Archivo de la etiqueta: sucesiones aritméticas

Seminario de Resolución de Problemas: Sucesiones recursivas y recursiones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada estudiaremos aquellas sucesiones en las que un término está definido mediante términos anteriores. Estas son las sucesiones recursivas. Dentro de ellas hay unas muy especiales, que son las que satisfacen una recursión lineal. También hablaremos de eso.

En entradas anteriores ya hemos visto ejemplos de sucesiones recursivas. Por un lado, las sucesiones aritméticas y geométricas cumplen una recursión sencilla. Las sucesiones periódicas también se pueden poner en términos de una recursión.

Vimos otros ejemplos en la entrada de sucesiones monótonas y acotadas, en donde la recursion nos ayuda a demostrar algunas de estas propiedades.

Sucesiones recursivas

Una sucesión recursiva es una sucesión $\{x_n\}$ en la que, intuitivamente, cada término depende de los anteriores. La regla que dice cómo está relacionado cada término con los de antes le llamamos la regla o fórmula recursiva. Usualmente los primeros términos de la sucesión están dados, y se les conoce como los términos iniciales.

Las sucesiones aritméticas son recursivas. Si $\{x_n\}$ es aritmética de término inicial $a$ y diferencia $d$, se comienza con $x_0=a$ y para $n\geq 0$ se satisface la recursión $x_{n+1}=x_n+d$. Similarmente, una sucesión geométrica $\{y_n\}$ de término inicial $s$ y razón $r$ se puede poner en términos recursivos: $y_0=s$ y para $n\geq 0$, se tiene $y_{n+1}=ry_n$.

Una sucesión periódica $\{z_n\}$ de periodo $p$ también satisface una recursión. Los términos iniciales $z_0,\ldots,z_{p-1}$ están dados y para $n\geq 0$ se tiene que $z_{n+p}=z_n$.

Las sucesiones recursivas pueden aparecer como parte del enunciado de un problema, o bien pueden aparecer de manera natural como parte de la solución de un problema.

Problema. Para un triángulo $T$ del plano se define otro triángulo $f(T)$ como sigue:

  • Se nombran los vértices $A,B,C$ de modo que $|BC|\leq |AC|\leq |AB|$.
  • Al punto medio de $BC$ se le nombra $M$.
  • Se rota el punto $A$ alrededor de $M$ en $180^\circ$ para obtener un punto $A’$.
  • Se define $f(T)$ como el triángulo $ACA’$.

Definimos una sucesión de triángulos como sigue. Se toma $T_0=T$. Luego, para $n\geq 0$ se define $T_{n+1}=f(T_n)$. ¿Es posible que esta sucesión tenga dos triángulos congruentes?

Sugerencia pre-solución. Es difícil estudiar las ternas de lados bajo la operación. Modifica el problema a entender otro parámetro que puedas estudiar fácilmente bajo las reglas dadas.

Solución. La respuesta es que en la sucesión no hay dos triángulos congruentes. De hecho, la observación clave es mostrar algo más fuerte: en la sucesión no hay dos triángulos con el mismo perímetro.

Tomemos un triángulo $T$. En el primer paso se nombran los vértices $ABC$ de modo que $BC$ el lado más chico del triángulo, y por lo tanto el ángulo en $A$ es menor estrictamente a $90^\circ$. Por esta razón, $A$ está fuera del círculo con diámetro $BC$, y por lo tanto la mediana $AM$ tiene longitud mayor a $\frac{|BC|}{2}$. El nuevo triángulo tiene lados de longitudes $|AB|$, $|AC|$ y $2|AM|>|BC|$.

Así, la sucesión de perímetros de los triángulos es estrictamente creciente. Por lo tanto, en la sucesión no puede haber dos triángulos con el mismo perímetro, y entonces no hay dos congruentes.

$\square$

Sucesiones recursivas y conteo

Las sucesiones recursivas aparecen también en problemas de combinatoria o de algoritmos, en donde ciertos casos o cierta cantidad de pasos se puede poner en términos de versiones más pequeñas del problema. Además, es posible que en un problema interactúen dos o más sucesiones de manera recursiva. Veamos un ejemplo.

