaciones (o funciones coordenadas de un campo vectorial) en función de ciertas las variables libres, y alrededor de una vecindad. Para hacer esto, básicamente hay que resolver un sistema de ecuaciones en donde ciertos coeficientes vienen de ciertas derivadas parciales. El teorema de la función implícita también habla de cómo derivar una función definida implícitamente respecto de cualquiera de sus derivables.

¿Por qué teorema de la función implícita?

¿Por qué este nombre? En numerosos problemas matemáticos derivados de aplicaciones diversas se utilizan modelos geométricos. Estos modelos geométricos usualmente se construyen a partir de restringir ciertas variables con ciertas ecuaciones. Pensemos en objetos geométricos en tres dimensiones. Tenemos variables $x,y,z$. Definamos $G(x,y,z):=x^{2}+y^{2}+z^{2}-1$. Podemos preguntarnos por el objeto geométrico descrito por la ecuación $G(x,y,z)=0.$ Sabemos que las ternas $(x,y,z)$ que satisfacen esto justo conforman una esfera de radio 1 centrada en el origen. Decimos que esta ecuación proporciona una representación implícita de la superficie.

Pero quizás nuestra aplicación nos lleva a preguntarnos si alguna coordenada está en términos de las otras para los puntos que están en dicha esfera. En afortunadas ocasiones es posible despejar en la ecuación $G(x,y,z)$ algunas de las variables en términos de las otras. Esto nos lleva a una o varias ecuaciones de la forma $z=g(x,y)$, en nuestro caso particular tenemos:

\begin{align*}z=\sqrt{1-x^{2}-y^{2}} && \textup{y} && z=-\sqrt{1-x^{2}-y^{2}}.\end{align*}

El teorema de la función inversa nos dice que si ciertas derivadas existen y son invertibles como transformaciones lineales, entonces podemos hacer estos despejes. De hecho, nos dice algo mejor: que podemos hacerlos alrededor de toda una vecindad donde no se anule dicha derivada. De aquí sale la idea de «función implícita». Algunas ecuaciones, aunque no permitan despejar variables, sí lo permiten «localmente» y entonces ahí hay una «función oculta».

En la gran mayoría de los casos es difícil lograr estos despejes mediante expresiones algebraicas sencillas por ejemplo en una superficie representada por la ecuación $y^{3}+z^{2}-xz+e^{zx}-4=0$ suena muy difícil que podamos despejar $z$. Sin embargo el teorema de la función implícita nos garantiza que, aunque no sepamos cómo, la variable $z$ sí se puede poner en función de las variables $x$ y $y$.

La derivada de la función implícita

Otra buena notica es que aunque no conozcamos explícitamente el despeje que nos interesa, con el teorema de la función implícita sí podemos encontrar las derivadas parciales de la función implícita que aparece. Si pensaste los problemas de la tarea moral de la entrada anterior, quizás ya hayas llegado al siguiente resultado.

Corolario. Sea $F:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}$ un campo escalar diferenciable con $S$ abierto. Supongamos que la ecuación $F(x_{1},\dots ,x_{n})=0$ define implícitamente a $x_{n}$ como función diferenciable de $x_{1},\dots ,x_{n-1}$ como $x_{n}=f(x_{1},\dots ,x_{n-1})$, para todos los puntos $(x_{1},\dots ,x_{n-1})\in S’\subseteq \mathbb{R}^{n-1}$, entonces para cada $k=1,2,\dots ,n-1$ la derivada parcial $\frac{\partial f}{\partial x_{k}}$ está dada por la fórmula:

\[ \begin{equation}\frac{\partial f}{\partial x_{k}}=-\frac{\frac{\partial F}{\partial x_{k}}}{\frac{\partial F}{\partial x_{n}}}\end{equation} \]

en los puntos en los que $\frac{\partial F}{\partial x_{n}}\neq 0$. Las derivadas parciales de $F$ están calculadas en el punto $(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n}))$.

Demostración. Pensemos $F:\mathbb{R}^{n-1}\times \mathbb{R} \to \mathbb{R}$. Si $(x_{1},\dots x_{n})$ es tal que $F(x_{1},\dots ,x_{n})=0$, por el teorema de la función implícita tenemos a una única función $f:\mathbb{R}^{n-1}\rightarrow \mathbb{R}$ tal que $F(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n-1}))=0$.

