Archivo de la etiqueta: ecuación característica

Ecuaciones Diferenciales I: Sistemas lineales homogéneos con coeficientes constantes – Valores propios repetidos

Por Omar González Franco

La matemática es la ciencia del orden y la medida, de bellas
cadenas de razonamientos, todos sencillos y fáciles.
– Descartes

Introducción

El método de valores y vectores propios nos ha permitido obtener las soluciones generales de sistemas lineales homogéneos. Ya vimos los casos en los que los valores propios son reales y distintos y cuando son complejos, en esta entrada presentaremos el caso en el que algunos de los valores propios son repetidos.

En este caso se presenta un problema y es que nosotros sabemos que si una matriz $\mathbf{A}$ de $n \times n$ con componentes constantes tiene $n$ valores propios distintos, entonces tendremos $n$ vectores propios que son linealmente independientes y por tanto tendremos $n$ soluciones linealmente independientes del sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$. Si se presenta el caso en el que algunos valores propios son repetidos, entonces tendremos $k < n$ valores propios que son distintos y por tanto $k$ vectores propios linealmente independientes, lo que significa que nos faltarán $n -k$ soluciones linealmente independientes del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$. El problema aquí es ¿cómo obtener las soluciones linealmente independientes que nos faltan?, para así determinar la solución general del sistema lineal. Recordemos que la solución general corresponde a la combinación lineal de las $n$ soluciones linealmente independientes del sistema.

En esta entrada resolveremos este problema y lo interesante es que el concepto de exponencial de una matriz es lo que nos ayudará.

Vectores propios generalizados

De la primera unidad recordemos que la función $y(t) = ce^{at}$ es una solución de la ecuación diferencial escalar $y^{\prime}(t) = ay$ para cualesquiera constantes $a$ y $c$. De manera análoga, se desearía que la función vectorial

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{K} \label{1} \tag{1}$$

fuera una solución del sistema lineal

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{2} \tag{2}$$

para cualquier vector constante $\mathbf{K}$.

En la entrada en la que definimos la exponencial de una matriz demostramos que la función $\mathbf{Y}(t) = e^{\mathbf{A} t}$ no sólo es solución del sistema lineal (\ref{2}), sino que incluso es una matriz fundamental de soluciones. También vimos que la derivada de $\mathbf{Y}(t) = e^{\mathbf{A} t}$ es

$$\dfrac{d}{dt} e^{\mathbf{A}t} = \mathbf{A} e^{\mathbf{A}t} \label{3} \tag{3}$$

Usando este resultado mostremos lo siguiente.

$$\dfrac{d}{dt} (e^{\mathbf{A}t} \mathbf{K}) = (\mathbf{A} e^{\mathbf{A}t}) \mathbf{K} = \mathbf{A} (e^{\mathbf{A}t} \mathbf{K}) \label{4} \tag{4}$$

Esto muestra que la función $\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{K}$ efectivamente es solución del sistema lineal (\ref{2}).

Ahora que sabemos que (\ref{1}) es solución del sistema lineal (\ref{2}) veamos cómo esto puede ayudarnos a encontrar $n$ vectores $\mathbf{K}$ linealmente independientes. Notemos lo siguiente.

$$\mathbf{Y}(t) = e^{\mathbf{A} t} \mathbf{K} = e^{\mathbf{A} t} e^{(\lambda \mathbf{I} -\lambda \mathbf{I})t} \mathbf{K} = e^{(\mathbf{A} -\lambda \mathbf{I})t}e^{\lambda \mathbf{I}t} \mathbf{K} \label{5} \tag{5}$$

para cualquier constante $\lambda$ y en donde hemos usado el hecho de que

$$(\mathbf{A} -\lambda \mathbf{I})(\lambda \mathbf{I}) = (\lambda \mathbf{I})(\mathbf{A} -\lambda \mathbf{I}) \label{6} \tag{6}$$

De acuerdo a la definición de exponencial de una matriz observemos lo siguiente.

$$e^{\lambda \mathbf{I} t} = \sum_{k = 0}^{\infty} \dfrac{(\lambda \mathbf{I} t)^{k}}{k!} = \sum_{k = 0}^{\infty} \dfrac{ \lambda^{k} \mathbf{I}^{k} t^{k}}{k!} = \sum_{k = 0}^{\infty} \dfrac{ \lambda^{k} \mathbf{I} t^{k}}{k!} = \left( \sum_{k = 0}^{\infty} \dfrac{ (\lambda t)^{k}}{k!} \right) \mathbf{I} = e^{\lambda t} \mathbf{I} = e^{\lambda t}$$

Por lo tanto, (\ref{5}) se puede escribir como

$$\mathbf{Y}(t) = e^{\mathbf{A}t} \mathbf{K} = e^{\lambda t} e^{(\mathbf{A} -\lambda \mathbf{I})t} \mathbf{K} \label{7} \tag{7}$$

Concentrémonos un momento en el término $e^{(\mathbf{A} -\lambda \mathbf{I})t}$ de la solución anterior. Recordando que la exponencial $e^{\mathbf{A} t}$ es

$$e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t + \mathbf{A}^{2} \dfrac{t^{2}}{2!} + \cdots + \mathbf{A}^{k} \dfrac{t^{k}}{k!} + \cdots = \sum_{k = 0}^{\infty}\mathbf{A}^{k} \dfrac{t^{k}}{k!} \label{8} \tag{8}$$

entonces la exponencial $e^{(\mathbf{A} -\lambda \mathbf{I})t}$ es

$$e^{(\mathbf{A} -\lambda \mathbf{I})t} = \mathbf{I} + (\mathbf{A} -\lambda \mathbf{I}) t + (\mathbf{A} -\lambda \mathbf{I})^{2} \dfrac{t^{2}}{2!} + \cdots + (\mathbf{A} -\lambda \mathbf{I})^{k} \dfrac{t^{k}}{k!} + \cdots = \sum_{k = 0}^{\infty} (\mathbf{A} -\lambda \mathbf{I})^{k} \dfrac{t^{k}}{k!}$$

y, así mismo

$$e^{(\mathbf{A} -\lambda \mathbf{I})t} \mathbf{K} = \left( \sum_{k = 0}^{\infty} (\mathbf{A} -\lambda \mathbf{I})^{k} \dfrac{t^{k}}{k!} \right) \mathbf{K} \label{9} \tag{9}$$