Problema. Se tienen palabras de $10$ letras que usan los símbolos $a$, $b$ y $c$. ¿Cuántas de ellas no tienen dos $a$ consecutivas, ni dos $b$ consecutivas?

Sugerencia pre-solución. En vez de resolver el problema directamente, generalízalo a cuando se tienen palabras de $n$ letras. Para contar cuántas son, divide en casos de acuerdo a en qué símbolo terminan y plantea una recursión en términos de valores anteriores. Hay cierta simetría en $a$ y $b$. Aprovéchala.

Solución. Vamos a resolver un problema más general. Contemos las sucesiones sin dos $a$ ni dos $b$ consecutivas. Dividamos en los siguientes casos:

  • $\{x_n\}$ será la sucesión que cuenta cuántas de $n$ letras hay que terminen en $a$.
  • $\{y_n\}$ será la sucesión que cuenta cuántas de $n$ letras hay que terminen en $b$.
  • $\{z_n\}$ será la sucesión que cuenta cuántas de $n$ letras hay que terminen en $c$.

Por ejemplo, $x_1=y_1=z_1=1$, pues con una letra y con la letra final definida sólo hay una opción. Tenemos que $x_2=2$, que son $$ba,ca,$$ que $y_2=2$, que son $$ab,cb,$$ y que $z_3=3$, que son $$ac,bc,cc.$$ El problema nos pregunta por $x_{10}+y_{10}+z_{10}$.

La razón para partir en estos casos es que si sabemos en qué letra termina una sucesión, entonces sabemos exactamente cómo encontrar las que tienen una letra más de manera recursiva. Por ejemplo, para $n\geq 1$ tenemos que $x_{n+1}=y_n+z_n$, pues una palabra buena de $n+1$ letras que termina en $a$ se forma por una palabra buena de $n$ letras que no termina en $a$, y luego al final se le pone una $a$. Las tres recursiones que obtenemos son
\begin{align*}
x_{n+1}&=y_n+z_n\\
y_{n+1}&=x_n+z_n\\
z_{n+1}&=x_n+y_n+z_n.
\end{align*}

Ahora sí podemos hacer las cuentas únicamente haciendo operaciones, sin la dificultad que implica llevar el conteo de casos en el problema original. La siguiente tabla se puede llenar fácilmente, llenando renglón a renglón de arriba a abajo. Además, la simetría del problema en $a$ y $b$ hace que las sucesiones $x_n$ y $y_n$ sean iguales, así que también podemos aprovechar esto al momento de hacer las cuentas:

$n$$x_n$$y_n$$z_n$
$1$$1$$1$$1$
$2$$2$$2$$3$
$3$$5$$5$$9$
$4$$14$$14$$19$
$5$$33$$33$$47$
$6$$80$$80$$113$
$7$$193$$193$$273$
$8$$466$$466$$659$
$9$$1125$$1125$$1591$
$10$$2716$$2716$$3841$
Tabla de valores de las sucesiones

De esta manera, la cantidad total de palabras que pide el problema es $$2716+2716+3841=9273.$$

$\square$

Recursiones lineales

Hay un tipo de sucesiones recursivas especiales, que cumplen que cada término depende de pocos términos anteriores y de manera lineal.

Por ejemplo, la sucesión de Fibonacci satisface $F_0=0$, $F_1=1$ y para $k\geq 0$ se tiene que $$F_{k+2}=F_k+F_{k+1}.$$ Aquí la recursión depende de los dos términos inmediatos anteriores, y cada uno de ellos aparece linealmente. Por ello, decimos que es una recursión lineal de orden 2.

La definición general es la siguiente.

