Archivo de la etiqueta: sumas inferiores

Cálculo Diferencial e Integral II: Funciones integrables con finitas discontinuidades

Por Moisés Morales Déciga

Introducción

Hasta ahora, hemos hablado de funciones integrables en un intervalo cerrado, en términos de ciertas sumas superiores e inferiores. Vimos en la entrada de Propiedades de la integral que si una función es monótona o continua, entonces su integral siempre está definida. Ahora veremos qué sucede con las funciones que tienen discontinuidades. En esta entrada trataremos a las funciones que finitas discontinuidades. En la siguiente hablaremos de funciones con una infinidad de discontinuidades.

Breve repaso de integrabilidad

Recordemos que para determinar si una función acotada $f:\mathbb{R}\to \mathbb{R}$ es integrable en cierto intervalo $[a,b]$, debemos calcular ciertas sumas superiores e inferiores con respecto a una partición. Esto es tomar algunos puntos $x_0<\ldots<x_n$ en $[a,b]$, con $x_0=a$ y $x_n=b$. Escribimos $$P=\{ x_0, x_1, … , x_n \},$$

y decimos que $P$ genera los siguientes intervalos a los que llamamos celdas

$$[x_0,x_1],[x_1,x_2],…,[x_{n-1},x_n].$$

A $[x_{k-1},x_{k}]$ le llamamos la $k$-ésima celda de $P$, cuya longitud es $\Delta x_{k}=x_k-x_{k-1}$. Si $m_k$ es el ínfimo de los valores de $f$ en la $k$-ésima celda y $M_k$ es su supremo, entonces podemos definir respectivamente la suma inferior y superior como $$\underline{S}(f,P)=\sum_{k=1}^n m_k\Delta x_k \quad \text{y} \quad \overline{S}(f,P)=\sum_{k=1}^n M_k\Delta x_k.$$

La función $f$ es integrable cuando el ínfimo de las sumas superiores (tomado sobre todas las particiones) coindice con el supremos de las sumas inferiores. Vimos que esto es equivalente a pedir que para todo $\epsilon$ haya una partición en la que la suma superior y la inferior difieran menos que $\epsilon$ (a lo que llamamos el criterio de Riemann). Probamos varias otras propiedades de esta definición, pero una que será muy importante para esta entrada es la siguiente.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sea $c$ cualquier valor entre $[a,b]$. Si la integral

$$\int \limits_{a}^{b} f(x) \ dx$$

existe, entonces las dos integrales

$$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$

también existen. Y viceversa, si estas dos integrales existen, entonces la primera también.

Cuando las tres integrales existen, se cumple además la siguiente igualdad:

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Usaremos esta proposición en las siguientes secciones, pero necesitamos una versión un poco más versátil.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada y $n$ un entero positivo. Sea $P=\{x_0,\ldots,x_n\}$ una partición de $[a,b]$. Si la integral $$\int \limits_{a}^{b} f(x) \ dx$$ existe, entonces todas las integrales $$\int_{x_{k-1}}^{x_k} f(x)\, dx$$ para $k=1,\ldots,n$ existen. Y viceversa, si estas $n$ integrales existen, entonces la primera también. Cuando todas estas integrales existen, entonces $$\int \limits_{a}^{b} f(x) \ dx = \sum_{k=1} ^n \int_{x_{k-1}}^{x_k} f(x)\, dx.$$

La demostración de esta proposición no es difícil, pues se sigue de la proposición anterior y de una prueba inductiva. Por ello, la encontrarás como parte de los ejercicios.

Funciones escalonadas

Hablaremos de la integrabilidad de funciones escalonadas, para lo cual necesitaremos la siguiente definición.

Definición. Una función $f:\mathbb{R}\to \mathbb{R}$ es escalonada en el intervalo $[a,b]$, si existe una partición $P=\{ x_0, x_1, … , x_n\}$ del intervalo $[a,b]$, tal que $f$ es constante en cada subintervalo abierto de $P$. Es decir, para cada $k=1, 2, …, n$ existe un número real $s_k$ tal que:

$$f(x)=s_k, \quad \text{si} \quad x_{k-1} < x < x_k.$$

A las funciones escalonadas también se les conoce como funciones constantes a trozos.

Ejemplo. En algunos sistemas postales se deben poner estampillas en una carta para poderse enviar. La cantidad de estampillas que hay que poner está determinada por el peso de la carta. Supongamos que una estampilla cuesta $5$ pesos y que hay que poner una estampilla por cada $20g$ (o fracción) que pese la carta, hasta un máximo de $100g$.

Si el peso de la carta en gramos está en el intervalo $[0,20]$, entonces tienes que pagar $5$ pesos. Si está en el intervalo $(20,40]$, pagarás 10 pesos y así sucesivamente hasta que llegue a 100 gramos. Gráficamente, el costo de envío tendría el siguiente comportamiento (puedes dar clic en la imagen para verla a mayor escala).