(Nota. En la entrada anterior teníamos entradas de la forma $(y,x)$ y $y$ quedaba en función de $x$. De manera totalmente análoga podemos intercambiar los papeles de $x$ y $y$, pidiendo las hipótesis correctas. De hecho, usualmente se piensa en parejas $(x,y)$ y las variables de $y$ son las que quedan en términos de las variables $x$)

Ahora, pensemos en el campo vectorial $G:S’\subseteq \mathbb{R}^{n-1}\rightarrow \mathbb{R}^{n}$ dado por $G(x_{1},\dots ,x_{n-1})=(x_{1},\dots ,x_{n-1},f(x_{1},\dots ,x_{n-1}))$. Así $(F\circ G)(x_{1},\dots ,x_{n-1})=0$. Por regla de la cadena, $DFDG=0$. Tenemos así $0=\triangledown F\cdot DG$, lo cual explícitamente es:

\[ 0=\begin{bmatrix} \frac{\partial F}{\partial x_{1}} & \dots & \frac{\partial F}{\partial x_{n}} \end{bmatrix} \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \\ \frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \dots & \frac{\partial f}{\partial x_{n-1}} \end{bmatrix}= \]

\[ \begin{bmatrix} \frac{\partial F}{\partial x_{1}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{1}} & \frac{\partial F}{\partial x_{2}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{2}} & \dots & \frac{\partial F}{\partial x_{n-1}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{n-1}} \end{bmatrix}.\]

Por ello, para cada $i$ tenemos:

\[ \frac{\partial F}{\partial x_{i}}+\frac{\partial F}{\partial x_{n}}\frac{\partial f}{\partial x_{i}}=0.\]

De esta ecuación se deduce la $(1)$.

$\square$

Un primer ejemplo del teorema de la función inversa

Pasemos ahora a hacer algunas cuentas concretas para entender mejor lo que uno tiene que hacer para aplicar el teorema de la función implícita en funciones particulares.

Ejemplo. Consideremos la ecuación $y^{2}+xz+z^{2}-e^{z}-c=0$. Expresaremos a $z$ en función de $x$ e $y$, es decir, $z=f(x,y)$. Nos gustaría encontrar un valor de la constante $c$ tal que $f(0,e)=2$. Para dicha $c$, queremos calcular las derivadas parciales con respecto a $x$ y $y$ en el punto $(x,y)=(0,e)$.

Para la primera parte sustituimos $x=0$, $y=e$ y $z=2$. Tenemos $$e^{2}+0\cdot 2+2^{2}-e^{2}-c=0,$$ que es lo mismo que $4-c=0$, y esto implica $c=4$. De esta manera, estudiaremos la función $$F(x,y,z)=y^{2}+xz+z^{2}-e^{z}-4.$$

Notemos que

\begin{align*}\frac{\partial F}{\partial z}=x+2z-e^{z},&&\frac{\partial F}{\partial x}=z,&&\frac{\partial F}{\partial y}=2y,\end{align*}

por lo cual

\begin{align*} \frac{\partial f}{\partial x}=-\frac{z}{x+2z-e^{z}},&&\frac{\partial f}{\partial y}=-\frac{2y}{x+2z-e^{z}}.\end{align*}

Así para $x=0$, $y=e$ y $z=2$ al sustituir resulta

\begin{align*} \frac{\partial f}{\partial x}(0,e)=\frac{2}{e^{2}-4}&&\textup{y}&&\frac{\partial f}{\partial y}(0,e)=\frac{2e}{e^{2}-4}. \end{align*}

$\triangle$

En este ejemplo vemos cómo hemos podido calcular las derivadas parciales de $z=f(x,y)$ usando el valor de $f$ en el punto $(0,e)$, sin conocer quién es la función $f(x,y)$.

Un repaso chiquito de la demostación del teorema de la función implícita

Ahora repasaremos la demostración del teorema de la función implícita pero para un caso muy particular: Dos superficies $S_{1}$ y $S_{2}$ en el espacio con las siguientes representaciones implícitas:

$$ \textup{para}\hspace{0.3cm}S_{1}:\Psi (x,y,z)=0\hspace{1cm}\textup{y}\hspace{1cm}\textup{para}\hspace{0.3cm}S_{2}:\Gamma (x,y,z)=0.$$

Supongamos que las superficies se cortan en la curva $\mathfrak{C}$. En otras palabras, $\mathfrak{C}$ es el conjunto solución para el siguiente sistema de ecuaciones:

\[ \left \{\begin{matrix} \Psi (x,y,z)=0 \\ \Gamma (x,y,z)=0. \end{matrix} \right.\]

Supongamos que podemos despejar $x$ y $y$ en estas ecuaciones en términos de $z$ de la siguiente manera:

\[ \begin{equation}x=X(z),\hspace{1cm}y=Y(z)\hspace{0.3cm}\textup{para todo}\hspace{0.1cm}z\in (a,b).\end{equation} \]

Aquí, al reemplazar $x$ y $y$ por $X(z)$ y $Y(z)$ (respectivamente), el sistema $(2)$ se satisface. Por tanto tenemos $\Psi (X(z),Y(z),z)=0$ y $\Gamma (X(z),Y(z),z)=0$ para todo $z\in (a,b)$. Podemos calcular las derivadas $X^{\prime}(z)$, $Y^{\prime}(z)$, sin un conocimiento explícito de $X(z)$ y $Y(z)$.

