Archivo de la etiqueta: sistemas lineales homogéneos

Ecuaciones Diferenciales I: Sistemas lineales homogéneos con coeficientes constantes – Valores propios complejos

Por Omar González Franco

Un matemático que no es también algo de poeta
nunca será un matemático completo.
– Karl Weierstrass

Introducción

Ya vimos cómo obtener la solución general de sistemas lineales homogéneos con coeficientes constantes en el caso en el que los valores propios son todos reales y distintos. En esta entrada desarrollaremos el caso en el que los valores propios son complejos.

Valores propios complejos

Vimos que para un sistema lineal

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{1} \tag{1}$$

con $\mathbf{A}$ una matriz de $n \times n$ con componentes reales

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

siempre se puede encontrar una solución de la forma

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t} \label{3} \tag{3}$$

Ahora sabemos que $\lambda$ y $\mathbf{K}$ corresponden a un valor y vector propio respectivamente. Como los valores propios se obtienen de encontrar las raíces del polinomio característico, entonces es posible que los valores propios sean números complejos, digamos de la forma

$$\lambda = \alpha + i \beta \label{4} \tag{4}$$

Con $\alpha$ y $\beta$ reales. Veremos más adelante que este tipo de valores propios generarán también vectores propios con componentes complejos que podremos escribir como

$$\mathbf{K} = \mathbf{U} + i \mathbf{V} \label{5} \tag{5}$$

Con estos resultados la solución (\ref{3}) se puede escribir como

$$\mathbf{Y}(t) = \begin{pmatrix}
u_{1} + i v_{1} \\ u_{2} + i v_{2} \\ \vdots \\ u_{n} + i v_{n}
\end{pmatrix}e^{(\alpha + i \beta)t} = (\mathbf{U} + i \mathbf{V}) e^{(\alpha + i \beta)t} \label{6} \tag{6}$$

Un resultado interesante es que los valores y vectores propios conjugados de (\ref{4}) y (\ref{5}) también son valores y vectores propios de la misma matriz $\mathbf{A}$. Demostremos este hecho.

Recordemos que estamos denotando con $M_{n \times n}$ al conjunto de todas las matrices cuadradas de $n \times n$ con componentes reales y constantes.

Demostración: Por hipótesis $\lambda$ es un valor propio de $\mathbf{A}$, lo que significa que se cumple la relación

$$\mathbf{AK} = \lambda \mathbf{K} \label{7} \tag{7}$$

Con $\mathbf{K}$ el vector propio asociado a $\lambda$. Si tomamos el conjugado de la ecuación anterior, tenemos

$$\overline{\mathbf{AK}} = \overline{\lambda \mathbf{K}}$$

o bien,

$$\mathbf{\bar{A}} \mathbf{\bar{K}} = \bar{\lambda} \mathbf{\bar{K}} \label{8} \tag{8}$$

Pero como $\mathbf{A} \in M_{n \times n}$, es decir, $\mathbf{A}$ es una matriz con componentes reales constantes, entonces $\mathbf{\overline{A}} = \mathbf{A}$. La ecuación (\ref{8}) queda como

$$\mathbf{A} \mathbf{\overline{K}} = \bar{\lambda} \mathbf{\overline{K}} \label{9} \tag{9}$$

Lo que muestra que $\overline{\lambda}$ es también un valor propio de $\mathbf{A}$ y el vector propio asociado es $\mathbf{\overline{K}}$.

$\square$

Como $\lambda$ y $\overline{\lambda}$ son valores propios, con vectores propios asociados $\mathbf{{K}}$ y $\mathbf{\overline{K}}$ respectivamente, de la misma matriz $\mathbf{A}$, por el último teorema de la entrada correspondiente podemos deducir que la solución conjugada de (\ref{6})

$$\mathbf{\overline{Y}}(t) = \begin{pmatrix}
u_{1} -i v_{1} \\ u_{2} -i v_{2} \\ \vdots \\ u_{n} -i v_{n}
\end{pmatrix}e^{(\alpha -i \beta)t} = (\mathbf{U} -i \mathbf{V}) e^{(\alpha -i \beta)t} \label{10} \tag{10}$$

es también una solución del sistema lineal (\ref{1}) y además las soluciones (\ref{6}) y (\ref{10}) son linealmente independientes por el mismo teorema.

A continuación enunciamos un teorema que establece que una solución como (\ref{6}) da lugar a dos soluciones con valores reales.

Demostración: Supongamos que la solución del sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$ es de la forma

$$\mathbf{Y} = \mathbf{W}_{1} + i \mathbf{W}_{2} \label{11} \tag{11}$$

Donde $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$ son vectores con componentes reales.

Queremos probar que

$$\mathbf{W}_{1} = Re \{ \mathbf{Y} \} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2} = Im \{ \mathbf{Y} \}$$

también son soluciones del sistema lineal.