Observa que en efecto parece ser que hay «escalones». Esta función es escalonada pues al dar la partición $P=\{0,20,40,60,80,100\}$, tenemos que la función es constante en cada intervalo abierto definido por la partición.

Si quisiéramos calcular la integral de esta función, ¿qué podríamos hacer? Podemos utilizar la proposición de separar la integral en intervalos que enunciamos arriba, usando la misma partición $P$. Como la función es constante en cada intervalo dado, entonces su integral existe. Así, la integral en todo el intervalo $[0,100]$ existirá y será la suma de las integrales en cada intervalo. Tendrás que encontrar el valor exacto como uno de los ejercicios.

$\triangle$

Integral para funciones escalonadas

Las funciones escalonadas en un cierto intervalo siempre son integrables, como lo afirma el siguiente resultado.

Teorema. Sea $f:\mathbb{R} \to \mathbb{R}$ una función. Si $f$ es escalonada en un intervalo $[a,b]$, entonces es integrable en $[a,b]$. Además, si la partición que muestra que es escalonada es $P=\{x_0,\ldots,x_n\}$, y para $x$ en el intervalo $[x_{k-1},x_k]$ (para $k=1,\ldots,n$) se cumple que $f(x)=s_k$, entonces se tiene que $$\int_a^b f(x)\, dx = \sum_{k=1}^n s_k (x_k-x_{k-1}).$$

El teorema nos dice entonces que el valor de la integral es la suma de los productos del valor $s_k$ (constante), por la longitud del $k$-ésimo intervalo. Esto tiene mucho sentido geométrico: cada uno de estos productos es el área de un rectángulo correspondiente a un «escalón». El teorema nos dice que el área buscada es la suma de las áreas de estos escalones.

Demostración. La demostración es consecuencia de la proposición para partir integrales en intervalos. Notemos que como $f$ es constante en cada intervalo $[x_{k-1},x_k]$ (para $k=1,\ldots,n$), entonces es integrable en dicho intervalo. En efecto, fijemos una $k\in \{1,\ldots,n\}$ y tomemos $Q=\{y_0,\ldots,y_m\}$ una partición de $[x_{k-1},x_k]$. En en este intervalo cualquier suma superior (o inferior) se hace tomando como supremo (o ínfimo) al valor constante $s_k$, de modo que:

\begin{align*}
\overline{S}(f,Q)&=\sum_{i=1}^m M_i \Delta y_i\\
&=\sum_{i=1}^m s_k \Delta y_i\\
&=s_k\sum_{i=1}^m \Delta y_i\\
&=s_k(x_k-x_{k-1}),\\
\underline{S}(f,Q)&= \sum_{i=1}^m m_i \Delta y_i \\
&=\sum_{i=1}^m s_k \Delta y_i\\
&=s_k\sum_{i=1}^m \Delta y_i\\
&=s_k (x_k – x_{k-1}).
\end{align*}

Así, el ínfimo de las particiones superiores y el supremo de las inferiores es $c_k(x_k-x_{k-1})$, por lo que la integral existe en cada intervalo $[x_{k-1},x_k]$ y es igual a $c_k (x_k – x_{k-1})$. Usando la proposición que enunciamos en la sección de recordatorio sobre partir la integral por intervalos, obtenemos

$$\int_a^b f(x)\, dx = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f(x)\, dx =\sum_{k=1}^n s_k (x_k-x_{k-1}),$$

como queríamos.

$\square$

Funciones continuas a trozos

Las funciones escalonadas son muy sencillas, pero las ideas que hemos discutido respaldan una cierta intuición de que para la integrabilidad «si la función se comporta bien en cada uno de una cantidad finita de intervalos, entonces se comporta bien en todo el intervalo». Esa idea se repite a continuación.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$. Diremos que $f$ es continua a trozos en el intervalo $[a,b]$ si existe una partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es continua en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$.

Pareciera que estamos pidiendo continuidad en todo el intervalo $[a,b]$. Sin embargo, hay algunas excepciones. Por la manera en la que está escrita la definición, la función $f$ no necesariamente es continua en los puntos $x_1,x_2,\ldots,x_{n-1}$.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Si $f$ es continua a trozos en el intervalo $[a,b]$, entonces $f$ es integrable en $[a,b]$.

Demostración. Nos gustaría usar la proposición de separación de la integral por intervalos. Para ello, tomemos la partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es continua en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$. Si $f$ fuera continua en cada intervalo cerrado $[x_{k-1},x_k]$, podríamos usar un resultado anterior para ver que es integrable en cada uno de estos intervalos, pero aquí tenemos una hipótesis un poco más débil, pues la continuidad es sólo en el abierto.