Definición. Una sucesión $\{x_n\}$ de reales satisface una recursión lineal de orden $m$ si los primeros $m$ términos $x_0,\ldots,x_{m-1}$ están dados, y además existen reales $a_0,\ldots,a_{m-1}$ tales que para $k\geq 0$ se satisface la recursión lineal $$x_{m+k}=a_0x_k+a_1x_{k+1}+\ldots+a_{m-1}x_{m+k-1}.$$

El siguiente método nos ayuda en varios casos a pasar una sucesión que satisface una recursión lineal a una fórmula cerrada.

Primero, tomamos una sucesión $\{x_n\}$ como la de la definición. Luego, consideramos el siguiente polinomio de grado $m$: $$P(x)=x^m-a_{m-1}x^{m-1}-\ldots-a_0.$$

Supongamos que $r$ es una raíz de $P$. Afirmamos que la sucesión $\{r^n\}$ satisface la recursión. En efecto, como $r$ es raíz de $P$, tenemos que $$r^m=a_{m-1}r^{m-1}+\ldots+a_0,$$ y multiplicando ambos lados por $r^k$ tenemos que $$r^{m+k}=a_{m-1}r^{m+k-1}+\ldots+a_0r^k,$$ que es justo la recursión lineal (con los sumandos de derecha a izquierda).

Ahora, nota que si $\{x_n\}$ y $\{y_n\}$ satisfacen la recursión lineal, entonces para cualesquiera reales $c$ y $d$ tenemos que $\{cx_n+dy_n\}$ también. Entonces si hacemos combinaciones lineales de potencias de raíces de $P$ también tendremos sucesiones que satisfacen la recursión lineal. Resulta que en varios casos «todas las soluciones se ven así».

La discusión hasta aquí es un poco abstracta, así que hagamos un ejemplo concreto.

Problema. Determina una fórmula cerrada para la sucesión $\{A_n\}$ tal que $A_0=1$, $A_1=5$ y que satisface la recursión lineal de orden 2 $$A_{n+2}=-6A_n+5A_{n+1}.$$

Sugerencia pre-solución. Encuentra el polinomio asociado a la recursión. Si tiene raíces $\alpha$ y $\beta$, muestra que para cualesquiera reales $c$ y $d$ se tiene que $B(c,d)=\{c\alpha^n+d\beta^n\}$ satisface la recursión. Ya que nos dan los dos primeros términos, se puede encontrar los únicos $c$ y $d$ que funcionan para $\{A_n\}$.

Solución. El polinomio asociado a la recursión es $x^2-5x+6$, que tiene raíces $2\,\text{ y }\, 3$. Entonces, para cualesquiera reales $c$ y $d$ se tiene que la sucesión $B(c,d)=\{c2^n+d3^n\}$ satisface la recursión.

Además, necesitamos que los primeros términos sean $1\,\text{ y }\,5$ respectivamente, de donde obtenemos el sistema de ecuaciones para $c$ y $d$ siguiente:

\begin{align*}
1&=c2^0+d3^0=c+d\\
5&=c2^1+d3^1=2c+3d.
\end{align*}

La solución a este sistema es $c=-2$, $d=3$. De esta forma, la fórmula cerrada para $\{A_n\}$ es $$A_n=-2\cdot 2^n+3\cdot 3^n=3^{n+1}-2^{n+1}.$$

$\square$

Todos los pasos que hicimos en el problema anterior son reversibles, pero si quieres asegurarte de que todo va marchando bien, puedes mostrar por inducción que la fórmula dada es correcta.

Teorema para recursiones lineales de orden $m$

Resulta que cuando el polinomio asociado tiene $m$ raíces distintas, entonces el método anterior siempre funciona.

Teorema. Supongamos que la sucesión $\{x_n\}$ satisface la recursión lineal de orden $m$ $$x_{m+k}=a_0x_k+a_1x_{k+1}+\ldots+a_{m-1}x_{m+k-1}$$ para ciertos reales $a_0,\ldots,a_{m-1}$, y que las raíces del polinomio $$P(x)=x^m-a_{m-1}x^{m-1}-\ldots-a_0$$ son todas distintas y son $r_0,\ldots,r_{m-1}$. Entonces, existen únicos números $c_0,\ldots,c_{m-1}$ tales que para todo $n\geq 0$ se tiene $$x_n=c_0r_0^n+\ldots+c_{m-1}r_{m-1}^n,$$ y ellos se pueden encontrar mediante el sistema de $m$ ecuaciones lineales que queda al tomar $n=0,1,\ldots,m-1$.