¿Cómo hacemos esto? Consideramos las siguientes funciones auxiliares:

\begin{align*}
\psi (z)&=\Psi (X(z),Y(z),z),\\
\gamma (z)&=\Gamma (X(z),Y(z),z).
\end{align*}

Tenemos $\psi (z)=\gamma (z)=0$ y en consecuencia $\psi^{\prime}(z)=\gamma^{\prime}(z)=0$.

Derivando con la regla de la cadena tenemos:

\begin{align*}
\psi^{\prime}(z)&=\frac{\partial \Psi}{\partial x}X'(z)+\frac{\partial \Psi}{\partial y}Y'(z)+\frac{\partial \Psi}{\partial z},\\
\gamma^{\prime}(z)&=\frac{\partial \Gamma}{\partial x}X'(z)+\frac{\partial \Gamma}{\partial y}Y'(z)+\frac{\partial \Gamma}{\partial z}
\end{align*}

Dado que $\psi^{\prime} (z)=\gamma^{\prime}(z)=0$ tenemos el siguiente sistema de dos ecuaciones con dos incógnitas $X^{\prime}(z)$, $Y^{\prime}(z)$:

\[ \left \{\begin{matrix}\frac{\partial \Psi}{\partial x}X^{\prime}(z)+\frac{\partial \Psi}{\partial y}Y^{\prime}(z)=-\frac{\partial \Psi}{\partial z}\\ \frac{\partial \Gamma}{\partial x}X^{\prime}(z)+\frac{\partial \Gamma}{\partial y}Y^{\prime}(z)=-\frac{\partial \Gamma}{\partial z} \end{matrix} \right.\]

En los puntos en los cuales el determinante del sistema no es cero, usamos la regla de Cramer para obtener las soluciones como sigue:

\[ X^{\prime}(z)={\Large -\frac{\begin{vmatrix}\frac{\partial \Psi}{\partial z} & \frac{\partial \Psi}{\partial y}\\ \frac{\partial \Gamma}{\partial z} & \frac{\partial \Gamma }{\partial y}\end{vmatrix}}{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial y} \\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma}{\partial z} \end{vmatrix}} },\hspace{0.5cm}Y^{\prime}(z)={\Large -\frac{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial z}\\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma }{\partial z}\end{vmatrix}}{\begin{vmatrix}\frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial y} \\ \frac{\partial \Gamma}{\partial x} & \frac{\partial \Gamma}{\partial z} \end{vmatrix}} }.\]

Otro ejemplo para encontrar derivadas de funciones implícitas

Veamos un último ejemplo en donde pondemos usar las ideas anteriores.

Ejemplo. Consideremos las ecuaciones $y=uv^{2}$, y $x=u+v$. Queremos ver que podemos determinar una función $h$ tal que $v=h(x,y)$ y para la cual:

\[ \frac{\partial h}{\partial x}(x,y)= \frac{h(x,y)}{3h(x,y)-2x}.\]

Además, queremos encontrar una fórmula análoga para $\frac{\partial h}{\partial y}$.

Primero, en la ecuación $x=u+v$ despejamos $u$ y sustituimos en $y=uv^{2}$, tenemos $y=(x-v)v^{2}$. De aquí $$xv^{2}-v^{3}-y=0.$$ Esto nos sugiere pensar en la función $$F(x,y,v):=xv^{2}-v^{3}-y,$$ pues nos permite representar nuestra ecuación como $F(x,y,v)=0$. Por el teorema de la función implícita (¡verifica las hipótesis!), esta ecuación define implícitamente a $v$ como función de $x$ e $y$, digamos, como $v=h(x,y)$. Aplicando las fórmulas que conocemos para las derivadas de la función implicita, tenemos lo siguiente:

\[ \frac{\partial h}{\partial x}= -\frac{\partial F /\partial x}{\partial F /\partial v}\hspace{0.5cm}\textup{y}\hspace{0.5cm}\frac{\partial h}{\partial y}=-\frac{\partial F /\partial y}{\partial F /\partial v} \]

Donde $\frac{\partial F}{\partial x}=v^{2}$, $\frac{\partial F}{\partial v}=2xv-3v^{2}$ y $\frac{\partial F}{\partial y}=-1$. Luego tenemos:

\begin{align*} \frac{\partial h}{\partial x}(x,y)&=-\frac{v^{2}}{2xv-3v^{2}}\\ &=-\frac{v}{2x-3v}\\ &=\frac{h(x,y)}{3h(x,y)-2x}.\end{align*}

Esto muestra la primera parte. Para encontra la fórmula análoga, volvemos a usar las fórmulas para derivadas de la función implícita:

\begin{align*}\frac{\partial h}{\partial y}(x,y)&=-\frac{-1}{2xv-3v^{2}}\\ &=\frac{1}{2xh(x,y)-3h^{2}(x,y)}.\end{align*}

$\triangle$

Más adelante…

Hemos cubierto el teorema de la función inversa y el teorema de la función implícita. Estos son temas teóricos profundos e importantes que tienen muchas consecuencias. Tienen también otras versiones en contextos más amplios como variedades, geometría diferencial, etc. Por el momento, dejaremos hasta aquí nuestro estudio de estos temas, pero te recomendamos de vez en cuando repasarlos, pues cada vez entenderás más de sus demostraciones y lo que significan.