Por una lado, como $\mathbf{Y}$ es solución, entonces

$$\mathbf{Y}^{\prime} = \mathbf{AY} = \mathbf{A} (\mathbf{W}_{1} + i \mathbf{W}_{2}) = \mathbf{AW}_{1} + i \mathbf{AW}_{2} \label{12} \tag{12}$$

Por otro lado, notemos que

$$\mathbf{Y}^{\prime} = (\mathbf{W}_{1} + i \mathbf{W}_{2})^{\prime} = \mathbf{W}_{1}^{\prime} + i \mathbf{W}_{2}^{\prime} \label{13} \tag{13}$$

De (\ref{12}) y (\ref{13}), se tiene que

$$\mathbf{W}_{1}^{\prime} + i \mathbf{W}_{2}^{\prime} = \mathbf{AW}_{1} + i \mathbf{AW}_{2} \label{14} \tag{14}$$

Igualando las partes reales e imaginarias de (\ref{14}), se obtiene

$$\mathbf{W}_{1}^{\prime} = \mathbf{AW}_{1} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}^{\prime} = \mathbf{AW}_{2}$$

Lo que muestra que las funciones $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$ son soluciones con valores reales del sistema lineal (\ref{1}).

$\square$

Ahora que conocemos este resultado veamos que forma tienen las funciones $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$.

Demostración: Sabemos que una solución del sistema lineal (\ref{1}), en el caso en el que el valor y el vector propio son complejos, es

$$\mathbf{Y}(t) = e^{(\alpha + i \beta)t} (\mathbf{U} + i \mathbf{V})$$

Esta función la podemos escribir como

$$\mathbf{Y}(t) = e^{\alpha t} e^{i \beta t} \mathbf{U} + i e^{\alpha t} e^{i \beta t} \mathbf{V} \label{17} \tag{17}$$

Usando la identidad de Euler

$$e^{i \beta t} = \cos(\beta t) + i \sin(\beta t) \label{18} \tag{18}$$

podemos escribir la función (\ref{17}) como

\begin{align*}
\mathbf{Y} &= e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)] \mathbf{U} + i e^{\alpha t}[\cos(\beta t) + i \sin(\beta t)] \mathbf{V} \\
&= e^{\alpha t} [\mathbf{U} \cos(\beta t) + i \mathbf{U} \sin(\beta t)] + i e^{\alpha t}[\mathbf{V} \cos(\beta t) + i \mathbf{V} \sin(\beta t)]
\end{align*}

Si reescribimos este resultado en una parte real y una imaginaria se tiene lo siguiente.

$$\mathbf{Y} = e^{\alpha t} [\mathbf{U} \cos(\beta t) -\mathbf{V} \sin(\beta t)] + i e^{\alpha t} [\mathbf{U} \sin(\beta t) + \mathbf{V} \cos(\beta t)] \label{19} \tag{19}$$

En esta forma podemos definir

$$\mathbf{W}_{1} = Re \{ \mathbf{Y} \} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2} = Im \{ \mathbf{Y} \}$$

entonces,

$$\mathbf{W}_{1}(t) = e^{\alpha t} [\mathbf{U} \cos(\beta t) -\mathbf{V} \sin(\beta t)]$$

y

$$\mathbf{W}_{2}(t) = e^{\alpha t} [\mathbf{U} \sin(\beta t) + \mathbf{V} \cos(\beta t)]$$

Por el teorema anterior concluimos que ambas son soluciones del sistema lineal (\ref{1}). Para mostrar que son soluciones linealmente independientes probemos que se cumple

$$c_{1} \mathbf{W}_{1}(t) + c_{2} \mathbf{W}_{2}(t) = 0 \label{20} \tag{20}$$

sólo si $c_{1} = c_{2} = 0$. Para ello consideremos la solución

$$\mathbf{Y} = \mathbf{W}_{1} + i \mathbf{W}_{2}$$

Por el primer teorema visto sabemos que el conjugado de la función anterior es también una solución del sistema.

$$\mathbf{\overline{Y}} = \mathbf{W}_{1} -i \mathbf{W}_{2} \label{21} \tag{21}$$

Y además ambas soluciones son linealmente independientes, lo que significa que si se satisface la ecuación

$$C_{1} \mathbf{Y} + C_{2} \mathbf{\overline{Y}} = 0 \label{22} \tag{22}$$

es porque $C_{1} = C_{2} = 0$.

Sustituyamos $\mathbf{Y}$ y $\mathbf{\overline{Y}}$ en (\ref{22}).

$$C_{1} [\mathbf{W}_{1} + i \mathbf{W}_{2}] + C_{2} [\mathbf{W}_{1} -i \mathbf{W}_{2}] = 0$$

Factorizando $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$, se tiene

$$(C_{1} + C_{2}) \mathbf{W}_{1} + i(C_{1} -C_{2}) \mathbf{W}_{2} = 0 \label{23} \tag{23}$$

Si definimos

$$c_{1} = C_{1} + C_{2} \hspace{1cm} y \hspace{1cm} c_{2} = i(C_{1} -C_{2})$$

podemos escribir

$$c_{1} \mathbf{W}_{1}(t) + c_{2} \mathbf{W}_{2}(t) = 0$$

Pero como $C_{1} = C_{2} = 0$, entonces

$$C_{1} + C_{2} = 0 \hspace{1cm} y \hspace{1cm} C_{1} -C_{2} = 0$$

es decir, $c_{1} = c_{2} = 0$, lo que muestra que las soluciones $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$ son linealmente independientes.