No veremos la demostración de este teorema, pero aquí abajo lo usaremos para resolver algunos problemas.

Problema. La sucesión $\{B_n\}$ satisface que para toda $n\geq 0$ se tiene que $$B_{n+5}+B_n=-2(B_{n+4}+B_{n+1})-3(B_{n+3}+B_{n+2}).$$ Demuestra que esta sucesión es acotada.

Sugerencia pre-solución. Calcula el polinomio asociado. Factorízalo y muestra que todas sus raíces son diferentes.

Solución. Reacomodando los términos en la hipótesis, obtenemos que $\{B_n\}$ satisface una recursión lineal con polinomio asociado $$P(x)=x^5+2x^4+3x^3+3x^2+2x+1,$$ que se puede factorizar como $$(x^2+x+1)(x^3+x^2+x+1).$$

Las raíces del primer factor son las dos raíces cúbicas de la unidad que no sean uno digamos $w$ y $z$. Las del segundo factor son las $3$ raíces cuartas de la unidad que no sean uno, es decir $i$, $-1$ y $-i$.

Todos estos complejos tienen norma uno y además son distintos. De esta forma, por el teorema de recursiones lineales, existen únicos complejos $a,b,c,d,e$ tales que para toda $n$ se cumple $$B_n=aw^n+bz^n+ci^n+d(-1)^n+e(-i)^n.$$

De aquí podemos proceder de dos formas distintas. Una es simplemente tomando norma de ambos lados y usando la desigualdad del triángulo:

\begin{align*}
|B_n|&=\norm{aw^n+bz^n+ci^n+d(-1)^n+e(-i)^n}\\
&\leq \norm{aw^n}+\norm{bz^n}+\norm{ci^n}+\norm{d(-1)^n}+\norm{e(-i)^n}\\
&= \norm{a}+\norm{b}+\norm{c}+\norm{d}+\norm{e},
\end{align*}

lo cual muestra que $B_n$ está acotada.

La otra es usar que para cada raíz $m$-ésima de la unidad $\alpha$ y cualquier constante $r$ se tiene que $\{r\alpha^n\}$ es periódica de periodo $m$. De esta forma, $\{B_n\}$ es suma de sucesiones periódicas, y por lo tanto es periódica. Como es periódica, entonces es acotada.

$\square$

Existe una forma sistemática para lidiar con recursiones lineales cuando las raíces del polinomio anterior no son diferentes. Sin embargo, ella requiere de un buen entendimiento de matrices y diagonalización, que es un tema no trivial en álgebra lineal. De cualquier forma, el método anterior funciona en una gran variedad de situaciones.

Recursiones lineales y sumas de potencias

Quizás lo más importante del método anterior es que da la siguiente intuición:

«Las sucesiones $\{x_n\}$ que satisfacen una recursión lineal de orden $m$ y las expresiones del estilo $$S_n=c_0r_0^n+\ldots+c_{m-1}r_{m-1}^n$$ están fuertemente relacionadas.»

Así, cuando se tiene una combinación lineal de potencias $n$-ésimas, una de las primeras cosas que hay que hacer es ver si la recursión lineal que satisface nos ayuda para el problema. El siguiente problema es el Problema 1 de la primer Competencia Iberoamericana Interuniversitaria de Matemáticas

Problema. Muestra que para todo entero positivo $n$ se tiene que la expresión $\left(\frac{3+\sqrt{17}}{2}\right)^n+\left(\frac{3-\sqrt{17}}{2}\right)^n $ es un entero impar.

Sugerencia pre-solución. Ya discutimos cómo pasar de una recursión lineal a una suma de potencias. Ahora tienes que trabajar al revés para encontrar una recursión lineal que satisfaga la expresión del problema.