De cualquier manera, se puede ver que $f$ es integrable en cada intervalo cerrado $[x_{k-1},x_k]$. Para ello, fijemos $k$ y tomemos $\epsilon>0$. Como $f$ es acotada, tiene supremo $M$ e ínfimo $m$ en $[a,b]$. Si $M=m$, entonces $f$ es constante y no hay nada que hacer. Así, supongamos $M\neq m$ y tomemos una $\delta>0$ tal que $2\delta(M-m)< \frac{\epsilon}{2}$, y tal que $\delta<\frac{x_k-x_{k-1}}{2}$. La segunda condición nos dice que $[x_{k-1}+\delta,x_k-\delta]$ es no vacío. Como $f$ es continua en este intervalo cerrado, es integrable ahí. Por el criterio de Riemann, hay una partición $Q=\{y_1,\ldots,y_{l-1}\}$ de dicho intervalo tal que $$\overline{S}(f,Q)-\underline{S}(f,Q)<\frac{\epsilon}{2}.$$

Si a esta partición agregamos los puntos $y_0=x_{k-1}$ y $y_l=x_k$, entonces obtenemos una partición $Q’=\{y_0,\ldots,y_l\}$ la cual su primera y última celda tienen longitud $\delta$ y cumple

\begin{align*}
\overline{S}(f,Q’)-\underline{S}(f,Q’)&=(\overline{S}(f,Q)-\underline{S}(f,Q))+(M_1-m_1)\Delta y_1 + (M_l-m_l)\Delta y_l\\
&<\frac{\epsilon}{2}+ (M-m)\delta + (M-m)\delta\\
&=\frac{\epsilon}{2}+ 2(M-m)\delta\\
&<\frac{\epsilon}{2}+\frac{\epsilon}{2}\\
&=\epsilon.
\end{align*}

Así, hemos encontrado una partición $Q’$ de $[x_{k-1},x_k]$ donde las sumas superior e inferior difieren en menos de $\epsilon$. Por el criterio de Riemann, $f$ es integrable en ese intervalo, para cada $k=1,\ldots,n$. Concluimos la demostración usando nuevamente la proposición de separación de la integral en intervalos.

$\square$

Ejemplo. La siguiente función $$ f(x)= \left\{ \begin{array}{lcc}             x^2 &   si  & 0 \leq x \leq 2 \\             \\ x &  si & 2 < x < 3 \\             \\ -\frac{x^3}{36} +3 &  si  & 3 \leq x \leq 4.5             \end{array}   \right. $$

es integrable en el intervalo $[0,4.5]$. Tendrás que calcular su integral en los ejercicios.

$\triangle$

Funciones monótonas a trozos

Para esta discusión de funciones monótonas, vale la pena que tengas presente las definiciones de funciones crecientes y decrecientes, que puedes consultar en la entrada correspondiente del curso de Cálculo Diferencial e Integral I.

Definición. Una función $f:\mathbb{R}\to \mathbb{R}$ es monótona a trozos en el intervalo $[a,b]$ si existe una partición $P=\{x_0,\ldots,x_n\}$ de $[a,b]$ tal que $f$ es monótona en cada intervalo $(x_{k-1},x_k)$ para $k=1,\ldots,n$.

Podemos pensar cómo sería la gráfica de una función así. Tendría que estar formada por un número finito de trozos monótonos. Un ejemplo de ello son las funciones escalonadas (son por ejemplo, no crecientes a trozos). Un ejemplo un poco más interesante sería el de la siguiente figura.

Monótona por trozos

Como te imaginarás, las funciones monótonas a trozos también son integrables.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Si $f$ es monótona a trozos en el intervalo $[a,b]$, entonces $f$ es integrable en $[a,b]$.

Una vez más, la demostración usa la proposición de separación de la integral por intervalos. Pero nuevamente nos enfrentamos con una dificultad. Lo que hemos demostrado anteriormente es que si una función es monónona en un intervalo $[x_{k-1},x_k]$, entonces es integrable en dicho intervalo. ¿Pero si sólo tenemos monotonía en $(x_{k-1},x_k)$? Para atender esta dificultad, se tiene que hacer una adaptación similar a lo que hicimos en la demostración para funciones continuas a trozos. Los detalles quedan como parte de la tarea moral.

Más adelante…

En esta entrada analizamos funciones con una cantidad finita de discontinuidades. También hablamos de las funciones monótonas a trozos, que podrían tener una infinidad de discontinuidades, pero también ser integrables. En la siguiente entrada veremos qué hacer con la integrabilidad cuando tenemos una cantidad infinita de discontinuidades.