Supongamos que existe un entero $m$, tal que

$$(\mathbf{A} -\lambda \mathbf{I})^{m} \mathbf{K} = \mathbf{0} \label{10} \tag{10}$$

Entonces la serie infinita (\ref{9}) terminará después de $m$ términos, pues si se satisface (\ref{10}), entonces se cumple

$$(\mathbf{A} -\lambda \mathbf{I})^{m + l} \mathbf{K} = \mathbf{0} \label{11} \tag{11}$$

Para $l > 0$ entero. Esto es claro debido a que

$$(\mathbf{A} -\lambda \mathbf{I})^{m + l} \mathbf{K} = (\mathbf{A} -\lambda \mathbf{I})^{l} \left[ (\mathbf{A} -\lambda \mathbf{I})^{m} \mathbf{K} \right] = \mathbf{0}$$

Por lo tanto,

$$e^{(\mathbf{A} -\lambda \mathbf{I})t} \mathbf{K} = \mathbf{K} + t(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} + \cdots + \dfrac{t^{m -1}}{(m -1)!}(\mathbf{A} -\lambda \mathbf{I})^{m -1} \mathbf{K} \label{12} \tag{12}$$

Así, la solución (\ref{7}) se puede escribir como

\begin{align*}
\mathbf{Y}(t) &= e^{\lambda t} \left[ \mathbf{K} + t(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} + \cdots + \dfrac{t^{m -1}}{(m -1)!}(\mathbf{A} -\lambda \mathbf{I})^{m -1} \mathbf{K} \right] \\
&= e^{\lambda t} \left( \sum_{k = 0}^{m -1} (\mathbf{A} -\lambda \mathbf{I})^{k} \dfrac{t^{k}}{k!} \right) \mathbf{K} \label{13} \tag{13}
\end{align*}

No es casualidad que estemos usando la notación $\lambda$ y $\mathbf{K}$, estas cantidades corresponden a los valores y vectores propios de la matriz de coeficientes $\mathbf{A}$ del sistema lineal (\ref{2}), respectivamente.

El vector propio $\mathbf{K}$ que satisface (\ref{10}) recibe un nombre particular.

El resultado que nos interesa es la solución (\ref{13}). En el método de valores y vectores propios lo que hacemos es determinar los valores propios de la matriz $\mathbf{A}$ y con ellos posteriormente determinamos los vectores propios. Los vectores propios se determinan con la ecuación vectorial

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} = \mathbf{0} \label{14} \tag{14}$$

Observemos que si se satisface (\ref{14}), entonces la serie (\ref{13}) se reduce a $\mathbf{Y}(t) = e^{\lambda t} \mathbf{K}$ que es la solución que ya conocíamos. Si los valores y vectores propios son complejos simplemente se aplica la teoría de la entrada anterior sobre la misma solución $\mathbf{Y}(t) = e^{\lambda t} \mathbf{K}$.

A continuación presentamos el algoritmo para encontrar $n$ soluciones linealmente independientes del sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$.

Algoritmo para encontrar $n$ soluciones linealmente independientes

  • Primero determinamos todos los valores y vectores propios de $\mathbf{A}$. Si $\mathbf{A}$ tiene $n$ vectores linealmente independientes, entonces el sistema lineal (\ref{2}) tiene $n$ soluciones linealmente independientes de la forma $e^{\lambda t} \mathbf{K}$. Esto es lo que siempre hemos hecho.
  • Supongamos que $\mathbf{A}$ tiene únicamente $k < n$ vectores propios linealmente independientes, entonces se tendrá sólo $k$ soluciones linealmente independientes de la forma $e^{\lambda t} \mathbf{K}$. Para determinar soluciones adicionales tomamos un valor propio $\lambda $ de $\mathbf{A}$ y buscamos todos los vectores $\mathbf{K}$ para los cuales se cumple simultáneamente
    $$(\mathbf{A} -\lambda \mathbf{I})^{2} \mathbf{K} = \mathbf{0} \hspace{1cm} y \hspace{1cm} (\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} \neq \mathbf{0} \label{15} \tag{15}$$
    Para cada uno de los vectores propios generalizados $\mathbf{K}$ encontrados, una solución del sistema lineal (\ref{2}) es
    $$\mathbf{Y}(t) = e^{\lambda t} \left[ \mathbf{K} + t(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} \right]\label{16} \tag{16}$$
    Esto se obtiene de la solución (\ref{13}). Hacemos esto para todos los valores propios distintos $\lambda $ de $\mathbf{A}$.
  • Si aún no se tienen suficientes soluciones, entonces se buscan todos los vectores propios generalizados $\mathbf{K}$ para los cuales
    $$(\mathbf{A} -\lambda \mathbf{I})^{3} \mathbf{K} = \mathbf{0} \hspace{1cm} y \hspace{1cm} (\mathbf{A} -\lambda \mathbf{I})^{2} \mathbf{K} \neq \mathbf{0}, \hspace{1cm} (\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} \neq \mathbf{0} \label{17} \tag{17}$$
    Para cada uno de tales vectores $\mathbf{K}$, una solución del sistema lineal (\ref{2}) es
    $$\mathbf{Y}(t) = e^{\lambda t} \left[ \mathbf{K} + t(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} + \dfrac{t^{2}}{2!}(\mathbf{A} -\lambda \mathbf{I})^{2} \mathbf{K} \right] \label{18} \tag{18}$$
    Nuevamente, este resultado se obtiene de considerar (\ref{17}) en (\ref{13}).
  • Este procedimiento se puede continuar hasta encontrar $n$ soluciones linealmente independientes.