$\square$

Solución general de un sistema lineal con valores propios complejos

Nosotros ya sabemos que todos los vectores propios de una matriz $\mathbf{A}$, reales o complejos, son linealmente independientes, entonces un conjunto fundamental de soluciones de (\ref{1}) consiste de soluciones de la forma (\ref{15}) y (\ref{16}) en el caso en el que se obtienen valores propios complejos y soluciones de la forma (\ref{3}) cuando los valores propios son reales.

Por ejemplo, supongamos que $\lambda_{1} = \alpha + i \beta$, $\lambda_{2} = \alpha -i \beta$ son valores propios complejos de un sistema lineal y que $\lambda_{3}, \lambda_{4}, \cdots, \lambda_{n}$ son valores propios reales distintos del mismo sistema lineal. Los correspondientes vectores propios serían $\mathbf{K}_{1} = \mathbf{U} + i \mathbf{V}$, $\mathbf{K}_{2} = \mathbf{U} -i \mathbf{V}$, $\mathbf{K}_{3}, \mathbf{K}_{4}, \cdots, \mathbf{K}_{n}$. Entonces la solución general del sistema lineal será

$$\mathbf{Y}(t) = c_{1} \mathbf{W}_{1}(t) + c_{2} \mathbf{W}_{2}(t) + c_{3} e^{\lambda_{3} t} \mathbf{K}_{3} + c_{4} e^{\lambda_{4} t} \mathbf{K}_{4} + \cdots + c_{n} e^{\lambda_{n} t} \mathbf{K}_{n} \label{24} \tag{24}$$

Donde $\mathbf{W}_{1}(t)$ y $\mathbf{W}_{2}(t)$ son los vectores dados en (\ref{15}) y (\ref{16}), respectivamente.

Es importante mencionar que esta teoría se aplica sólo para el caso en que la matriz (\ref{2}) es una matriz con componentes reales.

Para concluir con esta entrada realicemos un ejemplo.

Ejemplo: Resolver el siguiente problema con valores iniciales.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1
\end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
1 \\ 1 \\ 1
\end{pmatrix}$$

Solución: En este caso la matriz $\mathbf{A}$ es

$$\mathbf{A} = \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1
\end{pmatrix}$$

La ecuación característica la obtenemos de calcular el determinante

$$\begin{vmatrix}
1 -\lambda & 0 & 0 \\ 0 & 1- \lambda & -1 \\ 0 & 1 & 1 -\lambda
\end{vmatrix} = 0$$

De donde se obtiene que

$$(1 -\lambda)^{3} + (1 -\lambda) = (1 -\lambda)(\lambda^{2} -2 \lambda + 2) = 0$$

Al resolver para $\lambda$ se obtienen las siguientes tres raíces.

$$\lambda_{1} = 1, \hspace{1cm} \lambda_{2} = 1 + i \hspace{1cm} y \hspace{1cm} \lambda_{3} = 1 -i$$

Estos valores corresponden a los valores propios de la matriz del sistema. Determinemos los vectores correspondientes.

Caso 1: $\lambda_{1} = 1$.

Buscamos un vector $\mathbf{K}_{1} \neq \mathbf{0}$, tal que

$$(\mathbf{A} -1 \mathbf{I}) \mathbf{K}_{1} = \mathbf{0}$$

$$\begin{pmatrix}
1 -1 & 0 & 0 \\ 0 & 1 -1 & -1 \\ 0 & 1 & 1 -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

Es claro que $k_{2} = k_{3} = 0$ y $k_{1}$ al ser libre lo elegimos como $k_{1} = 1$, entonces el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 1 + i$.

Buscamos un vector $\mathbf{K}_{2}$ no nulo, tal que

$$(\mathbf{A} -(1 + i) \mathbf{I}) \mathbf{K}_{2} = \mathbf{0}$$

$$\begin{pmatrix}
1 -(1 + i) & 0 & 0 \\ 0 & 1 -(1 + i) & -1 \\ 0 & 1 & 1 -(1 + i)
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
-i & 0 & 0 \\ 0 & -i & -1 \\ 0 & 1 & -i
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

El sistema de ecuaciones que se obtiene es

\begin{align*}
-i k_{1} &= 0 \\
-i k_{2} -k_{3} &= 0 \\
k_{2} -i k_{3} &= 0
\end{align*}

De la primera ecuación se obtiene que $k_{1} = 0$, y de la segunda o tercera se obtiene que $k_{2} = i k_{3}$. Elegimos $k_{3} = 1$, así $k_{2} = i$, entonces el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ i \\ 1
\end{pmatrix}$$

Este vector al ser complejo lo podemos escribir como

$$\mathbf{K}_{2} = \mathbf{U} + i \mathbf{V} = \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + i \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \label{25} \tag{25}$$

Caso 3: $\lambda_{3} = 1 -i$.