Tarea moral

  1. Calcula el valor de la integral de la función escalonada del servicio postal, con la partición dada.
  2. Integra la siguiente función: $$ f(x)= \left\{ \begin{array}{lcc}             x^2 &   si  & 0 \leq x \leq 2 \\             \\ x &  si & 2 < x < 3 \\             \\ -\frac{x^3}{36} +3 &  si  & 3 \leq x \leq 4.5             \end{array}   \right. $$
  1. Integra la siguiente función. Puedes usar fórmulas de integración que conozcas de cursos preuniversitarios, sin embargo, toma en cuenta que tu respuesta será un poco informal hasta que mostremos de dónde salen dichas fórmulas. $$ f(x)= \left\{ \begin{array}{lcc}             \sqrt x &   si  & 0 \leq x \leq 2 \\             \\ ln(x) &  si & 2 < x < 3 \\             \\ -\frac{x^2}{16} -x +5 &  si  & 3 \leq x \leq 4             \end{array}   \right. $$
  1. Demuestra por inducción la proposición de separación de la integral en intervalos que quedó pendiente en la sección de «Breve repaso de integrabilidad». Asegúrate de demostrar la ida y la vuelta.
  2. Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones acotadas.
    • Muestra que si $f$ y $g$ son funciones escalonadas en un intervalo $[a,b]$, entonces $f+g$ y $fg$ también son funciones escalonadas en $[a,b]$. Sugerencia. Usa como partición un refinamiento común a las particiones $P$ y $Q$ que muestran que $f$ y $g$ son escalonadas, respectivamente.
    • Muestra que si $f$ y $g$ son funciones continuas por trozos en un intervalo $[a,b]$, entonces $f+g$ y $fg$ también son funciones continuas por trozos en $[a,b]$.
    • Si $f$ y $g$ son funciones monótonas por trozos en un intervalo $[a,b]$, ¿será que $f+g$ y $fg$ también lo son? ¿Bajo qué condiciones de la monotonía sí sucede esto?
  3. Da un ejemplo de una función que sea monótona por trozos, pero que no sea continua por trozos.
  4. Demuestra la proposición de que las funciones monónotas a trozos son integrables.

Entradas relacionadas

Cálculo Diferencial e Integral II: Definición de la integral definida

Por Moisés Morales Déciga

Introducción

En la entrada anterior se introdujo el problema de calcular el área que se encuentra en una región delimitada por ciertas líneas verticales, el eje $x$ y la gráfica de una función. Hablamos de cómo aproximar esta área cuando la función es «bien portada», pero aún no hemos dicho a qué se refiere esto. En esta entrada haremos una formalización de este concepto mediante la definición de integral definida.

La intuición que puedes tener a lo largo de la entrada es que para poder hablar de que una función sea integrable en cierto intervalo, intuitivamente necesitamos que las sumas de Riemann convergan a un valor conforme hacemos las celdas tender a cero en longitud. Esto diría que sin importar cómo hagamos la partición, las sumas de Riemann deben converger a un mismo valor conforme la partición se hace más y más fina. En particular, necesitaremos que las sumas superiores e inferiores cumplan esto. Como en ellas entendemos bien qué pasa con los refinamientos, entonces nos conviene más dar la definición en términos de ellas. Es lo más conveniente y, en particular, implica lo anterior.

Integral definida de Riemann

La definición clave que estudiaremos es la siguiente.

Definición. Sean $f:\mathbb{R}\to \mathbb{R}$ una funcion acotada y $a\leq b$ reales. Sea $\mathbf{P}$ el conjunto de las particiones de $[a,b]$. Definimos

\begin{align*}
\underline{S}(f) & = \sup \lbrace \underline{S(f,P)} \ | P \in \mathbf{P} \rbrace\\
\overline{S}(f) &= \inf \lbrace \overline{S(f,P)} \ | P \in \mathbf{P} \rbrace,
\end{align*}

es decir al supremo de las sumas inferiores y al ínfimo de las sumas superiores sobre todas las particiones posibles de $[a,b]$. Diremos que existe la integral definida de Riemann para $f$ en el intervalo $[a,b]$ si

$$ \underline{S(f)} = \overline{S(f)}.$$

En este caso, a este valor en común lo denotamos por $$\int \limits_{a}^{b} f(x) dx.$$

En otras palabras, para que $f$ sea integrable, necesitamos que el ínfimo de las sumas superiores sea igual al supremo de las sumas inferiores. A veces también decimos que $f$ es Riemann integrable en $[a,b]$ o, si el contexto es claro, simplemente que es integrable.

No todas las funciones son Riemann integrables. Hacia el final de esta unidad daremos ejemplos de funciones que no lo son. Sin embargo, por ahora nos enfocaremos en ver algunos ejemplos que sí son Riemann integrables y probar propiedades de la integral definida en los casos en los que sí exista.

