Archivo de la etiqueta: potencia de un punto

Geometría Moderna II: Potencia de un punto

1.1 Potencia de un punto

Denotaremos la circunferencia como \(C(O,r)\) con \(O\) como el centro y \(r\) el radio.

Sea una circunferencia dada en un plano y \(P\) un punto cualquiera en esta, se tiene \(l\) una línea que interseca \(C(O,r)\) en \(A\) y \(B\) ; El producto de \(PA\) y \(PB\) es constante es decir: \(PA \times PB = cte\) . (Se demostrará más adelante)

Definición

La potencia de un punto \(P\) con respecto a una circunferencia es el producto de sus distancias a cualquier pareja de puntos en una circunferencia que sean colineales con \(P\) . ( \(Pot(P,C)\) es definido como la potencia de \(P\) con respecto a una circunferencia \(C\) )

\(PA \times PB = Pot(P,C)\)

De esto se sigue que la potencia de un punto es:

  1. \(Pot(P,C) > 0\) Positiva
  2. \(Pot(P,C) < 0\) Negativa
  3. \(Pot(P,C) = 0\) Cero

Lo anterior es porque el punto P esta dentro, fuera o en la circunferencia.

Casos:

  • Sea \(P\) un punto externo a \( C(O,r)\) entonces $PA>0$ y $PB>0$ $\Rightarrow$ \(Pot(P,C) > 0\)
  • Sea \(P\) un punto interno a \( C(O,r)\) entonces $PA<0$ y $PB>0$ $\Rightarrow$ \(Pot(P,C) < 0\)
  • Sea \(P\) un punto en \( C(O,r)\) entonces $PA=0$ ó $PB=0$ $\Rightarrow$ \(Pot(P,C) = 0\)

Por otra parte se denotan 3 proposiciones:

Proposición 1:

Sea $l$ una recta secante que pasa por un punto $P$ a una circunferencia $C(O,r)$ $\Rightarrow$ $Pot(P,C) =PA \times PB = PC \times PD = cte$.

Demostración (Por casos cuando $P$ esta adentro o fuera de la circunferencia)

  • Dentro de la circunferencia:

Sean dos cuerdas arbitrarias $AB$ y $CD$ en la circunferencia que se cortan en $P$; Los triángulos $\triangle APC$ y $\triangle DPB$ son semejantes ya que:

  1. $\angle PAC = \angle PDB $ mismo arco $\overline{BC}$.
  2. $\angle APC = \angle BPD $ por opuestos al vértice.
  3. $\angle PCA = \angle PBD $

Entonces de la semejanza $\triangle APC \cong \triangle DPB $

$\frac{PA}{PD}=\frac{PC}{PB} \Rightarrow PA\times PB =PC \times PD$

$\Rightarrow cte=PA\times PB=PC\times PD=Pot(P,C)$ $\blacksquare$

  • Fuera de la circunferencia:

Sean $AB$ y $CD$ dos secantes que se intersecan en $P$ exterior a $C$.

$\triangle APC \cong \triangle DPB $ son semejantes, ya que:

  1. El cuadrilátero $\square ABDC$ es cíclico entonces: $\angle ACD + \angle ABD = 180^o $ y $\angle ABD + \angle DBP = 180^o $ $\Rightarrow$ $\angle DBP = \angle ACD $
  2. $\angle BPD$ y $\angle CPA$ son los mismos angulos.

Entonces $\frac{PA}{PD}=\frac{PC}{PB}$

$\Rightarrow PA\times PB=PC\times PD=cte=Pot(P,C)$ $\blacksquare$

Proposición 2:

Desde un punto exterior $P$ de una circunferencia $C$, su potencia es igual al cuadrado de la longitud de una tangente de él a la circunferencia.

Es decir

Sea $PT$ una tangente a $C(O,r)$ $\Rightarrow$ $Pot(P,C)=PT^2$

Demostración (Por demostrar $PA\times PB =PT^2$)

El ángulo $\angle PTA$ es semi-inscrito y es igual al ángulo inscrito $ \angle TBA$, pues ambos tienen el mismo arco $\overline{AT}$.

Entonces los triángulos $\triangle APT$ y $\triangle TPB$ comparten el ángulo con vértice en $P$ y $\angle PTA=\angle TBA$. Por lo cual se tiene por semejanza de ángulos, se sigue $\triangle APT \cong \triangle TPB $ son semejantes y sus lados son proporcionales:

$\frac{AP}{TP} = \frac{PT}{PB} \Longleftrightarrow PA\times PB=PT\times PT=PT^2=Pot(P,C) \blacksquare$

Proposición 3:

Sea $P$ un punto en cualquier posición, su potencia con respecto a una circunferencia $C(O,r)$, es $\overline{PO}^2 – r^2$

$Pot(P,C) = \overline{OP}^2 – r^2$

Demostración (Por casos)

Caso 1: Punto interno a la circunferencia:

Sea $\overline{AB} $ la cuerda que pasa por el centro $O$ y $P$.

Entonces el producto es : $PA\times PB=(r+d)(r-d)=r^2-d^2$

Entonces sucede lo mismo para cualquier otra cuerda:

$PC\times PD= r^2-d^2 =r^2-OP^2$

Ahora $PC$ y $PD$ son sentidos opuestos $\Rightarrow PC\times PD \leq 0 \Longleftrightarrow -(PC\times PD) \geq 0$ y como $ r^2-OP^2 \geq 0$ $\Rightarrow -( PC\times PD) = r^2 – OP^2 \Rightarrow (PC\times PD) = OP^2 -r^2 $

$\Rightarrow Pot(P,C)=OP^2-r^2$ $\blacksquare$

Caso 2: Punto externo a la circunferencia:

$P$ un punto exterior de $C(O,r)$.

Desde $P$ se traza una tangente a $C(O,r)$. Ahora como $\angle PTO =90^o =\frac{\pi}{2}$ entonces $\triangle POT$ es un triángulo rectángulo, entonces por Pitágoras:

$OP^2=PT^2+OT^2 \Longleftrightarrow PT^2=OP^2-OT^2=OP^2-r^2$

Por proposición 2 $\Rightarrow Pot(P,C) =PT^2=OP^2-r^2 $ $\blacksquare$

Dadas las 3 proposiciones anteriores, se puede expresar lo potencia de un punto $P$ respecto a $C(O,r)$:

$Pot(P,C) = PA \times PB =PT^2=OP^2-r^2$

Más adelante…

Se seguirá abordando el tema de potencia de un punto y su relación con el eje radical de dos circunferencias.

Al final de los temas de esta primera unidad se dejará unas series de ejercicios.

Entradas relacionadas

Geometría Moderna I: Potencia de un punto

Introducción

En esta ocasión estudiaremos la potencia de un punto con respecto a una circunferencia, esta es una herramienta que nos permite establecer una medida de la distancia de un punto a una circunferencia dada.

Potencia de un punto respecto a una circunferencia

Teorema 1. Sea $\Gamma$ una circunferencia y $P$ un punto en el plano, por $P$ tracemos una secante a $\Gamma$, con intercesiones en $A$ y en $B$, entonces el número $PA \times PB$ es independiente de la secante que tracemos.

Demostración. Consideremos dos secantes desde $P$, $PAB$ y $PCD$, consideremos los triángulos $\triangle PAD$ y $\triangle PCB$, tenemos que $\angle CDA = \angle CBA$, pues abarcan el mismo arco de circunferencia.

Figura 1

Si $P$ es un punto exterior a $\Gamma$, $\angle APC$ es un ángulo común de los triángulos considerados.

Si $P$ es un punto interior a $\Gamma$, $\angle APD = \angle BPC$ por ser opuestos por el vértice.

Por criterio de semejanza AA, $\triangle PAD \sim \triangle PCB$,
$\Rightarrow \dfrac{PA}{PC} = \dfrac{PD}{PB}$
$\Rightarrow PA \times PB = PC \times PD$.

$\blacksquare$

Definición. Al valor constante $PA \times PB$, se le conoce como la potencia de $P$ respecto a la circunferencia $\Gamma$.

Otras expresiones para la potencia

Proposición 1. Sea $P$ un punto en el plano y $(O, R)$ una circunferencia, entonces la potencia de $P$ respecto a $(O, R)$ es igual a $|OP^2 – R^2|$.

Demostración. Por $P$ tracemos la secante $AB$ a $(O, R)$ que pasa por $O$.

Figura 2

Si $P$ es exterior $PA \times PB = (OP – OA)(OP + OB) = (OP – R)(OP + R) = OP^2 – R^2$.

Si $P$ es interior $PA \times PB = (OA – OP)(OP + OB) = (R – OP)(OP + R) = R^2 – OP^2$.

$\blacksquare$

Proposición 2. Si $P$ es un punto exterior a una circunferencia $\Gamma$, entonces el cuadrado del segmento tangente $PT$ a $\Gamma$ es igual a la potencia de $P$ respecto a $\Gamma$.

Demostración. Tracemos una secante $PAB$ por $P$ a $\Gamma$ (figura 2), consideremos $\triangle PAT$ y $\triangle PTB$, como el ángulo semiinscrito $\angle ATP$, abarca el mismo arco que el ángulo inscrito $\angle ABT$, entonces son iguales, además $\angle TPA$ es un ángulo común a ambos triángulos.

Por criterio de semejanza AA, $\triangle PAT \sim \triangle PTB$,
$\Rightarrow \dfrac{PA}{PT} = \dfrac{PT}{PB}$
$\Rightarrow PA \times PB = PT^2$

$\blacksquare$

Teorema de las cuerdas

Teorema 2. Considera dos segmentos $AB$, $CD$ que se intersecan en $P$, entonces $A$, $B$, $C$ y $D$ son cíclicos si y solo si $PA \times PB = PC \times PD$.

Demostración. Supongamos que $A$, $B$, $C$, y $D$ son cíclicos, tanto si $P$ es interno o externo a la circunferencia, por el teorema 1, $PA \times PB = PC \times PD$.

Figura 3

Ahora supongamos se cumple $PA \times PB = PC \times PD$,
$\Rightarrow \dfrac{PB}{PD} = \dfrac{PC}{PA}$.

En caso de que $P$ este en la extensión de ambos segmentos (izquierda figura 3), $\angle APC$ es un ángulo común de los triángulos $\triangle PCB$ y $\angle PAD$.

En caso de que $P$ este contenido en ambos segmentos (derecha figura 3), entonces $\angle BPC = \angle APD$ por ser opuestos por el vértice.

Por criterio de semejanza LAL, $\triangle PCB \sim \triangle PAD$ $\Rightarrow \angle CDA = \angle CBA$.

Sabemos que el lugar geométrico de los puntos que subtienden ángulos iguales con el segmento $AC$, es un arco de circunferencia que pasa por $A$ y $C$. Por lo tanto, $A$, $B$, $C$ y $D$ son cíclicos.

$\blacksquare$

Formula de Euler

Teorema 3, formula de Euler. Considera el circuncírculo $(O, R)$ y el incírculo $(I, r)$ de un triángulo $\triangle ABC$, entonces $IO^2 = R(R – 2r)$.

Demostración. Sea $K = AI \cap (O, R)$, entonces $\angle BAK = \angle KAC$, pues $AK$ es bisectriz de $\angle A$.

$\angle KAC = \angle KBC$, pues abarcan el mismo arco, por lo tanto $\angle BAK = \angle KBC$.

$\Rightarrow \angle KBI = \angle KBC + \angle CBI = \angle BAK + \angle CBI = \dfrac{\angle A + \angle B}{2}$.

Figura 4

El ángulo $\angle BIK$ es un ángulo exterior de $\triangle BAI$, por lo que es igual a la suma de los ángulos no adyacentes a el,
$\angle BIK = \angle IBA + \angle BAI = \dfrac{\angle A + \angle B}{2}$
$\Rightarrow \angle BIK = \angle KBI$.

Por lo tanto $\triangle IKB$ es isósceles.

Por otro lado, considera $K’ = KO \cap (O, R)$, $Z = AB \cap (I, r)$, $\triangle BK’K$ es rectángulo, pues $KK’$ es diámetro.

Notemos que $\angle ZAK = \angle BAK = \angle BK’K$, pues abarcan el mismo arco, entonces por criterio de semejanza AA, $\triangle ZAI \sim \triangle BK’K$
$\Rightarrow \dfrac{AI}{K’K} = \dfrac{ZI}{BK}$
$\Rightarrow \begin{equation} AI \times BK = K’K \times ZI = 2Rr. \end{equation}$

Por la proposición 1, la potencia de $I$ con respecto a $(O, R)$
$\Rightarrow \begin{equation} AI \times KI = R^2 – IO^2. \end{equation}$

Haciendo el cociente de $(1)$ y $(2)$ tenemos que $\dfrac{BK}{KI} =\dfrac{2Rr}{R^2 – IO^2}$.

Como $\triangle IKB$ es isósceles entonces $BK = KI$
$\Rightarrow IO^2 – R^2 = –2Rr$
$\Rightarrow IO^2 = R^2 – 2Rr = R(R – 2r)$.

$\blacksquare$

Reciproco de la formula de Euler

Teorema 4. Sean $(O, R)$, $(I, r)$, dos circunferencias tal que $(I, r)$ está en el interior del círculo $(O, R)$ y tal que la distancia entre sus centros cumple la igualdad $IO^2 = R(R – 2r)$, entonces existen una infinidad de triángulos inscritos en $(O, R)$ y circunscritos en $(I, r)$.

Demostración. Dado que varios argumentos son iguales a los del teorema 3 solo serán mencionados, nos guiaremos en la figura 4.

Desde cualquier punto $A \in (O, R)$ trazamos las tangentes a $(I, r)$ que intersecan a $(O, R)$ en $B$ y $C$, sea $K = AI \cap (O, R)$, usando la igualdad dada y la potencia de $I$ respecto de $(O, R)$ obtenemos,
$\begin{equation} AI \times IK = R^2 – IO^2 = 2Rr. \end{equation}$.

Sean $Z$ e $Y$ los puntos de tangencia de $AB$ y $AC$ con $(I, r)$ respectivamente, por criterio hipotenusa-cateto los triángulos rectángulos $\triangle AIZ$ y $\triangle AIY$ son congruentes por lo que $AK$ es bisectriz de $\angle A$.

Sea $K’ = KO \cap (O, R)$, como $\triangle BKK’$ es rectángulo y $\angle BK’K = \angle ZAI$, por criterio de semejanza AA, $\triangle ZAI \sim \triangle BK’K$ y tenemos que
$\dfrac{AI}{K’K} = \dfrac{ZI}{BK}$
$\Rightarrow \begin{equation} AI \times BK = K’K \times ZI = 2Rr. \end{equation}$

Por $(3)$ y $(4)$ tenemos $AI \times IK = AI \times BK$
$\Rightarrow IK = BK$

Así $\triangle IKB$ es isósceles y $\angle KBI = \angle BIK$, pero
$\angle KBI = \angle KBC + \angle CBI = \dfrac{\angle A}{2} + \angle CBI$ y $\angle BIK = \dfrac{\angle A}{2} + \angle IBA$,
$\Rightarrow CBI = IBA$.

Sea $X$ pie de la perpendicular a $BC$ desde $I$, entonces por criterio de congruencia ALA, $\triangle IZB \cong \triangle IXB$ $\Rightarrow IZ = IX$.

Por lo tanto, $BC$ es tangente a $(I, r)$ en $X$, así $\triangle ABC$ está inscrito en $(O, R)$ y circunscrito en $(I, r)$.

$\blacksquare$

Lema de Haruki

Lema de Haruki. Sean $AB$ y $CD$ dos cuerdas de una circunferencia $\Gamma_1$ que no se intersecan considera $P$ un punto variable en el arco $\overset{\LARGE{\frown}}{BA}$ que no contiene a $C$ y a $D$. Sean $E = PC \cap AB$ y $F = PD \cap AB$, entonces el numero $\dfrac{AE \times FB}{EF}$, es independiente de la posición de $P$ en el arco $\overset{\LARGE{\frown}}{BA}$.

Demostración. Consideremos $\Gamma_2$ circuncírculo de $\triangle PED$ y sea $G = AB \cap \Gamma_2$, entonces $\angle EPD = \angle EGD$, pues abarcan el mismo arco.

Entonces $\angle AGD = \angle EGD = \angle EPD = \angle CPD$, esté último ángulo es fijo mientras $P$ varié en el arco $\overset{\LARGE{\frown}}{BA}$.

Figura 5

$A$ y $D$ son puntos fijos y $G$ siempre está sobre la recta $AB$, $G$ es un punto fijo, por lo tanto, el valor $BG$ es fijo.

Por otro lado, calculamos la potencia de $F$ respecto de ambas circunferencias
$FA \times FB = FP \times FD$ y $FE \times FG = FP \times FD$
$\Rightarrow (AE + FE) FB = FP \times FD = EF (FB + BG)$
$\Rightarrow \dfrac{AE \times FB}{EF} = BG$.

$\blacksquare$

Mas ejemplos

Problema 1. Sean $\triangle ABC$ y $D$ un punto interior del triángulo tal que $BE \times BA = CA \times CF$ donde $E$ y $F$ son los pies de las perpendiculares a $AB$ y $AC$ trazados desde $D$, encuentra el lugar geométrico de $D$.

Solución. Como $\angle DEA = \angle AFD = \dfrac{\pi}{2}$, entonces $AD$ es diámetro de una circunferencia que pasa por $E$ y $F$, por lo que el centro $O$ de dicha circunferencia $\Gamma(O)$ es el punto medio de $AD$.

Figura 6

Por la proposición 1, la potencia de $B$ y $C$ respecto a $\Gamma(O)$ es 
$OB^2 – R^2 = BE \times BA = CA \times CF = OA^2 – R^2$,
$\Rightarrow OB = OC$.

Esto implica que el conjunto $R$, de los puntos medios del segmento $AD$, esta contenido en la mediatriz del segmento $BC$, así el lugar geométrico de los puntos $D$, está en homotecia con centro en $A$ y razón $2$ con el conjunto $R$, esto es una recta paralela a la mediatriz de $BC$ y que esta en el interior de $\triangle ABC$.

$\blacksquare$

Observación. Notemos que si $D$ es un punto exterior de $\triangle ABC$ entonces $B$ y $C$ podrían situarse en lugares distintos respecto de $\Gamma(O)$, es decir uno fuera y otro dentro, por lo que la igualdad $OB = OC$ no seria cierta.

Problema 2. Considera $\triangle ABC$ y $(O, R)$ su circuncírculo, sean $D \in AB$ y $E \in AC$, sean $F$, $G$ y $H$ los puntos medios de $BE$, $CD$ y $DE$ respectivamente, si $DE$ es tangente al circuncírculo de $\triangle FGH$, muestra que $OD = OE$.

Figura 7

Como el ángulo semiinscrito $\angle DHF$ y el ángulo inscrito $\angle HGF$ abarcan el mismo arco, son iguales entre si.

Dado que $HF$ es un segmento medio de $\triangle BDE$ entonces $HF \parallel BD$ y $2HF = BD$
$\Rightarrow \angle DHF = \angle HDA$
$\Rightarrow \angle HGF = \angle HDA$.

De manera análoga podemos ver que $\angle GFH = \angle AED$ y que $HG \parallel EC$ y $2HG = EC$.

Por criterio de semejanza AA, $\triangle FGH \sim \triangle EDA$, entonces
$\dfrac{AE}{HF} = \dfrac{AD}{HG}$
$\Rightarrow \dfrac{AE}{\dfrac{BD}{2}} = \dfrac{AD}{\dfrac{EC}{2}}$
$\Rightarrow AE \times EC = AD \times BD$.

Por lo tanto, $D$ y $E$ tienen la misma potencia respecto a el circuncírculo de $\triangle ABC$.

Por la proposición 1, $R^2 – OD^2 = R^2 – OE^2$, $\Rightarrow OD = OE$.

$\blacksquare$

Tarea moral

  1. Dos segmentos $PA$ y $BC$ se intersecan en $P$, si $PA^2 = PB \times PC$, muestra que $PA$ es tangente al circuncírculo de $\triangle ABC$ en $A$.
Figura 8
  1. $\triangle ABC$ es un triangulo rectángulo con $\angle A = \dfrac{\pi}{2}$, sea $D \in BC$ el pie de la altura por $A$, considera $\Gamma_1$ el circuncírculo de $\triangle ADC$ y $\Gamma_2$ una circunferencia tangente a $\Gamma_1$ externamente y tangente a $AB$ y $BC$ en $E$ y $F$ respectivamente, muestra que $CE = CF$.
Figura 9
  1. Considera $(O, R)$, $(I, r)$ y $(I_a, r_a)$, el circuncírculo, el incírculo y alguno de los excÍrculos respectivamente de un triangulo, muestra que:
    $i)$ $OI_a^2 = R(R + 2r_a)$,
    $ii)$ $II_a^2 = 4R(r_a – r)$.
  2. Sean $\triangle ABC$, $D \in BC$ el pie de la altura por $A$ y $H \in AD$. Muestra que $H$ es el ortocentro de $\triangle ABC$ si y solo si $DB \times DC = AD \times HD$.
Figura 10
  1. Teorema de la mariposa. Sea $AB$ una cuerda de una circunferencia y $M$ su punto medio. Por $M$ trazamos otras dos cuerdas $PQ$ y $RS$, sean $E = PS \cap AB$ y $F = RQ \cap AB$. Prueba que $M$ es el punto medio de $EF$.
Figura 11

Más adelante…

Para concluir con los temas básicos de geometría de la circunferencia en la siguiente entrada hablaremos sobre el teorema de Ptolomeo que nos da una condición necesaria y suficiente para que un cuadrilátero convexo sea cíclico, este teorema nos ayudara mas adelante a demostrar algunas identidades trigonométricas.

Entradas relacionadas

Fuentes

  • Andreescu, T., Korsky, S. y Pohoata, C., Lemmas in Olympiad Geometry. USA: XYZ Press, 2016, pp 1-11.
  • Coxeter, H. y Greitzer, L., Geometry Revisited. Washington: The Mathematical Association of America, 1967, pp 27-31.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 118-124.
  • Geometría interactiva
  • Wikipedia
  • Cut the Knot