Solución. Sean $\alpha=\frac{3+\sqrt{17}}{2}$ y $\beta=\frac{3-\sqrt{17}}{2}$. El problema pide mostrar que para $n$ entero positivo se tiene que $x_n:=\alpha^n+\beta^n$ es un entero impar.

Como $\alpha$ y $\beta$ son raíces del polinomio
\begin{align*}
P(x)&=(x-\alpha)(x-\beta)\\
&=x^2-(\alpha+\beta)x+\alpha\beta\\
&=x^2-3x-2,
\end{align*}

se tiene que $x_n$ satisface la recursión lineal de orden dos siguiente: $$x_{n+2}=3x_{n+1}+2x_n.$$

Con esto, estamos listos para mostrar inductivamente que $x_n$ es impar para todo entero positivo $n$. Se tiene que $x_0=2$ y $x_1=\alpha+\beta=3$, de modo que por la recursión, $x_2=13$, así que la afirmación es cierta para $n=1,2$.

Si la afirmación es cierta hasta un entero positivo $n-1$, usamos la recursión para mostrar que $x_n=3x_{n-1}+2x_{n-2}$ es la suma de un entero impar y un entero par, de modo que $x_n$ es impar. Esto termina la demostración.

$\square$

Más problemas

Esta entrada es una extensión de la sección 7 del curso de sucesiones que impartí para los entrenadores de la Olimpiada Mexicana de Matemáticas. Puedes consultar las notas de este curso en el siguiente PDF, en donde hay más problemas de práctica:

Seminario de Resolución de Problemas: Sucesiones aritméticas y geométricas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta y las siguientes entradas platicaremos varios temas relacionados con sucesiones, y cómo se aplican a la resolución de problemas matemáticos. Comenzaremos recordando qué es una sucesión y estudiando a las sucesiones aritméticas y geométricas. Más adelante, platicaremos de los siguientes tipos de sucesiones:

  • Periódicas
  • Acotadas
  • Recursivas
  • Con recursiones lineales
  • Monótonas
  • Convergentes

Supondremos que el que lee estas notas está al menos un poco familiarizado con estos conceptos. De cualquier forma, recordaremos las definiciones que vayamos necesitando.

Recordatorio de sucesiones

Una sucesión formalmente es una función de los naturales a un conjunto $X$. Aunque esta es la definición formal, es bastante más práctico pensar a una sucesión como ciertos elementos de $X$ en donde hay uno que es el primero, después del cual aparecen más, uno tras otro.

En muchos problemas, $X$ es un conjunto de números, como los naturales, enteros, racionales o reales. Sin embargo, $X$ también puede ser un conjunto de funciones, de polinomios, de figuras geométricas o de prácticamente cualquier otra cosa. Por ejemplo, en topología algebraica son de interés ciertas sucesiones de grupos.

Usaremos la notación $\{x_n\}$ para referirnos a una sucesión. Aunque usa llaves (como si fuera conjunto), en realidad los elementos están «ordenados de izquierda a derecha», entonces se tiene que pensar como $$\{x_n\}=(x_0,x_1,x_2,x_3,\ldots).$$ El término $x_n$ es el $n$-ésimo término de la sucesión.

Podemos definir a una sucesión de manera implícita mediante una fórmula, o mediante forma explícita escribiendo algunos de sus términos cuando el patrón que sigue es muy claro (lo cual no siempre pasa). Por ejemplo, la sucesión $\{x_n\}$ tal que para todo $n\geq 0$, tenemos $x_n=1$ es explícitamente la sucesión $$1,1,1,1,1,\ldots,$$ mientras que la sucesión $\{y_n\}$ tal que para todo $n\geq 0$ se tiene $y_n=n(n+1)$ es explícitamente la sucesión $$0, 2, 6, 12, 20, \ldots.$$

A partir de la forma implícita podemos dar tantos términos como queramos de la forma explícita, pero lo contrario no es cierto. Algunos acertijos se tratan de tomar pocos términos de una sucesión dada de manera explícita, y preguntar cuál es el siguiente término, o bien cuál es la regla general.