Ejemplo de integral definida

Veamos un ejemplo sencillo de cómo se verifica la definición de integral definida.

Ejemplo. Tomemos la función $f:[0,1]\to \mathbb{R}$ dada por $f(x)=x$. Veamos que dicha función es integrable en el intervalo $[0,1]$. Para ello, demos la partición $P_n$ homogénea del intervalo $[0,1]$ en celdas de longitud $1/n$, con $n$ un entero positivo. Si hacemos esto, las celdas de la partición son

$$[0,1/n],[1/n,2/n],\ldots[(n-1)/n,1].$$

Los supremos de los valores de $f$ en dicho intervalo son

$$1/n, 2/n, \ldots, 1,$$

y los ínfimos son

$$0,1/n, \ldots, (n-1)/n.$$

De este modo, para esta partición la suma superior sería

\begin{align*}
\overline{S} (f,P_n) &= \frac{1}{n}\left(\frac{1}{n}+\frac{2}{n}+\ldots+\frac{n}{n}\right)\\
&=\frac{1}{n^2}(1+2+\ldots+n)\\
&=\frac{n(n+1)}{2n^2}\\
&=\frac{1}{2}+\frac{1}{2n}.
\end{align*}

y la suma inferior sería

\begin{align*}
\underline{S} (f,P_n) &= \frac{1}{n}\left(\frac{0}{n}+\frac{2}{n}+\ldots+\frac{n-1}{n}\right)\\
&=\frac{1}{n^2}(0+1+2+\ldots+(n-1))\\
&=\frac{(n-1)n}{2n^2}\\
&=\frac{1}{2}-\frac{1}{2n}.
\end{align*}

La sucesión de números $\frac{1}{2}+\frac{1}{2n}$ se acerca tanto como queramos a $\frac{1}{2}$ por arriba. Como el ínfimo $\overline{S}(f)$ que estamos buscando es cota inferior de todas las sumas inferiores, en particular es de estas que vienen de particiones homogéneas. Así, $\overline{S}(f)\leq \frac{1}{2}$. Pero además, por una proposición de la entrada anterior sabemos que cualquier suma inferior es cota inferior de todas las sumas inferiores. Como $\overline{S}(f)$ es la mayor cota inferior, tenemos que $\overline{S}(f)\geq \frac{1}{2}-\frac{1}{2n}$ para todo $n$, y entonces $\overline{S}(f)\geq \frac{1}{2}$. Todo esto nos permite concluir que $\overline{S}(f)=\frac{1}{2}$.

De manera totalmente análoga (que te sugerimos argumentar cuidadosamente), se tiene que $\underline{S}(f)=\frac{1}{2}$. Concluimos entonces que $f$ es integrable en $[0,1]$ y que $$\int_0^1 f(x)\, dx = \frac{1}{2}.$$

$\triangle$

Aunque este ejemplo tuvo un intervalo y una función muy sencillas, se volvió algo elaborado justificar la parte de los ínfimos y supremos. Es por ello que nos conviene enunciar y demostrar algunos resultados sobre funciones integrables que nos permitirán determinar la integrabilidad con más comodidad.

Integral definida mediante particiones homogéneas y la condición de Riemann

Lo primero que haremos es demostrar que para que una función sea integrable, nos basta estudiar a las particiones homogéneas.

Teorema. Sean $f:\mathbb{R}\to \mathbb{R}$ una funcion acotada y $a\leq b$ reales. Sea $P_n$ la partición homogéneas del intervalo $[a,b]$ en $n$ partes. Supongamos que se da la siguiente igualdad de límites:

$$\lim_{n\to \infty} \overline{S}(f,P_n) = \lim_{n\to \infty} \underline{S}(f,P_n).$$

Entonces, la integral existe y es igual a ese límite en común.

Demostración. $\Leftarrow)$ La demostración sigue argumentos muy parecidos al ejercicio que presentamos como ejemplo arriba. Supongamos que los límites para las particiones homogéneas existen y son iguales a $L$. Estudiemos $\overline{S}(f)$. Por ser ínfimo de todas las sumas superiores, tendríamos en particular para las particiones homogéneas que $$\overline{S}(f)\leq \overline{S}(f,P_n),$$

para todo entero positivo $n$. Haciendo tender $n$ a infinito, obtenemos $\overline{S}(f) \leq L$. Por otro lado, sabemos que cualquier suma inferior es cota inferior de cualquier suma superior, en particular, cada $\underline{S}(f,P_n)$ es una de estas cotas inferiores. Como $\overline{S}(f)$ es la mayor de las cotas inferiores, tendríamos que $$\overline{S}(f)\geq \underline{S}(f,P_n).$$

Haciendo tender $n$ a infinito, obtenemos $\overline{S}(f)\geq L$. Así, $\overline{S}(f)=L$. Un argumento análogo demuestra que $\underline{S}(f)=L$, y por lo tanto la función es integrable en $[a,b]$.