Nuestra atención se enfocará ahora en otros conceptos que se pueden definir en términos de funciones de varias variables: la divergencia, el laplaciano y el rotacional. Después, hablaremos un poco de cómo la teoría que hemos desarrollado nos ayudará a encontrar puntos críticos para funciones de varias variables.

Tarea moral

  1. Las ecuaciones $x+y=uv$ y $xy=u-v$ definen $x$ y $y$ como funciones implícitas de $u$ y $v$, sean éstas $x=X(u,v)$ y $y=Y(u,v)$. Demuestra que $\partial X/\partial u=(xv-1)/(x-y)$ si $x\neq y$, y halla las fórmulas para $\partial X/\partial v$, $\partial Y/\partial v$, $\partial Y/\partial u$.
  2. Las tres ecuaciones \[ \left\{\begin{matrix} x^{2}-y\hspace{0.1cm}cos\hspace{0.1cm}(uv)+z^{2}=0, \\ x^{2}+y^{2}-\hspace{0.1cm}sen\hspace{0.1cm}(uv)+2z^{2}=2, \\ xy-\hspace{0.1cm}sen\hspace{0.1cm}u\hspace{0.1cm}cos\hspace{0.1cm}v+z=0 \end{matrix}\right.\] definen $x$, $y$, y $z$ como funciones de $u$ y $v$. Calcula las derivadas parciales $\partial x/\partial u$ y $\partial x/\partial v$ en el punto $x=y=1$, $u=\pi /2$, $v=0$, $z=0$.
  3. Las ecuaciones $x+y=uv$ y $xy=u-v$ definen $x$ y $v$ como funciones de $u$ y $y$, sean éstas $x=X(u,v)$ y $v=V(u,y)$. Demuestra que $\partial X/\partial u=(u+v)/(1+yu)$ si $1+yu\neq 0$ y halla las fórmulas de $\partial X/\partial y$, $\partial V /\partial u$, $\partial V /\partial y$.
  4. Sigue las ideas de los resultados de la entrada anterior para escribir una calca de ella pero ahora para $f:S\subseteq \mathbb{R}^{m} \times \mathbb{R}^{l}$, en donde la función que se busca tiene ahora dominio en $\mathbb{R}^{m}$ que pone a las variables del dominio $\mathbb{R}^l$ en términos de las de $\mathbb{R}^m$.
  5. Haz un esfuerzo extra, y medita nuevamente en el teorema de la función implícita tratando de escribir una demostración de como sería el asunto para $f$ con dominio en $\mathbb{R}^{m}\times \mathbb{R}^{l}\times \mathbb{R}^{k}$. ¿Se podrá hallar la función $h$, pero ahora con dominio en $\mathbb{R}^{l}$?

Entradas relacionadas

Cálculo Diferencial e Integral III: Teorema de la función implícita y demostración

Por Alejandro Antonio Estrada Franco

Introducción

En esta parte del curso estamos abordando los resultados principales de campos vectoriales y su diferenciabilidad. Hemos hablado de cómo la derivada de una composición se calcula con regla de la cadena. También, enunciamos el teorema de la función inversa, lo demostramos, y vimos un ejemplo de cómo se usa. Ahora pasaremos a otro de los resultados fundamentales en el tema: el teorema de la función implícita. Vamos a motivarlo a partir del problema de resolver sistemas de ecuaciones no lineales. Luego, lo enunciaremos formalmente y lo demostraremos. La discusión y los ejemplos los dejaremos para la siguiente entrada.