Este caso, como ya vimos en la teoría, corresponde al conjugado del caso anterior, así que el vector propio para este caso es

$$\mathbf{K}_{3} = \begin{pmatrix}
0 \\ -i \\ 1
\end{pmatrix}$$

que también se puede escribir como

$$\mathbf{K}_{3} = \mathbf{U} -i \mathbf{V} = \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} -i \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \label{26} \tag{26}$$

Por lo tanto, una forma de la solución general del sistema es

$$\mathbf{Y}(t) = c_{1} e^{t} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + c_{2} e^{(1 + i)t} \begin{pmatrix}
0 \\ i \\ 1
\end{pmatrix} + c_{3} e^{(1 -i)t} \begin{pmatrix}
0 \\ -i \\ 1
\end{pmatrix} \label{27} \tag{27}$$

Sin embargo, es conveniente tener la solución real dada en (\ref{24}). De los resultados (\ref{25}) y (\ref{26}) sabemos que

$$\mathbf{U} = \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{V} = \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix}$$

Si sustituimos en (\ref{15}) y (\ref{16}) con $\alpha = \beta = 1$, obtenemos lo siguiente.

$$\mathbf{W}_{1}(t) = e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix} \label{28} \tag{28}$$

Por su puesto, lo ideal es no memorizar las ecuaciones (\ref{15}) y (\ref{16}). Lo que se debe de hacer es tomar el caso en el que el vector propio es complejo, en este caso $\lambda_{2} = 1 + i$ y el vector propio correspondiente $\mathbf{K}_{2} = \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix}$, tal que una solución del sistema es

$$\mathbf{Y}_{2}(t) = e^{(1 + i)t} \begin{pmatrix}
0 \\ i \\ 1
\end{pmatrix}$$

y usamos la identidad de Euler (\ref{18}).

\begin{align*}
e^{(1 + i)t} \begin{pmatrix}
0 \\ i \\ 1
\end{pmatrix} &= e^{t} [\cos(t) + i \sin(t)] \left[ \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + i \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \right] \\
&= e^{t} \left[ \cos(t) \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} -\sin(t) \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} + i \sin(t) \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + i \cos(t) \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \right] \\
&= e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} + i e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix}
\end{align*}

De donde podemos definir las funciones anteriores (\ref{28}).

$$\mathbf{W}_{1}(t) = e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix}$$

Por lo tanto, de acuerdo a (\ref{24}), la solución general $\mathbf{Y}(t)$ del sistema lineal homogéneo dado debe tener la forma

$$\mathbf{Y}(t) = c_{1} e^{t} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + c_{2} e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} + c_{3} e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix} \label{29} \tag{29}$$

Apliquemos los valores iniciales. Tomando $t = 0$, se ve que

$$\mathbf{Y}(0) = \begin{pmatrix}
1 \\ 1 \\ 1
\end{pmatrix} = c_{1} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} = \begin{pmatrix}
c_{1} \\ c_{3} \\ c_{2}
\end{pmatrix}$$

De modo que, $c_{1} = c_{2} = c_{3} = 1$. Por lo tanto, la solución particular del problema de valores iniciales es

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} + e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix} = e^{t} \begin{pmatrix}
1 \\ \cos(t) -\sin(t) \\ \cos(t) + \sin(t)
\end{pmatrix} \label{30} \tag{30}$$

$\square$

Hemos concluido esta entrada. En la siguiente revisaremos el último caso que corresponde a la situación en la que tenemos valores propios que se repiten, es decir, que tienen multiplicidad $r > 1$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales homogéneos.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -3 & 2 \\ -1 & -1
    \end{pmatrix}\mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 0 & 1 \\ 0 & 1 & -1 \\ -2 & 0 & -1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -7 & 6 & -6 \\ -9 & 5 & -9 \\ 0 & -1 & -1
    \end{pmatrix} \mathbf{Y}$
  1. Resolver los siguientes problemas con valores iniciales.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    0 \\ -1 \\ -2
    \end{pmatrix}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    0 & 2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 3 & 0
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    1 \\ 1 \\ 1 \\ 0
    \end{pmatrix}$

Más adelante…

Ya conocemos la forma de las soluciones generales de sistemas lineales homogéneos en los que los valores propios de la matriz del sistema son reales y distintos y en los que son números complejos. El caso en el que son repetidos se presentará en la siguiente entrada.