$\square$

Un siguiente resultado importante es la condición de Riemann, que nos dice que para que una función sea integrable, nos basta encontrar una partición en donde la suma superior y la inferior estén tan cerca como querramos. A esto se le conoce como la condición de Riemann.

Teorema. Sean $f:\mathbb{R}\to \mathbb{R}$ una funcion acotada y $a\leq b$ reales. Se tiene que $f$ es integrable en $[a,b]$ si y sólo si para todo $\epsilon >0$ existe una partición $P_\epsilon$ tal que:

$$\overline{S}(f,P_\epsilon) \ – \ \underline{S}(f,P_\epsilon) < \epsilon .$$

Demostración. $\Rightarrow )$ Sea $f$ integrable. Debemos mostrar que para cada $\epsilon>0$ existe una partición $P_\epsilon$ tal que $$\overline{S}(f,P_\epsilon) \ – \ \underline{S}(f,P_\epsilon) < \epsilon.$$

Para ello, tomemos $\epsilon^*=\epsilon/2$. Como $\overline{S}(f)$ es ínfimo de las sumas superiores, entonces $\overline{S}(f)+\epsilon^\ast$ ya no es cota inferior para dichas sumas superiores, por lo que existe una partición $P$ tal que $\overline{S}(f,P) < \overline{S}(f)+\epsilon^*$. Así mismo, existe una partición $P’$ tal que $\underline{S}(f,P’) > \underline{S}-\epsilon^*$. Si $P_\epsilon$ es un refinamiento mutuo de $P$ y $P’$, tendríamos entonces que

\begin{align*}
\overline{S}(f,P_\epsilon)&<\overline{S}(f,P)<\overline{S}(f)+\epsilon^*\\
\underline{S}(f,P_\epsilon)&>\underline{S}(f,Q)>\underline{S}(f)-\epsilon^*.
\end{align*}

Multiplicando la segunda igualdad por $-1$ y sumando ambas, obtenemos entonces que

\begin{align*}
\overline{S}(f,P_\epsilon) \ – \ \underline{S}(f,P_\epsilon) &< \overline{S}(f) + \epsilon^* \ – \ \underline{S}(f) + \epsilon^* \\
&= 2 \epsilon^* \\
&= \epsilon .
\end{align*}

Aquí usamos que $\overline{S}(f)=\underline{S}(f)$ por ser $f$ integrable.

$\Leftarrow)$ Supongamos ahora que para todo $\epsilon$ se puede encontrar la partición $P_\epsilon$ que satisface $\overline{S}(f,P_\epsilon) \ – \ \underline{S}(f,P_\epsilon) < \epsilon$. Veremos que a partir de esto se puede probar que $ \overline{S}(f) = \underline{S}(f) .$

Por ser $\overline{S}(f)$ el ínfimo de todas las sumas superiores, se tiene que

$$\overline{S}(f,P_\epsilon) > \overline{S}(f) .$$

$$ \underline{S}(f,P_\epsilon) < \underline{S}(f) \Longrightarrow – \underline{S}(f,P_\epsilon) > – \underline{S}(f) .$$

$$\Longrightarrow \epsilon > \overline{S}(f,P_\epsilon) \ – \ \underline{S}(f,P_\epsilon) > \overline{S}(f) \ – \ \underline{S}(f) .$$

Y $\epsilon$ es tan pequeño como lo queramos, por lo tanto.

$$ \overline{S}(f) = \underline{S}(f) .$$

$\square$

Ejemplos de integral definida con los resultados que probamos

Veamos algunos ejemplos de cómo utilizar los resultados que acabamos de mostrar para demostrar que ciertas integrales definidas existen, y para encontrar su valor.

Ejemplo. Calculemos la integral de la función $f(x)=x$ en el intervalo $[3,4]$

Usaremos la técnica de los límites de las particiones homogéneas. Estudiaremos con detalle el caso de las sumas superiores y dejaremos el de las inferiores como ejercicio. Si la partición $P_n$ del intervalo $[a,b]$ es homogénea y en $n$ partes, las celdas tienen longitud $\frac{b-a}{n}$ y entonces son:

$$\left[a,a+\frac{b-a}{n}\right], \left[a+\frac{b-a}{n}, a+2\frac{b-a}{n}\right], \ldots, \left[a+(n-1)\frac{b-a}{n},b\right].$$