Una motivación: resolver sistemas de ecuaciones no lineales

Con lo que repasamos sobre sistemas de ecuaciones lineales, y con lo que se ve en un curso de Álgebra Lineal I, se puede entender completamente cómo resolver sistemas de eccuaciones lineales. Recordemos un poco de esto. Tomemos el siguiente sistema de ecuaciones lineales en las variables $x_1,\ldots,x_n$:

\begin{align*}
\left\{ \begin{matrix}
a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n = b_1\\
a_{21}x_1+a_{22}x_2+\ldots+a_{2n}x_n = b_2\\
\vdots\\
a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n = b_m.\\
\end{matrix} \right.
\end{align*}

Para resolverlo, se podría utilizar el proceso de reducción gaussiana. Tras hacer esto, podíamos clasificar a las variables en libres (que podían valer lo que sea) y pivote (que dependían afinmente de las libres). Esto daba todas las soluciones. Si, por decir algo, las variables pivote son $x_1,x_2,\ldots,x_m$ y las libre son $x_{m+1},\ldots,x_n$, entonces podemos reescribir lo anterior de la siguiente manera: «podemos despejar a las primeras en función de las segundas», algo así como

\begin{align*}
x_1 &= T_1(x_{m+1},\ldots,x_n)\\
x_2 &= T_2(x_{m+1},\ldots,x_n)\\
\vdots \\
x_m&=T_m(x_{m+1},\ldots,x_n).
\end{align*}

Elegimos a $x_{m+1},\ldots,x_n$ como queramos. De ahí $x_1,\ldots,x_m$ quedan definidos afinmente con las $T_1,\ldots,T_m$. Y esto da todas las soluciones. Pero, ¿qué sucedería si tenemos un sistema de ecuaciones mucho más general?

Para plantear esto, imaginemos que ahora tenemos cualesquiera funciones $f_1,\ldots,f_m:\mathbb{R}^n\to \mathbb{R}$ y que queremos encontrar todas las soluciones $x_1,\ldots,x_n$ al siguiente sistema de ecuaciones:

\begin{equation}
\label{eq:sistemadificil}
\left\{ \begin{matrix}
f_{1}(x_{1},\dots ,x_{n})=0 \\
\vdots \\
f_{m}(x_{1},\dots ,x_{n})=0.
\end{matrix}\right.
\end{equation}

Esto es tan general como pudiéramos esperar. A la izquierda hay ceros, pero es porque si hubiera otras cosas, podríamos pasarlas a la izquierda para dejar ceros a la derecha.

Este sistema \eqref{eq:sistemadificil} parece imposible de resolver: no tenemos idea de quiénes son las funciones $f_1,\ldots, f_n$, no hay reducción gaussiana, no hay variables libres, etc. Pero imaginemos que el campo vectorial $(f_1,\ldots,f_m)$ es de clase $C^1$ alrededor de algún punto $\bar{v}_0=(x_{1}^{0},\dots,x_{n}^{0})$ en donde queremos despejar. Esto nos diría que cerca de $\bar{v}_0$ cada expresión $f_i(\bar{v})$ con $\bar{v}=(x_{1},\dots,x_{n})$ se parece muchísimo a su mejor aproximación lineal:

\[f_i(\bar{v}_0)+\triangledown f_i(\bar{v}_0)\bullet (\bar{v}-\bar{v}_0)\]

donde, tenemos:
\begin{align*}
f_i(\bar{v}_0)+\triangledown f_i(\bar{v}_0)\bullet (\bar{v}-\bar{v}_0)
&=f_i(\bar{v}_0)+\left(\frac{\partial f_i}{\partial x_1}(\bar{v}_0),\dots ,\frac{\partial f_i}{\partial x_n}(\bar{v}_0)\right)\bullet\left(x_1 -x_{1}^{0},\dots , x_n -x_{n}^{0}\right)\\ &=f_i(\bar{v}_0)+\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_0)(x_j -x_{j}^{0})\\ &=f_i(\bar{v}_0)+\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_0)x_j -\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_0)x_{j}^{0}\\ &=\triangledown f_i(\bar{v}_0)\bullet (\bar{v})+f_i(\bar{v}_0) -\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}} (\bar{v}_0)x_{j}^{0}\\ &=\triangledown f_i(\bar{v}_0)\bullet (\bar{v}) + \bar{b}_i,
\end{align*}

donde $\bar{b}_i=f_i(\bar{v}_0)-\sum_{j=1}^n \frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_0)x_{j}^0$. Pero entonces el sistema es prácticamente el mismo sistema que

\begin{equation}\label{eq:sistemafacil}\left \{\begin{matrix}\frac{\partial f_{1}}{\partial x_{1}}(\bar{v}_{0})x_{1}\hspace{0.1cm}+ & \dots & +\hspace{0.1cm}\frac{\partial f_{1}}{\partial x_{n}}(\bar{v}_{0})x_{n}\hspace{0.1cm}+\hspace{0.1cm}b_{1}\hspace{0.1cm}=\hspace{0.1cm}0 \\
\frac{\partial f_{2}}{\partial x_{1}}(\bar{v}_{0})x_{1}\hspace{0.1cm}+ & \dots & +\hspace{0.1cm}\frac{\partial f_{2}}{\partial x_{n}}(\bar{v}_{0})x_{n}\hspace{0.1cm}+\hspace{0.1cm}b_{2}\hspace{0.1cm}=\hspace{0.1cm}0 \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\bar{v}_{0})x_{1}\hspace{0.1cm}+ & \dots & +\hspace{0.1cm}\frac{\partial f_{m}}{\partial x_{n}}(\bar{v}_{0})x_{n}\hspace{0.1cm}+\hspace{0.1cm}b_{m}\hspace{0.1cm}=\hspace{0.1cm}0 \end{matrix}\right.\end{equation}