Cuando los valores propios son repetidos el método se puede complicar un poco, sin embargo existe una alternativa bastante ingeniosa que nos permite obtener $n$ soluciones linealmente independientes de un sistema lineal de $n$ ecuaciones. ¡Dicha alternativa involucra la utilidad de la exponencial de una matriz $e^{\mathbf{A} t}$!.

Entradas relacionadas

Ecuaciones Diferenciales I: Sistemas lineales homogéneos con coeficientes constantes – Valores propios distintos

Por Omar González Franco

No debería haber algo como matemáticas aburridas.
– Edsger Dijkstra

Introducción

En la entrada anterior presentamos un breve repaso sobre valores y vectores propios de matrices y vimos cómo es que estas herramientas nos pueden ayudar a resolver sistemas de ecuaciones diferenciales de primer orden homogéneas con coeficientes constantes.

En dicha entrada vimos que para obtener los valores propios es necesario determinar la ecuación característica de la matriz, ésta ecuación resulta ser un polinomio de grado igual al número de ecuaciones que conformen al sistema lineal, así que si se trata de un sistema de $n$ ecuaciones, entonces el polinomio característico sera un polinomio de grado $n$, lo que significa que al resolver para la incógnita obtendremos $n$ raíces, es decir, $n$ valores propios. Ahora bien, sabemos que existen al menos tres casos que pueden ocurrir con dichas raíces y es que pueden ser reales y todas diferentes, pueden ser algunas repetidas o pueden ser incluso números complejos, para cada caso tendremos una forma particular de la solución general a tal sistema lineal.

Lo que desarrollaremos en las siguientes entradas será justamente estos tres casos. En esta entrada comenzaremos con el caso en el que los valores propios del sistema lineal son todos reales y distintos.

Recordemos que estamos intentando resolver un sistema lineal homogéneo con coeficientes constantes.

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}y_{1} + a_{12}y_{2} + \cdots + a_{1n}y_{n} \\
y_{2}^{\prime}(t) &= a_{21}y_{1} + a_{22}y_{2} + \cdots + a_{2n}y_{n} \\
&\vdots \\
y_{n}^{\prime}(t) &= a_{n1}y_{1} + a_{n2}y_{2} + \cdots + a_{nn}y_{n} \label{1} \tag{1}
\end{align*}

Si $\mathbf{A}$ es la matriz de $n \times n$ con componentes constantes

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

Entonces el sistema lineal a resolver es

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{3} \tag{3}$$

Valores propios reales distintos

Con lo visto en la entrada anterior sabemos que si una matriz $\mathbf{A}$ de $n \times n$ tiene $n$ valores propios reales y distintos $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$, entonces siempre se puede encontrar un conjunto de $n$ vectores propios linealmente independientes $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$.

Por otro lado, con el último teorema visto en la entrada anterior sabemos que si

$$\mathbf{Y}_{1} = \mathbf{K}_{1}e^{\lambda_{1}t}, \hspace{1cm} \mathbf{Y}_{2} = \mathbf{K}_{2}e^{\lambda_{2}t}, \hspace{1cm} \cdots, \hspace{1cm} \mathbf{Y}_{n} = \mathbf{K}_{n}e^{\lambda_{n}t}$$

es un conjunto fundamental de soluciones de (\ref{3}) en el intervalo $(-\infty, \infty)$, entonces la solución general del sistema es

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1} e^{\lambda_{1}t} + c_{2} \mathbf{K}_{2} e^{\lambda_{2}t} + \cdots + c_{n} \mathbf{K}_{n} e^{\lambda_{n}t} \label{4} \tag{4}$$

Donde $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ son los valores propios y $\mathbf{K}_{1}, \mathbf{K}_{2}, \cdots, \mathbf{K}_{n}$ son los vectores propios asociados a cada valor propio. Notemos que en este teorema no se incluye la hipótesis de que los valores propios sean distintos. En esta entrada estamos interesados en resolver sistemas lineales en donde las raíces del polinomio característico sean todos reales y distintos, es decir, el caso en el que los valores propios del sistemas son distintos entre sí.

El siguiente resultado muestra cómo debe ser la solución general de un sistema lineal (\ref{3}) en el caso en el que los valores propios son reales y distintos.

La demostración es inmediata aplicando los resultados antes mencionados que son parte de dos teoremas vistos en la entrada anterior. De tarea moral Intenta escribir la demostración formalmente.

La diferencia entre (\ref{4}) y (\ref{5}) es que en ésta última solución ocurre que $\lambda_{i} \neq \lambda_{j}$ para $i \neq j$.

Este primer caso en realidad es muy sencillo así que concluiremos la entrada con tres ejemplos.

En la entrada en la que desarrollamos el método de eliminación de variables vimos que la solución general del sistema

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
t +1 \\ t + 1
\end{pmatrix} \label{6} \tag{6}$$

es

$$\mathbf{Y} = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t} -\begin{pmatrix}
\dfrac{1}{3} \\ \dfrac{1}{3}
\end{pmatrix}t + \begin{pmatrix}
\dfrac{1}{9} \\ \dfrac{16}{9}
\end{pmatrix} \label{7} \tag{7}$$

Lo que significa que la solución del caso homogéneo de (\ref{6})

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y} \label{8} \tag{8}$$

es

$$\mathbf{Y} = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t} \label{9} \tag{9}$$

Veamos si aplicando este método obtenemos el mismo resultado.