La función $f(x)=x$ es creciente, y entonces los máximos se alcanzan al final de cada intervalo. Así, para el intervalo $[3,4]$ tenemos:

\begin{align*}
\overline{S}(f,P_n)&=\sum_{i=1}^{n} f \left( 3+i \cdot \frac{4-1}{n} \right) \frac{4-3}{n}\\
&=\sum_{i=1}^{n} \left(3+ \frac{i}{n}\right) \frac{1}{n}\\
&=\sum_{i=1}^{n} \left(\frac{3}{n}+ \frac{i}{n^2}\right)\\
&=\sum_{i=1}^{n} \left(\frac{3}{n}\right) + \sum_{i=1}^{n} \left(\frac{i}{n^2}\right)\\
&=\frac{3}{n} \cdot n + \frac{1}{n^2} \sum_{i=1}^n i\\
&=3 + \frac{n(n+1)}{2n^2} \\
&=3 + \frac{1}{2} + \frac{1}{2n}\\
&=\frac{7}{2}+\frac{1}{2n}.
\end{align*}

De este modo,

$$\lim_{n\to\infty} \overline{S}(f,P_n) = \lim_{n\to\infty} \left(\frac{7}{2} + \frac{1}{2n}\right) = \frac{7}{2}.$$

Por tu cuenta, revisa que que también se cumple lo siguiente

$$\lim_{n\to\infty} \underline{S}(f,P_n) = \frac{7}{2}.$$

Así, por la proposición que mostarmos arriba, tenemos que la integral en el intervalo $[3,4]$ existe y por lo tanto:

$$ \int \limits_{3}^{4} x \, dx = \frac{7}{2}.$$

$\triangle$

Ejemplo. Ahora calculemos la integral de la función $f(x)=-x^2 + 3$ en el intervalo $[1,3]$ . Al hacer una figura, obtenemos la siguiente gráfica.

Observa que en este caso tenemos 2 áreas: del eje $x$ y otra por debajo del eje $x$. Todo lo que hemos hecho funciona tanto para funciones positivas, como negativas. Pero obtendremos algo interesante de la conclusión de este problema.

Para ver que la integral existe, usaremos nuevamente la técnica de las particiones homogéneas. Ahora haremos las sumas inferiores. Como la función es decreciente, los valores más chicos aparecen al final de cada intervalo. Tenemos entonces que:

\begin{align*}
\underline{S}(f,P)&=\sum_{i=1}^{n} \left( – \ \left( 1+i\cdot \left(\frac{3-1}{n}\right) \right)^2+3 \right) \left(\frac{3-1}{n} \right) \\
&=\sum_{i=1}^{n} \left(- \ \left(1+i\cdot \left(\frac{2}{n}\right)\right)^2+3\right) \left(\frac{2}{n}\right)\\
&=\sum_{i=1}^{n} \left( – \ \left(1+ \frac{4i}{n} + \frac{4 i^2}{n^2}\right)+3\right) \left(\frac{2}{n}\right)\\
&=\sum_{i=1}^{n} \left(\frac{ 4}{n} – \frac{8i} {n^2} – \frac{8 i^2}{n^3}\right)\\
&=\frac{4}{n} \sum_{i=1}^{n} – \frac{8}{n^2} \sum_{i=1}^{n} i – \frac{8}{n^3}\sum_{i=1}^{n} i^2\\
&=\frac{4}{n} \cdot n – \frac{8}{n^2} \frac{n(n+1)}{2} – \frac{8}{n^3} \frac{n(n+1)(2n+1)}{6} \\
&=4 \ – \ \frac{8n^2}{2n^2} \ – \ \frac{8n}{2n^2} \ – \ \frac{8 \cdot 2n^3}{6n^3} \ – \ \frac{8 \cdot 3n^2}{6n^3} \ – \ \frac{8n}{6n^3} \\
&= – \ \frac{8}{3} \ – \ \frac{8n}{2n^2} \ – \ \frac{8 \cdot 3n^2}{6n^3} \ – \ \frac{8n}{6n^3} .
\end{align*}

Así, $$\lim_{n\to\infty} \underline{S}(f,P)=-\frac{8}{3}.$$

Se puede mostrar que el límite de las sumas superiores para las particiones homogéneas también es $-\frac{8}{3}$ (verifícalo), así que la integral buscada tiene este valor. De esta forma,

$$ \int \limits_{1}^{3} -x^2 +3 \, dx = – 8/3 .$$

$\triangle$

¿Áreas negativas?

Se comentó que la integral se utiliza para el cálculo de áreas bajo la curva, entonces, ¿Por qué el resultado del ejemplo anterior es negativo? ¿Hay áreas negativas? Intuitivamente, no debería haber áreas negativas. Sin embargo, el procedimiento que usamos para definir a la integral definida sí nos puede dar números negativos. Puedes pensarlo como sigue: el área que estamos calculando va del eje $x$ a la gráfica de la función $f$. Si esa gráfica está por debajo, entonces estámos yendo en dirección negativa. En el último ejemplo hay tanto una región por encima del eje $x$, como una por debajo. El número que nos salió es la diferencia de ambas áreas: el área por arriba del eje $x$, menos el área por debajo del eje $x$. Como el resultado que obtuvimos fue negativo, entonces el área por debajo del eje $x$ era mayor en magnitud.