Esto se ve un poco complicado, pero cada $\frac{\partial f_{i}}{\partial x_{j}}(\bar{v}_{0})x_{j}$ es simplemente un número real. ¡Cerquita de $\bar{v}_0$ el sistema de ecuaciones \eqref{eq:sistemadificil} es prácticamente un sistema lineal! Sería entonces de esperarse que las soluciones el sistema \eqref{eq:sistemadificil} original sean muy cercanas a las del sistema lineal \eqref{eq:sistemafacil} que sale y de nuevo recuperamos los trucos usuales: reducción gaussiana, variables libres, variables pivote, etc.

Pensando en que en el sistema \eqref{eq:sistemafacil} las variables pivote son $x_1,\ldots, x_m$ y las libres son $x_{m+1},\ldots,x_n$, entonces podemos encontrar transformaciones afines $T_1,\ldots,T_m:\mathbb{R}^n\to \mathbb{R}$ tales que las soluiones de \eqref{eq:sistemafacil} consisten en elegir $x_{m+1},\ldots,x_n$ arbitrariamente, y tomar

\begin{align*}
x_1 &= T_1(x_{m+1},\ldots,x_n)\\
x_2 &= T_2(x_{m+1},\ldots,x_n)\\
\vdots \\
x_m&=T_m(x_{m+1},\ldots,x_n).
\end{align*}

Muy probablemente $(x_1,\ldots,x_n)$ no será una solución de \eqref{eq:sistemadificil}, pues son sistemas diferentes entre sí. Pero suena a que son tan tan cercanos, que con tantita maniobra podremos encontrar funciones $S_1,\ldots, S_m: \mathbb{R}^n\to \mathbb{R}$ tales que cualquier solución a \eqref{eq:sistemadificil} similarmente está dada por elegir $x_{m+1},\ldots, x_n$ arbitrariamente y tomar

\begin{align*}
x_1 &= S_1(x_{m+1},\ldots,x_n)\\
x_2 &= S_2(x_{m+1},\ldots,x_n)\\
\vdots \\
x_m&=S_m(x_{m+1},\ldots,x_n).
\end{align*}

Gracias a que pudimos poner a todos los $x_1,\ldots x_m$ en función de los $x_{m+1},\ldots,x_n$, hemos logrado encontrar todas las soluciones a \eqref{eq:sistemadificil} cerca de $\bar{v}_0$. El teorema de la función inversa nos ayuda a volver precisas muchas de las cosas discutidas en esta sección.

Enunciado del teorema de la función implícita

Pensemos que tenemos algunas restricciones dadas por ecuaciones como las del sistema \eqref{eq:sistemadificil}. Lo que el teorema de la función implícita nos dirá es que bajo suficiente regularidad y algunas condiciones de invertibilidad, en una vecindad de un punto $\bar{v}_{0}$ las incógnitas $x_{1},\dots ,x_{m}$ se pueden poner en función de las incógnitas $x_{m+1},\dots ,x_{n}$, es decir, que se puede despejar como lo mencionamos al final de la sección anterior. El enunciado es el siguiente.

Teorema (de la función implícita). Sea $f:S\subseteq\mathbb{R}^{m}\times \mathbb{R}^{l}\rightarrow \mathbb{R}^m$ un campo vectorial de clase $C^1$ en $S$ con funciones componentes $f_i: S\subseteq\mathbb{R}^{m}\times \mathbb{R}^{l}\rightarrow \mathbb{R}$, para $i=1,\ldots,m$.

Pensemos en el conjunto $A$ de soluciones $(y_1,\ldots,y_m,x_1,\ldots,x_l)$ del siguiente sistema de ecuaciones:

\begin{equation}
\label{eq:sistemaimplicita}
\left\{ \begin{matrix}
f_{1}(y_{1},\dots ,y_m,x_1,\ldots,x_l)=0 \\
\vdots \\
f_{m}(y_{1},\dots ,y_m,x_1,\ldots,x_l)=0.
\end{matrix}\right.
\end{equation}

Supongamos además que para el punto $$(\bar{y}_0,\bar{x}_0)=\left(y_{1}^{0},\dots ,y_{m}^{0},x_{1}^{0},\dots ,x_{l}^{0}\right)\in S\cup A$$ la matriz

\[ \begin{pmatrix} \frac{\partial f_{1}}{\partial y_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{i}}{\partial y_{m}}(\bar{y}_{0},\bar{x}_{0}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial y_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{m}}{\partial y_{m}}(\bar{y}_{0},\bar{x}_{0}) \end{pmatrix} \]

es invertible. Entonces existen abiertos $V\subset \mathbb{R}^{m}$ y $U\subset \mathbb{R}^l$ con $\bar{y}_0\in V$, $\bar{x}_0\in U$, para los cuales hay una única función $h:U\to V$ de clase $C^{1}$ en $V$, tal que $f(\bar{y},\bar{x})=\bar{0}$ si y sólo si $\bar{y}=h(\bar{x})$.