Recordemos que el polinomio característico se obtiene de calcular el determinante

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{10} \tag{10}$$

Una vez obtenido el polinomio se buscan las raíces para determinar los valores propios. Para cada valor propio se busca un vector $\mathbf{K} \neq \mathbf{0}$, tal que satisfaga la relación

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} = \mathbf{0} \label{11} \tag{11}$$

Los vectores obtenidos corresponderán a los vectores propios del sistema.

Finalmente se sustituyen estos resultados en la solución (\ref{5}), siempre y cuando los valores propios sean reales y distintos.

Ejemplo: Resolver el sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y}$$

Solución: En este caso la matriz $\mathbf{A}$ es

$$\mathbf{A} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix}$$

Determinemos la ecuación característica de acuerdo a (\ref{10}).

$$\begin{vmatrix}
4 -\lambda & -1 \\ 2 & 1 -2
\end{vmatrix} = (4 -\lambda)(1 -\lambda) + 2 = 0$$

El polinomio característico es

$$\lambda^{2} -5 \lambda + 6 = 0$$

Resolviendo para $\lambda$ se obtiene que las raíces son $\lambda_{1} = 2$ y $\lambda_{2} = 3$, son reales y distintas. Para cada valor propio determinemos los vectores propios de acuerdo a (\ref{11}).

Caso 1: $\lambda_{1} = 2$.

$$\begin{pmatrix}
4 -2 & -1 \\ 2 & 1 -2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
2 & -1 \\ 2 & -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

\begin{align*}
2k_{1} -k_{2} &= 0 \\
2k_{1} &= k_{2}
\end{align*}

Elegimos $k_{1} = 1$, entonces $k_{2} = 2$, así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 2
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 3$.

$$\begin{pmatrix}
4 -3 & -1 \\ 2 & 1 -3
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
1 & -1 \\ 2 & -2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

\begin{align*}
k_{1} -k_{2} &= 0 \\
k_{1} &= k_{2}
\end{align*}

Elegimos $k_{1} = 1$, entonces $k_{2} = 1$, así el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ 1
\end{pmatrix}$$

De acuerdo a (\ref{5}), la solución general es

$$\mathbf{Y}(t) = c_{1} \mathbf{K}_{1}e^{\lambda_{1}t} + c_{2} \mathbf{K}_{2}e^{\lambda_{2}t} $$

Sustituyendo los valores obtenidos tenemos que la solución general del sistema lineal homogéneo es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t}$$

Vemos que efectivamente corresponde a la solución (\ref{9}) obtenida con el método de eliminación de variables.

$\square$

Resolvamos ahora un problema con valores iniciales.

Ejemplo: Resolver el siguiente problema con valores iniciales.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 12 \\ 3 & 1
\end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
0 \\ 1
\end{pmatrix}$$

Solución: La matriz $\mathbf{A}$ está dada por

$$\mathbf{A} = \begin{pmatrix}
1 & 12 \\ 3 & 1
\end{pmatrix}$$

La ecuación característica es

$$\begin{vmatrix}
1 -\lambda & 12 \\ 3 & 1 -\lambda
\end{vmatrix} = (1 -\lambda)^{2} -36 = 0$$

El polinomio característico es

\begin{align*}
\lambda^{2} -2 \lambda -35 &= 0 \\
(\lambda -7) (\lambda + 5) &= 0
\end{align*}

De donde es claro que $\lambda_{1} = 7$ y $\lambda_{2} = -5$. Determinemos los vectores propios.

Caso 1: $\lambda_{1} = 7$.

$$\begin{pmatrix}
1 -7 & 12 \\ 3 & 1 -7
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
-6 & 12 \\ 3 & -6
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
-6 k_{1} + 12 k_{2} &= 0 \\
3 k_{1} -6 k_{2} &= 0
\end{align*}

De donde $k_{1} = 2k_{2}$. Elegimos $k_{2} = 1$, de manera que $k_{1} = 2$. Así el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
2 \\ 1
\end{pmatrix}$$

Caso 2: $\lambda_{2} = -5$.

$$\begin{pmatrix}
1 + 5 & 12 \\ 3 & 1 + 5
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
6 & 12 \\ 3 & 6
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
6 k_{1} + 12 k_{2} &= 0 \\
3 k_{1} + 6 k_{2} &= 0
\end{align*}

De donde $k_{1} = -2k_{2}$. Elegimos $k_{2} = 1$, de manera que $k_{1} = -2$. Así el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
-2 \\ 1
\end{pmatrix}$$