En términos formales, la respuesta no es única, pues la sucesión, en teoría, podría continuar como sea. Sin embargo, como acertijo es divertido encontrar una regla fácil de enunciar y que funcione siempre. Algunas sucesiones en las que se puede hacer esto son las siguientes:

  • $1,1,1,1,1,1,1,\ldots$
  • $1,2,3,4,5,6,7,\ldots$
  • $2,4,6,8,10,12,14,\ldots$
  • $1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16},\frac{1}{32}, \frac{1}{64},\ldots$
  • $i, 1, 2, 3i, 5, 8i, 13, 21i, \ldots$
  • $1,\sqrt{2},\sqrt{3},2,\sqrt{5},\sqrt{6},\sqrt{7},\ldots$
  • $4,3,2,1,4,3,2,1,4,3,\ldots$

En todos estos ejemplos, la sucesión tiene cierto patrón u orden. Pero hay muchas otras sucesiones que no tienen un patrón claro para enunciarlas de forma implícita, o bien en las que este patrón es más difícil de encontrar:

  • $3,1,4,1,5,9,2,6,5,\ldots$
  • $4,13,0,1,7,18,54,\ldots$
  • $2,1,24,6,720,120,40320,5040,\ldots$

Como ya comentamos, la forma explícita de una sucesión tiene el problema de que no sabemos cuáles términos siguen. Si en un problema aplicamos la heurística de buscar un patrón y tenemos que los primeros términos de una sucesión son $$2,4,6,8,10,12$$ por muy tentador que sea no podemos garantizar que el siguiente será $14$, hasta que no tengamos una demostración para ello.

Es posible que resolviendo problemas, o en otro quehacer matemático, encuentres los primeros términos de una sucesión de enteros y quieras saber cuál es. Una herramienta muy útil para ello es Enciclopedia en Línea de Sucesiones en Enteros (OEIS). Tiene un buscador en el que pones los primeros términos, y de ahí te sugiere algunas sucesiones que pueden ser la que estás buscando.

Problema. Para un entero $n\geq 1$, se toman $n$ puntos distintos sobre la orilla de una circunferencia. Se dibujan todos los segmentos entre pares de esos puntos. Se sabe que no hay tres de esos segmentos que coincidan en el interior de la circunferencia. ¿En cuántas regiones queda dividida el área de la circunferencia?

Sugerencia pre-solución. Haz varias figuras para hacer casos pequeños y buscar un patrón. Ten cuidado, pues el patrón no es el que puedes deducir inmediatamente.

Solución. Veamos qué sucede con casos pequeños. Cuando tenemos un punto, no hay segmentos y sólo queda $1$ región. Si tenemos dos puntos, se hace un segmento y tenemos $2$ regiones. Para tres puntos, queda un triángulo y tres regiones a sus lados, así que son $4$ regiones en total. Las siguientes figuras muestran que para cuatro y cinco puntos tenemos $8$ y $16$ regiones en total:

Casos de cuatro y cinco puntos

Así, la sucesión de cuántas regiones hay hasta ahora va así de manera explícita: $$1,2,4,8,16$$

Parecería que es la sucesión de potencias de dos, y que la respuesta sería entonces $2^{n-1}$. Pero esto es incorrecto. Al hacer un caso más, nos damos cuenta de esto, pues para seis puntos tenemos únicamente $31$ regiones:

Caso de seis puntos

Cuando estamos haciendo matemáticas, o resolviendo un problema con acceso a internet, podemos poner esta sucesión en la OEIS para ver si hay algo que nos pueda ayudar.

Realizando la búsqueda, obtenemos varios resultados, y el segundo resultado tiene exactamente la descripción que queremos. La OEIS tiene una sección de fórmulas que podemos usar.