Sólo para aclarar algunas diferencias con lo discutido anteriormente, aquí ya estamos separando en lo que esperaremos que serán las variables libres $x_1,\ldots,x_m$ y las variables pivote $y_1,\ldots,y_l$. Estamos además estudiando el caso en el que tenemos tantas variables libres como ecuaciones, pues este caso es fácil de enunciar en términos de la invertibilidad de una matriz. El caso más general se trata con reducción gaussiana como platicamos en la sección anterior. La igualdad $\bar{y}=h(\bar{x})$ es lo que entendemos como «despejar» a los $y_i$’s en función de los $x_j$’s.

Demostración del teorema de la función implícita

Veamos la demostración del teorema.

Demostración. Definamos $F:S\subset \mathbb{R}^{m}\times \mathbb{R}^{l}\rightarrow \mathbb{R}^{m}\times \mathbb{R}^{l}$ como $F(\bar{y},\bar{x})=(f(\bar{y},\bar{x}),\bar{x})$. Dado que $f$ es de clase $C^1$, se tendrá que $F$ también (explica esto como tarea moral).

Notemos que

\begin{align*}
F(\bar{y}_{0},\bar{x}_{0})&=(f(\bar{y}_{0},\bar{x}_{0}),\bar{x}_{0})=(\bar{0},\bar{x}_0).\end{align*}

Por otro lado, notemos que la matriz jacobiana de $F$ en $(\bar{y}_0,\bar{x}_0)$ es

$$\begin{bmatrix} \frac{\partial f_{1}}{\partial \bar{y}_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{1}}{\partial y_{m}}(\bar{y}_{0},\bar{x}_{0}) & \frac{\partial f_{1}}{\partial x_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{1}}{\partial x_{l}}(\bar{y}_{0},\bar{x}_{0}) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial y_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{m}}{\partial y_{m}}(\bar{y}_{0},\bar{x}_{0}) & \frac{\partial f_{m}}{\partial x_{1}}(\bar{y}_{0},\bar{x}_{0}) & \dots & \frac{\partial f_{m}}{\partial y_{l}}(\bar{y}_{0},\bar{x}_{0}) \\ 0 & \dots & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 1 \end{bmatrix}$$

esta matriz además es invertible (también tendrás que explicar ambas cosas de tarea moral).

La idea clave es que entonces podemos usar el teorema de la función inversa en $F$. Aplícandolo en este contexto, obtenemos que existe $\delta >0$ tal que $F$ es inyectiva en una bola $B_{\delta}(\bar{y}_{0},\bar{x}_{0})\subset S$. Nos dice también que $F(B_{\delta}(\bar{y}_0,\bar{x}_{0}))$ es un conjunto abierto, y que $F ^{-1}:F(B_{\delta}(\bar{y}_0,\bar{x}_{0}))\subset \mathbb{R}^{m}\times \mathbb{R}^{l}\rightarrow \mathbb{R}^{m}\times \mathbb{R}^{l}$ es de clase $C^{1}$ en $F(B_{\delta}(\bar{y}_{0},\bar{x}_{0}))$. También dice algo de quién es la derivada explícitamente, pero eso no lo necesitaremos por ahora (de tarea moral tendrás que pensar qué nos dice esto).

Como $F$ manda $(\bar{y}_0,\bar{x}_0)$ a $(\bar{0},\bar{x}_0)$ y $F(B_{\delta}(\bar{y}_0,\bar{x}_{0}))$ es un abierto, entonces hay una bola abierta $W$ alrededor de $(\bar{0},\bar{x}_0)$ contenida en $F(B_{\delta}(\bar{y}_0,\bar{x}_{0}))$. El conjunto $U$ que propondremos será el abierto que se obtiene al intersectar $W$ con el espacio en donde la coordenada correspondiente a $f(\bar{y},\bar{x})$ es cero. En otras palabras, $U$ es un abierto y consiste de $\bar{x}$ para los cuales existe un $\bar{y}$ tal que $F(\bar{y},\bar{x})=(\bar{0},\bar{x})$ (es decir, $f(\bar{y},\bar{x})=\bar{0}$).