Sustituyendo estos resultados en la solución general (\ref{5}), se obtiene

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
2 \\ 1
\end{pmatrix} e^{7t} + c_{2} \begin{pmatrix}
-2 \\ 1
\end{pmatrix} e^{-5t}$$

Apliquemos los valores iniciales para determinar el valor de las constantes $c_{1}$ y $c_{2}$.

$$\mathbf{Y}(0) = c_{1} \begin{pmatrix}
2 \\ 1
\end{pmatrix} e^{0} + c_{2} \begin{pmatrix}
-2 \\ 1
\end{pmatrix} e^{0}$$

Reescribiendo.

$$\begin{pmatrix}
0 \\ 1
\end{pmatrix} = \begin{pmatrix}
2c_{1} \\ c_{1}
\end{pmatrix} + \begin{pmatrix}
-2c_{2} \\ c_{2}
\end{pmatrix} = \begin{pmatrix}
2c_{1} -2c_{2} \\ c_{1} + c_{2}
\end{pmatrix} $$

Las ecuaciones que se obtienen son

\begin{align*}
2c_{1} -2c_{2} &= 0 \\
c_{1} + c_{2} &= 1
\end{align*}

Resolviendo el sistema se obtiene que $c_{1} = \dfrac{1}{2}$ y $c_{2} = \dfrac{1}{2}$. Por lo tanto, la solución particular del sistema lineal es

$$\mathbf{Y}(t) = \dfrac{1}{2} \begin{pmatrix}
2 \\ 1
\end{pmatrix} e^{7t} + \dfrac{1}{2} \begin{pmatrix}
-2 \\ 1
\end{pmatrix} e^{-5t} = \begin{pmatrix}
e^{7t} -e^{-5t} \\ \dfrac{1}{2}e^{7t} + \dfrac{1}{2}e^{-5t}
\end{pmatrix}$$

$\square$

Para concluir con esta entrada, resolvamos un sistema lineal en el que la matriz $\mathbf{A}$ es de $4 \times 4$.

Ejemplo: Determinar la solución general del siguiente sistema lineal homogéneo.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-1 & -1 & 1 & 1 \\
-3 & -4 & -3 & 6 \\
0 & -3 & -2 & 3 \\
-3 & -5 & -3 & 7
\end{pmatrix} \mathbf{Y}$$

Solución: La ecuación característica se obtiene de hacer el siguiente determinante.

$$\begin{vmatrix}
-1 -\lambda & -1 & 1 & 1 \\
-3 & -4 -\lambda & -3 & 6 \\
0 & -3 & -2 -\lambda & 3 \\
-3 & -5 & -3 & 7 -\lambda
\end{vmatrix} = 0$$

No es de nuestro interés mostrar todos los pasos del determinante, incluso es conveniente hacer uso de algún método computacional para resolverlo. El resultado que se obtiene de calcular el determinante es

$$\lambda^{4} -5 \lambda^{2} + 4 = 0$$

Muestra que el polinomio característico se puede descomponer de la siguiente forma.

$$(\lambda + 2)(\lambda + 1)(\lambda -1)(\lambda -2) = 0$$

En esta forma es claro que los valores propios del sistema son

$$\lambda_{1} = -2, \hspace{1cm} \lambda_{2} = -1, \hspace{1cm} \lambda_{3} = 1, \hspace{1cm} y \hspace{1cm} \lambda_{4} = 2$$

Todos reales y distintos. Determinemos los vectores propios para cada valor propio.

Caso 1: $\lambda_{1} = -2$.

Buscamos un vector $\mathbf{K}_{1} \neq \mathbf{0}$, tal que

$$(\mathbf{A} + 2 \mathbf{I}) \mathbf{K}_{1} = \mathbf{0}$$

Sustituimos.

$$\begin{pmatrix}
-1 + 2 & -1 & 1 & 1 \\
-3 & -4 + 2 & -3 & 6 \\
0 & -3 & -2 + 2 & 3 \\
-3 & -5 & -3 & 7 + 2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
1 & -1 & 1 & 1 \\
-3 & -2 & -3 & 6 \\
0 & -3 & 0 & 3 \\
-3 & -5 & -3 & 9
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

Nuevamente es conveniente resolver el sistema usando algún método computacional, al hacerlo obtendremos que los valores correspondientes de las incógnitas son

$$k_{1} = 1, \hspace{1cm} k_{2} = 0, \hspace{1cm} k_{3} = -1, \hspace{1cm} y \hspace{1cm} k_{4} = 0$$

De manera que el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 0 \\ -1 \\ 0
\end{pmatrix}$$

Caso 2: $\lambda_{2} = -1$

Sustituimos en la ecuación vectorial

$$(\mathbf{A} + 1 \mathbf{I}) \mathbf{K}_{2} = \mathbf{0}$$

$$\begin{pmatrix}
-1 + 1 & -1 & 1 & 1 \\
-3 & -4 + 1 & -3 & 6 \\
0 & -3 & -2 + 1 & 3 \\
-3 & -5 & -3 & 7 + 1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 & -1 & 1 & 1 \\
-3 & -3 & -3 & 6 \\
0 & -3 & -1 & 3 \\
-3 & -5 & -3 & 8
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