Esta es una propiedad un poco antintuitiva, pero es importante preservarla. El cálculo de áreas es sólo una de las aplicaciones que tiene la integral. En otras aplicaciones, es importante que la integral mida qué tanto estuvimos por encima del eje $x$ y qué tanto estuvimos por debajo.

¿Y si queremos realmente entender la suma de las dos áreas de la figura y no la resta? En ese caso, tendremos que hacer una figura para entender cómo hacer las cuentas. Si hay área que está por debajo del eje $x$, deberemos agregar un signo $-$ para contarla correctamente como área positiva. Pero entonces tendremos que partir nuestro intervalo de integración en varios intervalos de acuerdo a cuándo la gráfica de $f$ cruza al eje $x$.

Con esto en mente, retomemos el ejemplo anterior.

Ejemplo. Encontremos el área en valor absoluto que genera la función $f(x)=-x^2 + 3$ en el intervalo $[1,3]$.

Lo primeo que haremos es obtener el punto donde la función cruza al eje $x$. Para ello, se requiere que $-x^2+3=0$, que en dicho intervalo sucede en $x=\sqrt{3}$.

Una vez encontrado el punto raíz o la raíz de la función, ahora podemos partir el área absoluta que nos interesa en dos intervalos: el $[1,\sqrt{3}]$ y el $[\sqrt{3},3]$.

Pensando en que queremos calcular el área absoluta, necesitamos dividir la formula que se planteó anteriormente en los intervalos correspondientes, y en el intervalo $[\sqrt{3},3]$ será necesario agregar un signo menos para que el área que se calcula como negativa, ahora se cuente de manera positiva. De esta manera, tendríamos:

$$ F_1^3 = \int \limits_{1}^{\sqrt 3} -x^2 +3 \, dx \ – \ \int \limits_{\sqrt 3}^{3} -x^2 +3 \, dx .$$

Ahora queda replicar el proceso que vimos en la suma anterior con estos 2 nuevos intervalos y juntarlos considerando el cambio de signo. Desarrollando los cálculos, se encuentra que el área generada por la función es de:

$$F_1^ 3= 4 \sqrt 3 \ – \ \frac{8}{3}.$$

$\triangle$

Nota. En este ejemplo partimos el intervalo en dos subintervalos, pero el intervalo puede quedar partido tantas veces como la función $f$ lo requiera, de acuerdo a la cantidad de veces que se cruza el eje $x$.

Más adelante…

En esta entrada dimos la definición formal de que una función sea integrable en cierto intervalo. O mejor dicho, que sea Riemann integrable. En cursos más avanzados de matemáticas se definen y estudian otras nociones de integrabilidad, pero por ahora esta es la que nos interesa. Para que la integral de Riemann exista, necesitamos que coindidan el ínfimo de las sumas superiores y el supremo de las sumas inferiores de la función dada. En ese caso, el valor de la integral es ese valor en común.

Ya dada la definición, dimos algunos resultados que nos ayudarán a determinar cuándo una función es integrable. En siguientes entradas daremos más propiedades que nos ayudarán entender mejor la integrabilidad y la integral. Varias entradas despuésse hablará de las integrales indefinidas y del teorema fundamental del cálculo, que daran pie a numerosas técnicas de integración.

Lo último que hicimos en esta entrada es notar que hay casos en donde el valor de la integral que se encuentra es negativo. Esto contradice un poco nuestra intuición de que la integral es un área. Sin embargo, ya platicamos qué hacer en este caso si queremos realmente el «área positiva». Seguiremos explorando esta idea de integrales negativas un poco más adelante. Por ahora, lo que puedes hacer es identificar los intervalos en los que la función tiene determinado signo.

Tarea moral

  1. Completa las cuentas que quedaron pendientes en cada uno de los ejercicios.
  2. Expresa la siguiente expresión como una integral en el intervalo $[0,\pi]$. $$\lim_{n \rightarrow \infty} \sum_{i=1}^n (x_i^3 + x_i ~ sin (x_i)) \triangle x .$$
  3. Encuentra el área delimitada por la curva $f(x)=x^2 +2 $ y el eje $x$ en el intervalo $[1,4]$.

4. Encuentra el valor del área delimitada por la gráfica de la función$f(x)= x^3-6x$ en el intervalo $[0,3]$, que es la zona sombreada. Realiza las cuentas tanto con áreas absolutas, tanto con áreas con signo.

5. Encuentra el área de la función $f(x)=\sqrt {1-x^2}$ en el intervalo $[0,1]$.

Entradas relacionadas