Tomemos ahora un $\bar{x}\in U$. Afirmamos que hay sólo un $\bar{y}$ tal que $(\bar{y},\bar{x})\in B_{\delta}(\bar{y}_{0},\bar{x}_{0})$ y $f(\bar{y},\bar{x})=\bar{0}$. Si hubiera $\bar{y}$ y $\bar{y}’$ que satisfacen eso, tendríamos

$$F(\bar{y},\bar{x})=(f(\bar{y},\bar{x}),\bar{x})=(\bar{0},\bar{x})=(f(\bar{y}’,\bar{x}),\bar{x})=F(\bar{y}’,\bar{x}),$$

que por la inyectividad de $F$ implica $\bar{y}=\bar{y}’$. De hecho, dicho único $\bar{y}$ está en función de $F^{-1}$, que es de clase $C^1$ de modo que el conjunto de los $\bar{y}$ asignados a los $\bar{x}$ en $U$ es un abierto $V$.

Así, podemos definir $h:U\to V$ de la siguiente manera: $h(\bar{x})=\bar{y}$, donde $\bar{y}$ es el único elemento para el cual $f(\bar{y},\bar{x})=\bar{0}$ y $(\bar{y},\bar{x})\in B_{\delta}(\bar{y}_{0},\bar{x}_{0})$. De la discusión desarrollada, $h$ está bien definida y cumple con las propiedades buscadas.

Por último probemos que $h$ es de clase $C^{1}$ en $U$. Como $F^{-1}$ esta definida y, además es de clase $C^{1}$ sobre el conjunto $F(B_{\delta}(\bar{x}_{0},\bar{y}_{0}))$, si escribimos que $F^{-1}=\left( (F^{-1})_{1},\dots ,(F^{-1})_{m} \right)$, bastaría con demostrar:

\[ h(\bar{x})=\left( (F^{-1})_{1}(\bar{0},\bar{x}),\dots , (F^{-1})_{m}(\bar{0},\bar{x})\right) \]

para cada $\bar{x}\in V$. Esto se hace como sigue:

\begin{align*} (h(\bar{x}),\bar{x})&=F^{-1}(F(h(\bar{x}),\bar{x}))\\ &=F^{-1}(\bar{0},\bar{x}) \\ &=\left( (F^{-1})_{1}(\bar{0},\bar{x}),\dots ,(F^{-1})_{m}(\bar{0},\bar{x}),(F^{-1})_{m+1}(\bar{0},\bar{x}),\dots ,(F^{-1})_{m+l}(\bar{0},\bar{x}) \right). \end{align*}

Así queda terminada de la demostración de este importante teorema.

$\square$

Algunas reflexiones finales

Si quisiéramos usar de manera práctica la demostración para encontrar la función implícita $h$, necesitaríamos calcular la inversa $F^{-1}$. Sin embargo, las técnicas que tenemos hasta ahora no nos permiten hacer eso tan fácilmente. La versión del teorema de la función inversa que tenemos nos dice que hay una inversa, pero no nos dice quién es. La mayoría de las veces dar esta inversa es muy difícil, por no decir imposible.

Aunque esto parezca algo negativo, de cualquier forma tenemos un resultado muy importante. En algunos casos, sí podremos dar la función inversa con relativa facilidad. Y en otros contextos, aunque no podamos dar la inversa explícitamente, sí tendremos una base teórica robusta para demostrar otros resultados. El teorema de la función implícita es una palanca importante para otros resultados que brindan mucha luz acerca del comportamiento de los campos vectoriales.

Mas adelante

La demostración y el desarrollo teórico tanto del teorema de la función inversa, como el de la función implícita, son muy técnicos. Dejaremos los aspectos técnicos hasta aquí y en la siguiente entrada procesaremos mejor lo que quiere decir este teorema hablando de varios ejemplos, y también de sus consecuencias.

Tarea moral

  1. Considérese la función $T:\mathbb{R}^{3}\rightarrow \mathbb{R}^{2}$ dada por $T(x,y,z)=(x+z,y+x)$ aplica el teorema de la función implícita para obtener una función $h:\mathbb{R}\rightarrow \mathbb{R}^{2}$ tal que $(h(\bar{a}),\bar{a})$ es solución de la ecuación $T(x,y,z)=(0,0)$.
  2. Explica con detalle por qué la función $F$ de la demostración del teorema de la función implícita es de clase $C^1$.
  3. Verifica que en efecto $DF(\bar{y}_0,\bar{x}_0)$ es la expresión dada en la demostración del teorema. Además, justifica por qué es invertible.
  4. Justifica con detalle por qué los conjuntos $U$ y $V$ de la demostración en efecto son conjuntos abiertos.
  5. El teorema de la función inversa también nos dice quién es la derivada de la inversa. ¿Eso qué quiere decir en el contexto del teorema de la función implícita?

Entradas relacionadas