Ahí, dice que la cantidad de regiones es $$\binom{n-1}{0}+\binom{n-1}{1}+\binom{n-1}{2}+\binom{n-1}{3}+\binom{n-1}{4},$$ (lo cual se puede probar usando inducción) y de hecho, usando la definición de coeficientes binomiales, se puede ver que la expresión anterior es igual a $$\frac{n^4 – 6n^3 + 23n^2 – 18n + 24}{24}.$$

$\square$

Sucesiones aritméticas

Una sucesión aritmética es una sucesión en la cual de un término al siguiente siempre hay una misma diferencia. Un ejemplo es la sucesión $$1,4,7,10,13,16,19,\ldots,$$ que construimos de modo que la diferencia de un término al siguiente siempre sea $3$.

Si conocemos el término inicial $a_0=a$ de una sucesión aritmética y la diferencia $d$, entonces conocemos todos los términos. En efecto, se puede probar inductivamente que $a_n=a+nd$.

Esta fórmula es muy útil para trabajar con sucesiones aritméticas. Por ejemplo, si sabemos que $\{a_n\}$ es una sucesión aritmética tal que $a_5=30$ y $a_7=48$, entonces por un lado $$a_7-a_5=48-30=18,$$ y por otro $$a_7-a_5=(a+7d)-(a+5d)=2d.$$ De este modo, la diferencia es $d=9$, y el término inicial es $a=a_7-7\cdot 9=48-63=-15$.

Problema. Muestra que en cualquier sucesión aritmética de enteros con diferencia $d>0$ que tenga al menos un número al cubo $k^3$, tiene una infinidad de cubos.

Sugerencia pre-solución. Usa una identidad algebraica.

Solución. Podemos suponer sin perder generalidad que $k>0$. Para que una sucesión aritmética sea de enteros, su diferencia tiene que ser un número entero. Así, $d$ es un entero positivo.

Como $k^3$ es uno de los términos y la diferencia es $d$, entonces $k^3+nd$ también es un término para cualquier entero positivo $n$. En particular, lo es para los enteros de la forma $n=3mk^2+3m^2dk+m^3d^2$, con $m$ un entero positivo. De esta forma, $$k^3+3mdk^2+3m^2d^2k+m^3d^3=(k+md)^3$$ es un término de la sucesión para todo entero positivo $m$, así que la sucesión tiene una infinidad de cubos.

$\square$

Una observación sencilla, pero útil, es que si $\{a_n\}$ es una sucesión aritmética de enteros con término inicial $a$ y diferencia $d>0$, entonces los términos de $a$ son exactamente los números $m\geq a$ tales que $m\equiv a \pmod d$. Las sucesiones aritméticas juegan un papel importante en algunos resultados de teoría de números, por ejemplo, el siguiente teorema.

Teorema de Dirichlet. Sean $a$ y $b$ enteros primos relativos. En la sucesión de enteros $\{a+bn\}$ hay una infinidad de primos. De manera equivalente, hay una infinidad de primos $p$ tales que $p\equiv a \pmod b$.

Sucesiones geométricas

Si tenemos una sucesión en la cual para pasar de un término al siguiente siempre multiplicamos por un mismo número, entonces tenemos una sucesión geométrica. Estos son tres ejemplos:

  • $1,2,4,816,32,64,\ldots$
  • $2020,0,0,0,0,0,\ldots$
  • $64,96,144,216,324,486,729,\ldots$

La primera está construida de modo que hay que multiplicar por $2$ para pasar de un término al siguiente. La segunda de modo que hay que multiplicar por $0$. En la última se multiplica por $\frac{3}{2}$. Parece que la última sucesión es de enteros, pero el siguiente término ya no es entero, pues es $\frac{2187}{2}$.

De nuevo, si el término inicial es $a_0=a$ y la razón (el número por el que se multiplica en cada paso) es $r$, entonces una sencilla inducción muestra que el término $a_n$ es $ar^n$. Si $a=0$, la sucesión es toda igual a $0$. Si $r=0$, a partir del segundo término la sucesión es $0$. En otro caso, conociendo dos valores de una sucesión geométrica podemos conocer información acerca de $r$.