Resolviendo el sistema obtenemos que el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
1 \\ 1 \\ 0 \\ 1
\end{pmatrix}$$

Caso 3: $\lambda_{3} = 1$

Sustituimos en la ecuación

$$(\mathbf{A} -1 \mathbf{I}) \mathbf{K}_{3} = \mathbf{0}$$

$$\begin{pmatrix}
-1 -1 & -1 & 1 & 1 \\
-3 & -4 -1 & -3 & 6 \\
0 & -3 & -2 -1 & 3 \\
-3 & -5 & -3 & 7 -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
-2 & -1 & 1 & 1 \\
-3 & -5 & -3 & 6 \\
0 & -3 & -3 & 3 \\
-3 & -5 & -3 & 6
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

El resultado de resolver el sistema corresponde al tercer vector propio

$$\mathbf{K}_{3} = \begin{pmatrix}
1 \\ 0 \\ 1 \\ 1
\end{pmatrix}$$

Caso 4: $\lambda_{4} = 2$

Para concluir sustituimos en la ecuación

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K}_{4} = \mathbf{0}$$

$$\begin{pmatrix}
-1 -2 & -1 & 1 & 1 \\
-3 & -4 -2 & -3 & 6 \\
0 & -3 & -2 -2 & 3 \\
-3 & -5 & -3 & 7 -2
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
-3 & -1 & 1 & 1 \\
-3 & -6 & -3 & 6 \\
0 & -3 & -4 & 3 \\
-3 & -5 & -3 & 5
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3} \\ k_{4}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

El cuarto y último vector propio es

$$\mathbf{K}_{4} = \begin{pmatrix}
0 \\ 1 \\ 0 \\ 1
\end{pmatrix}$$

Con estos resultados obtenemos que el conjunto fundamental de soluciones esta conformado por los siguientes vectores linealmente independientes.

$$S = \left\{ e^{-2t} \begin{pmatrix}
1 \\ 0 \\ -1 \\ 0
\end{pmatrix}, e^{-t} \begin{pmatrix}
1 \\ 1 \\ 0 \\ 1
\end{pmatrix}, e^{t} \begin{pmatrix}
1 \\ 0 \\ 1 \\ 1
\end{pmatrix}, 2^{2t} \begin{pmatrix}
0 \\ 1 \\ 0 \\ 1
\end{pmatrix} \right\}$$

Y por lo tanto, la solución general del sistema lineal es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 0 \\ -1 \\ 0
\end{pmatrix} e^{-2t} + c_{2} \begin{pmatrix}
1 \\ 1 \\ 0 \\ 1
\end{pmatrix} e^{-t} + c_{3} \begin{pmatrix}
1 \\ 0 \\ 1 \\ 1
\end{pmatrix} e^{t} + c_{4} \begin{pmatrix}
0 \\ 1 \\ 0 \\ 1
\end{pmatrix}e^{2t}$$

$\square$

Con esto hemos concluido esta entrada. Nos falta ver el caso en el que los valores propios son números complejos y el caso en el que hay valores propios repetidos, ambos casos resultan ser un poco más complicados e interesantes que este.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Demostrar formalmente el Teorema enunciado en esta entrada.
  1. Resolver los siguientes sistemas lineales homogéneos.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    6 & -3 \\ 2 & 1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3
    \end{pmatrix} \mathbf{Y}$
  1. Resolver los siguientes problemas con valores iniciales.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -3 \\ -2 & 2
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    0 \\ 5
    \end{pmatrix}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    3 & 1 & -2 \\ -1 & 2 & 1 \\ 4 & 1 & -3
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    1 \\ 4 \\ -7
    \end{pmatrix}$
  1. Considerar el siguiente sistema lineal homogéneo.

    $\mathbf{Y}^{\prime} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \mathbf{Y} = \mathbf{AY}$
  • Demostrar que la solución general del sistema lineal es

    $\mathbf{Y}(t) = c_{1} e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
  • Determinar la matriz fundamental de soluciones $\hat{\mathbf{Y}}(t)$ del sistema lineal.
  • Una vez obtenida la matriz fundamental de soluciones determinar la exponencial de la matriz $\mathbf{A} t$ usando la expresión

    $e^{\mathbf{A} t} = \hat{\mathbf{Y}}(t) \hat{\mathbf{Y}}^{-1}(0)$

    Comparar el resultado con el obtenido usando la definición. ¿Notas alguna diferencia?.

Más adelante…

En esta entrada desarrollamos el método de valores y vectores propios para resolver sistemas lineales homogéneos en el caso en el que los valores propios son todos reales y distintos.

En la siguiente entrada continuaremos con la segunda situación correspondiente al caso en el que los valores propios del sistema son números complejos. En este caso la forma de las soluciones serán distintas.

Entradas relacionadas