Los puntos antes establecidos son los pasos a seguir para obtener $n$ soluciones linealmente independientes del sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$.

Realicemos un ejemplo en el que apliquemos el algoritmo anterior para que todo quede más claro.

Ejemplo: Resolver el siguiente problema con valores iniciales.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
2 & 1 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 2
\end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
1 \\ 2 \\ 1
\end{pmatrix}$$

Solución: El primer paso es determinar todos los valores y vectores propios de la matriz $\mathbf{A}$. La ecuación característica de $\mathbf{A}$ se obtiene de calcular el siguiente determinante.

$$\begin{vmatrix}
2 -\lambda & 1 & 3 \\ 0 & 2 -\lambda & -1 \\ 0 & 0 & 2 -\lambda
\end{vmatrix} = 0$$

Es sencillo notar que el polinomio característico es

$$P(\lambda) = (2 -\lambda )^{3}$$

y la ecuación característica es

$$(2 -\lambda )^{3} = 0$$

Vemos que la única raíz que se obtiene es $\lambda = 2$, éste es el único valor propio de $\mathbf{A}$ con multiplicidad tres ($r$ = 3). Un vector propio $\mathbf{K} \neq \mathbf{0}$ lo obtenemos de resolver la ecuación vectorial

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K} = \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

De este sistema se deduce que $k_{2} = k_{3} = 0$ y $k_{1}$ al ser arbitrario lo elegimos como $k_{1} = 1$. Por lo tanto, un vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix}$$

Entonces,

$$\mathbf{Y}_{1}(t) = e^{2t} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix}$$

es una solución del sistema lineal dado. Esta es la única solución linealmente independiente que pudimos encontrar con el método tradicional. La matriz del sistema es de $3 \times 3$, así que nos hacen faltan 2 soluciones linealmente independientes para poder formar un conjunto fundamental de soluciones y, por tanto, formar la solución general.

Pasemos al segundo punto del algoritmo.

Ahora buscamos todos los vectores $\mathbf{K} \neq \mathbf{0}$, tal que se satisface (\ref{15}), es decir

$$(\mathbf{A} -2\mathbf{I})^{2} \mathbf{K} = \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

De este sistema deducimos que $k_{3} = 0$ y tanto $k_{1}$ como $k_{2}$ son arbitrarios, nosotros les podemos asignar algún valor, pero cuidado, recordemos que una condición adicional que tenemos es que este nuevo vector también satisfaga que

$$(\mathbf{A} -2 \mathbf{I}) \mathbf{K} \neq \mathbf{0}$$

Un vector que satisface (\ref{15}) simultáneamente es

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix}$$

En este caso una solución del sistema lineal esta dada por (\ref{16}).

\begin{align*}
\mathbf{Y}_{2}(t) &= e^{2t} \left[ \mathbf{I} + t(\mathbf{A} -2 \mathbf{I}) \right] \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \\
&= e^{2t} \left[ \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1
\end{pmatrix} + t \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \right] \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \\
&= e^{2t} \left[ \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} + t \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \right] \\
&= e^{2t} \left[ \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} + t \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} \right]
\end{align*}

Esto es,

$$\mathbf{Y}_{2}(t) = e^{2t} \begin{pmatrix}
t \\ 1 \\ 0
\end{pmatrix}$$

En este proceso hemos encontrado dos vectores linealmente independientes, a saber

$$\mathbf{C}_{1} = \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{C}_{2} = \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix}$$

Ahora procedemos a buscar un vector propio generalizado más que satisfaga (\ref{17}) y tal que la solución sea de la forma (\ref{18}).

\begin{align*}
(\mathbf{A} -2 \mathbf{I})^{3} \mathbf{K} &= \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix}^{3} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} \\
&= \begin{pmatrix}
0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}
\end{align*}

Es claro que cualquier vector es solución de esta ecuación, sin embargo también se debe satisfacer que

$$(\mathbf{A} -\lambda \mathbf{I})^{2} \mathbf{K} \neq 0 \hspace{1cm} y \hspace{1cm} (\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} \neq 0$$

Un vector que satisface lo anterior es

$$\mathbf{K}_{3} = \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix}$$

De acuerdo a (\ref{18}) una solución del sistema lineal es

\begin{align*}
\mathbf{Y}_{3}(t) &= e^{2t} \left[ \mathbf{I} + t(\mathbf{A} -2 \mathbf{I}) + \dfrac{t^{2}}{2}(\mathbf{A} -2 \mathbf{I})^{2} \right] \mathbf{K}_{3} \\
&= e^{2t} \left[ \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1
\end{pmatrix} + t \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} + \dfrac{t^{2}}{2} \begin{pmatrix}
0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0
\end{pmatrix} \right] \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \\
&= e^{2t} \left[ \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + t \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + \dfrac{t^{2}}{2} \begin{pmatrix}
0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \right] \\
&= e^{2t} \left[ \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + t \begin{pmatrix}
3 \\ -1 \\ 0
\end{pmatrix} + \dfrac{t^{2}}{2} \begin{pmatrix}
-1 \\ 0 \\ 0
\end{pmatrix} \right] \\
\end{align*}

En este caso los vectores linealmente encontrados son

$$\mathbf{C}_{1} = \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix}, \hspace{1cm} \mathbf{C}_{2} = \begin{pmatrix}
3 \\ -1 \\ 0
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{C}_{3} = \begin{pmatrix}
-1 \\ 0 \\ 0
\end{pmatrix}$$

Y la tercer solución linealmente independiente es

$$\mathbf{Y}_{3}(t) = e^{2t} \begin{pmatrix}
3t -\dfrac{1}{2}t^{2} \\ -t \\ 1
\end{pmatrix}$$

Ahora que tenemos las tres soluciones linealmente independientes del sistema lineal dado podemos concluir que la solución general del sistema es

$$\mathbf{Y}(t) = e^{2t} \left[ c_{1} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
t \\ 1 \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
3t -\dfrac{1}{2}t^{2} \\ -t \\ 1
\end{pmatrix} \right]$$

Las constantes $c_{1}$, $c_{2}$ y $c_{3}$ se determinan a partir de los valores iniciales.

$$\mathbf{Y}(0) = \begin{pmatrix}
1 \\ 2 \\ 1
\end{pmatrix} = c_{1} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix}+ c_{3} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} = \begin{pmatrix}
c_{1} \\ c_{2} \\ c_{3}
\end{pmatrix} $$

Esto implica que $c_{1} = 1$, $c_{2} = 2$ y $c_{3} = 1$. Por lo tanto, la solución particular del sistema lineal es

$$\mathbf{Y}(t) = e^{2t} \left[ \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + 2 \begin{pmatrix}
t \\ 1 \\ 0
\end{pmatrix} + \begin{pmatrix}
3t -\dfrac{1}{2}t^{2} \\ -t \\ 1
\end{pmatrix} \right] = e^{2t} \begin{pmatrix}
1+ 5t -\dfrac{1}{2}t^{2} \\ 2 -t \\ 1
\end{pmatrix}$$

$\square$

Para concluir con el método de valores y vectores propios enunciaremos un importante teorema que es bueno tener en cuenta cuando trabajamos con valores y vectores propios. Este resultado es conocido como teorema de Cayley – Hamilton, la demostración no la haremos ya que se requiere de teoría de álgebra lineal que no veremos en este curso, pero que por supuesto puedes revisar en entradas de la materia correspondiente.

Teorema de Cayley – Hamilton

En el ejemplo anterior obtuvimos que la ecuación característica de la matriz $\mathbf{A}$ es

$$P(\lambda) = (2 -\lambda)^{3} = 0 \label{19} \tag{19}$$

Observemos que si sustituimos $\lambda$ por la matriz $\mathbf{A}$ obtenemos lo siguiente.

\begin{align*}
P(\mathbf{A}) &= (2 \mathbf{I} -\mathbf{A})^{3} \\
&= \left[ \begin{pmatrix}
2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2
\end{pmatrix} – \begin{pmatrix}
2 & 1 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 2
\end{pmatrix} \right]^{3} \\
&= \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix}^{3} \\
&= \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0
\end{pmatrix} \\
&= \begin{pmatrix}
0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0
\end{pmatrix}
\end{align*}

Vemos que se cumple

$$P(\mathbf{A}) = (2 \mathbf{I} -\mathbf{A})^{3} = \mathbf{0} \label{20} \tag{20}$$

Esto no es casualidad, resulta que cualquier matriz $\mathbf{A}$ de $n \times n$ ¡satisface su propia ecuación característica!. El teorema de Cayley – Hamilton establece este hecho.

Con esto concluimos esta entrada y el estudio de los sistemas lineales homogéneos. En la siguiente entrada aprenderemos a resolver sistemas lineales no homogéneos.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales homogéneos.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & 3 \\ -3 & 5
    \end{pmatrix}\mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 1 & 1 \\ 2 & 1 & -1 \\ -3 & 2 & 4
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 0 & -1 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & -1 & 2
    \end{pmatrix} \mathbf{Y}$
  1. Resolver los siguientes problemas con valores iniciales.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & 1 & 2 \\ -1 & 1 & 1 \\ -2 & 1 & 3
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    1 \\ 0 \\ 1
    \end{pmatrix}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -4 & -4 & 0 \\ 10 & 9 & 1 \\ -4 & -3 & 1
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    2 \\ 1 \\ -1
    \end{pmatrix}$

Más adelante…

Hemos concluido con los tres casos del método de valores y vectores propios para resolver sistemas de ecuaciones diferenciales lineales de primer orden homogéneas.

En la siguiente entrada comenzaremos a resolver sistemas lineales no homogéneos, el método que se utiliza es nuevamente el método de variación de parámetros. Veremos cómo es que este método se adapta a los sistemas lineales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Valores y vectores propios para resolver sistemas lineales

Por Omar González Franco

En la vida real, te lo aseguro, no hay algo como el álgebra.
– Fran Lebowitz

Introducción

Ya hemos dado inicio con el desarrollo de métodos de resolución de sistemas lineales de primer orden. En la entrada anterior desarrollamos el método de eliminación de variables que, a pesar de ser muy limitado, es un método sencillo y práctico para resolver sistemas con dos ecuaciones diferenciales lineales de primer orden.

Debido a que un sistema lineal puede ser visto como una ecuación matricial los resultados de álgebra lineal sobre valores y vectores propios de matrices pueden ser aplicados aquí. En esta entrada daremos un breve repaso sobre estos conceptos y veremos cómo es que estos resultados nos pueden ayudar a determinar la solución general de algunos sistemas de ecuaciones diferenciales.

La teoría que desarrollaremos a continuación es aplicable a sistemas lineales homogéneos con coeficientes constantes.

Sistemas lineales homogéneos

Un sistema lineal homogéneo con coeficientes constantes es de la forma

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}y_{1} + a_{12}y_{2} + \cdots + a_{1n}y_{n} \\
y_{2}^{\prime}(t) &= a_{21}y_{1} + a_{22}y_{2} + \cdots + a_{2n}y_{n} \\
&\vdots \\
y_{n}^{\prime}(t) &= a_{n1}y_{1} + a_{n2}y_{2} + \cdots + a_{nn}y_{n} \label{1} \tag{1}
\end{align*}

Si $\mathbf{A}$ es la matriz de $n \times n$ con componentes constantes

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

entonces el sistema lineal a resolver es

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{3} \tag{3}$$

En la segunda entrada de esta unidad vimos que la solución general del sistema lineal homogéneo

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}e^{0t} + c_{2} \begin{pmatrix}
1 \\ 1 \\ 0
\end{pmatrix}e^{2t} + c_{3} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix}e^{3t}$$

Y en la entrada anterior vimos que la solución del sistema lineal homogéneo

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y}$$

es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t}$$

Aunque para el primer caso aún no sabemos cómo obtener esa solución lo que sabemos es que efectivamente corresponde a la solución general del sistema homogéneo. Notemos que cada vector solución es de la forma

$$\mathbf{Y}_{i} = \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix}e^{\lambda_{i}t}, \hspace{1cm} i = 1, 2 ,3$$

donde $k_{i}$ y $\lambda_{i}$, $i = 1, 2, 3$, son constantes. Lo mismo para el segundo caso, con $k_{i}$, $\lambda_{i}$, $i = 1, 2$, constantes. Esta particularidad nos hace preguntarnos si siempre es posible hallar una solución de la forma

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t} \label{4} \tag{4}$$

como solución general del sistema lineal (\ref{3}).

La respuesta es que sí, pero antes de continuar con nuestro desarrollo nos parece pertinente repasar brevemente algunos conceptos de Álgebra Lineal, en particular el de valores y vectores propios.

Valores y vectores propios

Sea $T: V \rightarrow W$ una transformación lineal, en álgebra lineal muchas veces resulta útil encontrar un vector $v$ en el espacio vectorial $V$ tal que $T\mathbf{v}$ y $\mathbf{v}$ sean paralelos, es decir, se busca un vector $\mathbf{v}$ y un escalar $\lambda$, tal que

$$T\mathbf{v} = \lambda \mathbf{v} \label{5} \tag{5}$$

Recordemos que si $\mathbf{v} \neq \mathbf{0}$ y $\lambda$ satisfacen la ecuación (\ref{5}), entonces $\lambda$ se denomina un valor característico o valor propio de $T$ y $\mathbf{v}$ un vector característico o vector propio de $T$ correspondiente al valor propio $\lambda$.

También recordemos que si $V$ tiene dimensión finita, entonces la transformación $T$ se puede representar por una matriz $\mathbf{A}_{T}$, de manera que se pueden definir los valores y vectores propios de esta matriz.

Denotaremos con $M_{n \times n}$ al conjunto de todas las matrices cuadradas de $n \times n$ con componentes reales y constantes.

Como nota interesante, los valores y vectores propios también son conocidos como valores y vectores característicos o eigenvalores y eigenvectores, donde el término eigen es un término alemán que significa propio. En este curso los llamaremos valores y vectores propios.

Recordemos nuevamente el concepto de matriz inversa.

Para el caso especial $\mathbf{A} = \mathbf{I}$, con $\mathbf{I}$ la matriz identidad, se tiene que para cualquier vector $\mathbf{v} \in V$

$$\mathbf{Av} = \mathbf{Iv} = \mathbf{v} \label{8} \tag{8}$$

Así, el único valor propio de $\mathbf{A}$ es $1$ y todo $\mathbf{v} \neq \mathbf{0} \in V$ es un vector propio de $\mathbf{I}$.

Otra observación interesante es que cualquier múltiplo de un vector propio de $\mathbf{A}$ es también un vector propio de $\mathbf{A}$, con el mismo valor propio.

$$\mathbf{A}(c \mathbf{v}) = c \mathbf{Av} = c \lambda \mathbf{v} = \lambda (c \mathbf{v}) \label{9} \tag{9}$$

Ecuación característica

Supongamos que $\lambda $ es un valor propio de $A$, entonces existe un vector diferente de cero

$$\mathbf{v} = \begin{pmatrix}
v_{1} \\ v_{2} \\ \vdots \\ v_{n}
\end{pmatrix} \neq \mathbf{0}$$

tal que

$$\mathbf{Av} = \lambda \mathbf{v} = \lambda \mathbf{Iv} \label{10} \tag{10}$$

Reescribiendo esto, se tiene

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{v} = \mathbf{0} \label{11} \tag{11}$$

Si $A$ es una matriz de $n \times n$, la ecuación anterior corresponde a un sistema homogéneo de $n$ ecuaciones con las incógnitas $v_{1}, v_{2}, \cdots, v_{n}$. Como se ha supuesto que $ \mathbf{v} \neq \mathbf{0}$, entonces el sistema no tiene solución trivial y por tanto el determinante de (\ref{11}) debe ser cero.

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{12} \tag{12}$$

De manera equivalente, si ocurre que $|\mathbf{A} -\lambda \mathbf{I}| \neq 0$, entonces la única solución a (\ref{11}) es la trivial $\mathbf{v} = \mathbf{0}$, lo que significa que $\lambda$ no es un valor propio de $A$.

Estos resultados quedan establecidos en el siguiente teorema.

La relación (\ref{13}) es muy importante, tanto que merece nombres particulares.

El polinomio $P(\lambda )$ es del mismo grado que el número de filas y columnas de la matriz $\mathbf{A}$. Si $\mathbf{A} \in M_{n \times n}$, entonces $P(\lambda)$ es un polinomio de grado $n$ en $\lambda$. Por ejemplo, si

$$\mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \label{14} \tag{14}$$

entonces,

$$\mathbf{A} -\lambda \mathbf{I} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} -\begin{pmatrix}
\lambda & 0 \\ 0 & \lambda
\end{pmatrix} = \begin{pmatrix}
a -\lambda & b \\ c & d -\lambda
\end{pmatrix} \label{15} \tag{15}$$

y

\begin{align*}
P(\lambda ) &= |\mathbf{A} -\lambda \mathbf{I}| \\
&= (a -\lambda)(d -\lambda) -bc \\
&= \lambda^{2} -(a + d) \lambda + (ad -bc) \label{16} \tag{16}
\end{align*}

La matriz es de $2 \times 2$ y el polinomio característico es un polinomio de grado $2$.

El teorema fundamental del álgebra nos dice que cualquier polinomio de grado $n$ con coeficientes reales o complejos tiene exactamente $n$ raíces contando multiplicidades y dado que cualquier valor propio de $\mathbf{A}$ es una raíz de la ecuación característica de $\mathbf{A}$, se concluye que, contando multiplicidades, toda matriz $\mathbf{A} \in M_{n \times n}$ tiene exactamente $n$ valores propios.

Realicemos dos ejemplos sencillos en donde determinemos los valores y vectores propios de una matriz. Uno en donde los valores propios sean distintos (con multiplicidad $1$) y uno en donde los valores propios sean números complejos.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

$$\mathbf{A} = \begin{pmatrix}
-81 & 16 \\ -420 & 83
\end{pmatrix}$$

Solución: De acuerdo a (\ref{13}), determinemos la ecuación característica.

$$\begin{vmatrix}
-81 -\lambda & 16 \\ -420 & 83 -\lambda
\end{vmatrix} = (-81 -\lambda)(83 -\lambda) -16(-420) = 0$$

Reordenando obtenemos que la ecuación característica es

$$\lambda^{2} -2 \lambda -3 = 0$$

y el polinomio característico es

$$P(\lambda) = \lambda^{2} -2 \lambda -3$$

Resolviendo para $\lambda$ se obtienen las raíces $\lambda_{1} = -1$ y $\lambda_{2} = 3$. Para obtener los vectores propios buscamos un vector $\mathbf{v} \neq 0$, tal que se cumpla (\ref{11}) para cada valor propio $\lambda$. Comencemos con $\lambda_{1}$.

Caso 1: $\lambda_{1} = -1$.

$$\begin{pmatrix}
-81 -(-1) & 16 \\ -420 & 83 -(-1)
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
-80 & 16 \\ -420 & 84
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Este resultado lo podemos escribir como las siguientes dos ecuaciones.

\begin{align*}
-80 v_{1} + 16 v_{2} &= 0 \\
-420 v_{1} + 84 v_{2} &= 0
\end{align*}

Que en realidad corresponden a una sola.

\begin{align*}
-5v_{1} + v_{2} &= 0 \\
v_{2} &= 5v_{1}
\end{align*}

Si elegimos $v_{1} = 1$, entonces $v_{2} = 5$, así el primer vector propio es

$$\mathbf{v}_{1} = \begin{pmatrix}
1 \\ 5
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 3$.

$$\begin{pmatrix}
-81 -3 & 16 \\ -420 & 83-3
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
-84 & 16 \\ -420 & 80
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

\begin{align*}
-21v_{1} + 4v_{2} &= 0 \\
v_{2} &= \dfrac{21}{4}v_{1}
\end{align*}

Por conveniencia elegimos $v_{1} = 4$, entonces $v_{2} = 21$, así

$$\mathbf{v}_{2} = \begin{pmatrix}
4 \\ 21
\end{pmatrix}$$

En conclusión, los valores y vectores propios de la matriz $\mathbf{A}$ son $\lambda_{1} = -1$, $\lambda_{2} = 3$, $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ y $\mathbf{v}_{2} = \begin{pmatrix} 4 \\ 21 \end{pmatrix}$, respectivamente.

$\square$

Realicemos el segundo ejemplo.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

$$\mathbf{A} = \begin{pmatrix}
2 & -1 \\ 5 & -2
\end{pmatrix}$$

Solución: Determinemos la ecuación característica.

$$\begin{vmatrix}
2 -\lambda & -1 \\ 5 & -2 -\lambda
\end{vmatrix} = (2 -\lambda)(-2 -\lambda) + 5 = 0$$

La ecuación característica es

$$\lambda^{2} + 1 = 0$$

De donde $\lambda_{1} = i$ y $\lambda_{2} = -i$. Determinemos los vectores propios.

Caso 1: $\lambda_{1} = i$.

$$\begin{pmatrix}
2 -i & -1 \\ 5 & -2 -i
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
(2 -i)v_{1} -v_{2} &= 0 \\
5v_{1} -(2 + i)v_{2} &= 0
\end{align*}

Resolviendo el sistema se obtiene que $v_{1} = 2 + i$ y $v_{2} = 5$, así

$$\mathbf{v}_{1} = \begin{pmatrix}
2 + i \\ 5
\end{pmatrix}$$

Caso 2: $\lambda_{2} = -i$

$$\begin{pmatrix}
2 + i & -1 \\ 5 & -2 + i
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
(2 + i) v_{1} -v_{2} &= 0 \\
5v_{1} + (-2 + i)v_{2} &= 0
\end{align*}

Resolviendo el sistema se obtiene que $v_{1} = 2 -i$ y $v_{2} = 5$, así

$$\mathbf{v}_{2} = \begin{pmatrix}
2 -i \\ 5
\end{pmatrix}$$

$\square$

En caso de requerir conocer más a fondo sobre el algoritmo que llevamos a cabo para obtener los valores y vectores propios de una matriz se recomienda revisar directamente en el curso de Álgebra Lineal I. Recordemos que aquí sólo estamos haciendo un breve repaso.

Para concluir con nuestro repaso, enunciemos un teorema de suma importancia que nos será de utilidad mas adelante. Haremos la demostración por inducción.

Demostración: Como el caso $m = 1$ se trata de un solo vector es evidente que se satisface el teorema, hagamos el caso $m = 2$, para ello consideremos la combinación lineal

$$c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} = \mathbf{0} \label{17} \tag{17}$$

Multipliquemos ambos lados de la ecuación por la matriz $\mathbf{A}$.

$$c_{1} \mathbf{Av}_{1} + c_{2} \mathbf{Av}_{2} = \mathbf{0} \label{18} \tag{18}$$

Como $\mathbf{Av}_{i} = \lambda_{i}\mathbf{v}_{i}$, para $i = 1, 2$, entonces

$$c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2} = \mathbf{0} \label{19} \tag{19}$$

A la ecuación (\ref{17}) la multiplicamos por $\lambda_{1}$ y la restamos de la ecuación (\ref{19}).

$$(c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2}) -(c_{1} \lambda_{1} \mathbf{v}_{1} -c_{2} \lambda_{1} \mathbf{v}_{2}) = \mathbf{0}$$

que se reduce a

$$c_{2}(\lambda_{2} -\lambda_{1}) \mathbf{v}_{2} = \mathbf{0} \label{20} \tag{20}$$

Como $\mathbf{v}_{2} \neq \mathbf{0}$ por definición de vector característico y por hipótesis $\lambda_{1} \neq \lambda_{2}$, entonces se concluye que $c_{2} = 0$, sustituyendo en (\ref{17}) se ve que $c_{1} = 0$, por tanto se cumple el teorema para $m = 2$, es decir, $\mathbf{v}_{1}$ y $\mathbf{v}_{2}$ son linealmente independientes.

Ahora supongamos que el teorema es cierto para $m = n$, es decir, cualquier conjunto de $n$ vectores propios de $\mathbf{A}$ con valores propios diferentes es linealmente independiente. Hay que demostrar que cualquier conjunto de $n + 1$ vectores propios de $\mathbf{A}$ con valores propios diferentes es también linealmente independiente. La demostración sigue el mismo procedimiento que como lo hicimos para $m = 2$, consideremos la siguiente combinación lineal.

$$c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} + \cdots + c_{n + 1} \mathbf{v}_{n + 1} = \mathbf{0} \label{21} \tag{21}$$

Multipliquemos por $\mathbf{A}$ en ambos lados.

$$c_{1} \mathbf{Av}_{1} + c_{2} \mathbf{Av}_{2} + \cdots + c_{n + 1} \mathbf{Av}_{n + 1} = \mathbf{0} \label{22} \tag{22}$$

Aplicando $\mathbf{Av}_{i} = \lambda_{i} \mathbf{v}_{1}$ para $i = 1, 2, 3, \cdots, n + 1$, se tiene

$$c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2} + \cdots + c_{n + 1} \lambda_{n + 1} \mathbf{v}_{n + 1} = \mathbf{0} \label{23} \tag{23}$$

Si se multiplica ambos lados de la ecuación (\ref{21}) por $\lambda_{1}$ y se resta de (\ref{23}), se obtiene

$$c_{2}(\lambda_{2} -\lambda_{1}) \mathbf{v}_{2} + c_{3}(\lambda_{3} -\lambda_{1}) \mathbf{v}_{3} + \cdots + c_{n + 1}(\lambda_{n + 1} -\lambda_{1})\mathbf{v}_{n + 1} = \mathbf{0} \label{24} \tag{24}$$

Pero $\mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{n + 1}$ son vectores propios de $\mathbf{A}$ con valores propios distintos $\lambda_{2}, \lambda_{3}, \cdots, \lambda_{n + 1}$, respectivamente. Por hipótesis de inducción, los vectores son linealmente independientes, así que

$$c_{2}(\lambda_{2} -\lambda_{1}) = 0, \hspace{1cm} c_{3}(\lambda_{3} -\lambda_{1}) = 0, \hspace{1cm} \cdots, \hspace{1cm} c_{n + 1}(\lambda_{n + 1} -\lambda_{1}) = 0$$

Como los valores propios son distintos entre sí, entonces necesariamente

$$c_{2} = c_{3} = \cdots = c_{n + 1} = 0$$

Con este resultado la ecuación (\ref{21}) obliga a que $c_{1}$ sea cero. Por lo tanto, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{n + 1}$ son linealmente independientes. De esta manera queda demostrado el teorema.

$\square$

En conclusión, vectores propios correspondientes a valores propios distintos son linealmente independientes.

Con este breve repaso en mente regresemos a los sistemas de ecuaciones diferenciales.

Valores y vectores propios en sistemas de ecuaciones diferenciales

Ahora que hemos recordado las definiciones de valores y vectores propios y algunas propiedades veamos cómo es que estos conceptos son útiles para resolver sistemas lineales de primer orden homogéneos.

Al inicio de la entrada decíamos que es posible encontrar soluciones de la forma (\ref{4}).

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t}$$

Si derivamos este vector, se obtiene

$$\mathbf{Y}^{\prime} = \mathbf{K} \lambda e^{\lambda t} \label{25} \tag{25}$$

Sustituyamos en el sistema homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$.

$$\mathbf{K} \lambda e^{\lambda t} = \mathbf{AK}e^{\lambda t} \label{26} \tag{26}$$

Si dividimos entre $e^{\lambda t}$ y reordenamos, se tiene

$$\mathbf{AK} = \lambda \mathbf{K}$$

o bien,

$$\mathbf{AK} -\lambda \mathbf{K} = \mathbf{0}$$

Debido a que $\mathbf{K} = \mathbf{IK}$, con $\mathbf{I}$ la matriz identidad, la última expresión se puede escribir como

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} = \mathbf{0}\label{27} \tag{27}$$

Si $\mathbf{A}$ es la matriz dada en (\ref{2}), entonces la ecuación matricial (\ref{27}) es equivalente a las $n$ ecuaciones algebraicas simultáneas

\begin{align*}
(a_{11} -\lambda)k_{1} + \hspace{1.2cm} a_{12}k_{2} + \cdots + \hspace{1.2cm} a_{1n}k_{n} &= 0 \\
a_{21}k_{1} + (a_{22} -\lambda)k_{2} + \cdots + \hspace{1.2cm} a_{2n}k_{n} &= 0 \\
\vdots \\
a_{n1}k_{1} + \hspace{1.2cm} a_{n2}k_{2} + \cdots + (a_{nn} -\lambda)k_{n} &= 0 \label{28} \tag{28}
\end{align*}

Si queremos encontrar soluciones $\mathbf{Y}(t)$ como (\ref{4}), necesitamos primero encontrar una solución no trivial del sistema (\ref{28}), de lo visto en nuestro repaso de valores y vectores propios, si la solución debe ser la no trivial, entonces se requiere que el determinante sea igual a cero, esto es

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{29} \tag{29}$$

Esta ecuación polinomial corresponde a la ecuación característica de la matriz $\mathbf{A}$. Sus soluciones son los valores propios de $\mathbf{A}$. Una solución $\mathbf{K} \neq 0$ de (\ref{27}) correspondiente a un valor propio $\lambda$ es el vector propio de $\mathbf{A}$.

La ecuación (\ref{29}) al tratarse de una ecuación polinomial existen tres casos posibles, cuando los valores propios son reales y distintos, cuando son repetidos y cuando son complejos. Para cada caso existe una forma particular de la solución de (\ref{3}).

Para concluir con esta entrada demostremos un resultado que establece la forma de la solución general del sistema lineal (\ref{3}).

Demostración: Definamos las funciones

$$\mathbf{Y}_{1}(t) = e^{\lambda_{1}t}\mathbf{K}_{1}, \hspace{1cm} \mathbf{Y}_{2}(t) = e^{\lambda_{2}t}\mathbf{K}_{2}, \hspace{1cm} \cdots, \hspace{1cm} \mathbf{Y}_{n}(t) = e^{\lambda_{n}t} \mathbf{K}_{n}$$

Notemos que para la $i$-ésima función $\mathbf{Y}_{i}(t) = e^{\lambda_{i}t} \mathbf{K}_{i}$ se cumple lo siguiente.

$$\mathbf{Y}^{\prime}_{i} = e^{\lambda_{i}t} (\lambda_{i} \mathbf{K}_{i}) = e^{\lambda_{i}t} (\mathbf{AK}_{i}) = \mathbf{AY}_{i} \label{32} \tag{32}$$

En donde se hecho uso de la relación (\ref{6}). Esto nos muestra que $\mathbf{Y}_{i}(t)$ es solución del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ para cada $i = 1, 2, \cdots, n$. Basta mostrar que el Wronskiano es distinto de cero para probar que las funciones definidas forman un conjunto fundamental de soluciones. El Wronskiano está dado por

\begin{align*}
W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots,\mathbf{Y}_{n}) &= \begin{vmatrix} e^{\lambda_{1}t} \mathbf{K}_{1} & e^{\lambda_{2}t} \mathbf{K}_{2} & \cdots & e^{\lambda_{n}t} \mathbf{K}_{n} \end{vmatrix} \\
&= e^{(\lambda_{1} + \lambda_{2} + \cdots + \lambda_{n})t} \begin{vmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} & \cdots & \mathbf{K}_{n} \end{vmatrix} \label{33} \tag{33}
\end{align*}

Como la exponencial nunca se hace cero y por hipótesis los vectores $\mathbf{K}_{1}, \mathbf{K}_{2}, \cdots, \mathbf{K}_{n}$ son linealmente independientes, es decir, el determinante nunca es cero

$$\begin{vmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} & \cdots & \mathbf{K}_{n} \end{vmatrix} \neq 0 \label{34} \tag{34}$$

entonces el Wronskiano es distinto de cero. Por el teorema de solución general de un sistema homogéneo concluimos que el conjunto

$$S = \{e^{\lambda_{1}t} \mathbf{K}_{1}, e^{\lambda_{2}t} \mathbf{K}_{2}, \cdots, e^{\lambda_{n}t} \mathbf{K}_{n}\}$$

es un conjunto fundamental de soluciones del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ y la solución general es

$$\mathbf{Y}(t) = c_{1} e^{\lambda_{1}t} \mathbf{K}_{1} + c_{2} e^{\lambda_{2}t} \mathbf{K}_{2} + \cdots + c_{n} e^{\lambda_{n}t} \mathbf{K}_{n}$$

con $c_{1}, c_{2}, \cdots, c_{n}$ constantes arbitrarias.

$\square$

En la siguiente entrada aplicaremos todo esto en el desarrollo de un nuevo método de resolución de sistemas lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener los valores y vectores propios de las siguientes matrices.
  • $\mathbf{A} = \begin{pmatrix}
    -62 & -20 \\ 192 & 62
    \end{pmatrix}$
  • $\mathbf{A} = \begin{pmatrix}
    -2 & 5 & 0 \\ 5 & -2 & 0 \\ 0 & 0 & 1
    \end{pmatrix}$
  1. Demostrar que para cualesquiera números reales $\alpha$ y $\beta$, la matriz $$\mathbf{A} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$ tiene valores propios $\alpha \pm i\beta$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar lo siguiente:
  • Demostrar que $\mathbf{A}^{-1}$ (la matriz inversa de $\mathbf{A}$) existe si y sólo si $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ son todos distintos de cero.
  • Si $\mathbf{A}^{-1}$ existe, demostrar que los valores propios de $\mathbf{A}^{-1}$ son $\dfrac{1}{\lambda_{1}}, \dfrac{1}{\lambda_{2}}, \cdots, \dfrac{1}{\lambda_{n}}$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar que la matriz $\mathbf{A} -\alpha \mathbf{I}$ tiene valores propios $\lambda_{1} -\alpha, \lambda_{2} -\alpha, \cdots, \lambda_{n} -\alpha$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar que los valores propios de $\mathbf{A}^{m}$ son $\lambda^{m}_{1}, \lambda^{m}_{2}, \cdots, \lambda^{m}_{n}$ para $m = 1, 2, 3, \cdots$.

    Recuerda que para calcular la potencia de una matriz, debemos multiplicar la matriz por ella misma tantas veces como indique el exponente, por ejemplo
    $$\mathbf{A}^{5} = \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}$$

Más adelante…

Un nuevo método para resolver sistemas de ecuaciones diferenciales lineales de primer orden homogéneas con coeficientes constantes es el que estamos por desarrollar. Dicho método involucra obtener los valores y vectores propios de la matriz que conforma al sistema lineal, es por ello que hemos dedicado esta entrada en hacer un breve repaso sobre estos conceptos y hemos visto cómo es que se ven involucrados en la resolución de estos sistemas.

Como vimos, los valores propios se obtienen de encontrar las raíces del polinomio característico lo que significa que se pueden tener raíces reales y distintas, raíces con multiplicidad mayor a uno, es decir, que se repiten o raíces complejas, para cada caso existe una forma distinta de obtener la solución de los sistemas lineales homogéneos $\mathbf{Y}^{\prime} = \mathbf{AY}$.

En las próximas tres entradas estudiaremos cada caso. Comenzaremos con el caso en el que los valores propios del sistema son todos reales y distintos entre sí.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»