Problema. La sucesión de números complejos $\{a_n\}$ es geométrica y cumple que $a_6=a_{24}=2020$. ¿Qué posibles valores puede tener $a_0$?

Sugerencia pre-solución. Usa la fórmula para sucesiones geométricas. Como estás trabajando en $\mathbb{C}$, recuerda considerar todas las posibilidades que te da la aritmética de complejos.

Solución. Si el término inicial de la sucesión es $a_0=a$ y la razón es $r$, sabemos que $ar^6=2020=ar^{24}$. La primer igualdad implica $r\neq 0$ y $a=2020r^{-6}\neq 0$. La igualdad entre la primera y última igualdad implica que $r^{18}=1$, que podemos escribir como $(r^6)^3=1$. De aquí, $r^6$ puede ser cualquier cúbica de la unidad, y por lo tanto $r^{-6}$ también. De esta forma, $a=2020\omega$, con $\omega$ cualquier raíz cúbica de la unidad.

$\square$

Un problema de sucesiones geométricas y aritméticas

En el siguiente problema se mezclan los dos tipos de sucesiones de los que hemos hablado.

Problema. La sucesión $\{x_n\}$ es aritmética. La sucesión $\{y_n\}$ es geométrica. Tenemos que

\begin{align*}
x_1+y_1&=1\\
x_2+y_2&=8\\
x_3+y_3&=10\\
x_4+y_4&=32.
\end{align*}

Determina el valor de $x_5+y_5$.

Sugerencia pre-solución. Modifica el problema a encontrar los términos iniciales, diferencia y razón de las sucesiones. Usa las fórmulas para cada tipo de sucesión.

Solución. Supongamos que $\{x_n\}$ tiene término inicial $x_0=a$ y diferencia $d$. Supongamos que $\{y_n\}$ tiene término inicial $y_0=s$ y razón $r$. Vamos a determinar $a,d,r,s$. Usando las fórmulas para sucesiones aritmétricas y geométricas, las ecuaciones de la hipótesis se pueden reescribir como sigue:

\begin{align*}
a+d + rs&=1\\
a+2d + r^2s&=8\\
a+3d + r^3s&=10\\
a+4d + r^4s&=32.
\end{align*}

Restando la primera ecuación de la segunda, la segunda de la tercera, y la tercera ecuación de la cuarta, tenemos las siguientes tres ecuaciones:

\begin{align*}
d + r(r-1) s &= 7\\
d+r^2(r-1)s &= 2\\
d + r^3(r-1)s &= 22.
\end{align*}

Restando la primer ecuación de la segunda, y la segunda ecuación de la tercera, tenemos las siguientes dos ecuaciones:

\begin{align*}
r(r-1)^2 s &= -5\\
r^2(r-1)^2 s &= 20.
\end{align*}

De aquí, $s\neq 0$, $r\neq 0$ y $r\neq 1$. Multiplicando la primer ecuación por $-4$, tenemos que $$-4r(r-1)^2s=20=r^2(r-1)^2s.$$ Cancelando $r(r-1)^2s$ (pues no es cero) de ambos lados, obtenemos que $r=-4$. Así, la primera ecuación se transforma en $-4(25)s=-5$, por lo que $s=1/20$.

De la ecuación $d+r(r-1)s=7$, obtenemos entonces $d=7-1=6$. Finalmente, de la ecuación $a+d+rs=1$, obtenemos $a=1-6+1/5=-\frac{24}{5}$.

En resumen, $$a=-\frac{24}{5}, d=6, s=\frac{1}{20}, r=-4.$$

De esta forma,
\begin{align*}
x_5+y_5&=a+5d+rs^5\\
&=-\frac{24}{5}+30-\frac{4^5}{20}\\
&=-26.
\end{align*}

$\square$

Más problemas

Esta entrada es una extensión de las secciones 1, 2 y 3 del curso de sucesiones que impartí para los entrenadores de la Olimpiada Mexicana de Matemáticas. Puedes consultar las notas de este curso en el siguiente PDF, en donde hay más problemas de práctica: