Antes de dar la definición de espacio topológico y ver ejemplos, siempre resulta conveniente familiarizarnos un poco con los conceptos a los que nos vamos a enfrentar, tratando de entender intuitivamente las bases de lo que vamos a estudiar. Seguramente ya has trabajado con conceptos de topología en tu curso de cálculo 3 (de hecho es altamente recomendado que hayas cursado esta materia antes de enfrentarte a un curso de topología) y conoces conceptos como abiertos, cerrados, compacidad, conexidad, etc., que usaste para entender las propiedades topológicas de $\mathbb{R}^n$. A grandes rasgos, la topología se ocupa de entender las relaciones entre objetos que viven en cierto ambiente (en el caso de cálculo 3 el ambiente era $\mathbb{R}^n$); estas relaciones no se preocupan por el tamaño o la forma específica de los objetos, más bien se ocupan de características como si el objeto está completamente conectado, la cantidad de agujeros que tiene, etc. Seguramente has escuchado el famoso ejemplo de que para un topólogo un taza y una dona son el mismo objeto. La explicación rápida de esto es que ambos objetos sólo tienen un agujero, y como a la topología no le interesa la forma específica de la taza y la dona, entonces topológicamente son lo mismo.
Nota. A lo largo de todo el curso se considerará al conjunto de los números naturales a partir del 1, es decir, $\mathbb{N} = \{1,2,3,\ldots\}$.
Definición de espacio topológico
Definición. Sean $X$ un conjunto y $\tau\subseteq\mathcal{P}(X)$. Decimos que $\tau$ es una topología para $X$ si cumple:
$\varnothing\in\tau$, $X\in\tau$
Si $U,V\in\tau$, entonces $U\cap V\in\tau$
Si $\{U_i\}_{i\in I} \subseteq \tau$, entonces $\bigcup\limits_{i\in I}U_i\in\tau$
A los elementos de $\tau$ les llamamos abiertos.
Una de las primeras consecuencias de esta definición es que la intersección finita de abiertos es abierto, en un momento probaremos este resultado. Por otro lado, observemos que la tercera indica que $\tau$ es cerrada bajo uniones arbitrarias, es decir, cualquier unión de abiertos siempre resulta en un abierto, sin importar cuántos sean.
Proposición. Sean $X$ un conjunto, $\tau$ una topología para $X$ y $\{U_i\}_{i=1}^n \subseteq \tau$. Entonces $\bigcap\limits_{i=1}^n U_i \in \tau$.
Demostración. P.D. $\bigcap\limits_{i=1}^n U_i \in \tau$. Procedamos por inducción sobre $n$.
Si $n=2$, tenemos que $U_1,U_2 \in \tau$, aplicando la propiedad 2 de la definición de topología, tenemos que $U_1\cap U_2 \in \tau$.
Supongamos válido para $n=k$, i.e., $\bigcap\limits_{i=1}^k U_i \in \tau$.
P.D. $\bigcap\limits_{i=1}^{k+1} U_i \in \tau$. Por hipótesis $ \{U_i\}_{i=1}^{k+1} \subseteq \tau$, entonces $U_1,\ldots, U_{k+1}\in \tau$. Por hipótesis de inducción, $\bigcap\limits_{i=1}^k U_i \in \tau$, entonces aplicando la propiedad 2 de la definición de topología, tenemos que $\left(\bigcap\limits_{i=1}^k U_i \right) \cap U_{k+1} \in \tau$, i.e., $\bigcap\limits_{i=1}^{k+1} \in \tau$.
Por lo tanto, $\bigcap\limits_{i=1}^n U_i \in \tau$.
$\square$
Después de esta proposición, es natural preguntarse si la intersección arbitraria de abiertos siempre resulta ser un abierto. La respuesta es que no, y esto lo podemos comprobar con un simple ejemplo usando la topología usual de los números reales (esta es la topología con la que se trabaja en cálculo, más adelante la definiremos formalmente). Consideremos la familia de abiertos $\{U_n\}_{n\in\mathbb{N}}$, donde $U_n := \left(-\frac{1}{n}, \frac{1}{n}\right)$. Cada $U_n$ es un intervalo abierto en la recta real, y el único elemento que tienen en común todos los intervalos es el cero, es decir, $\bigcap\limits_{n\in\mathbb{N}} U_n = \{0\}$, pero un conjunto unitario no puede ser abierto en la topología usual de los reales. Por lo tanto, concluimos que la intersección arbitraria de abiertos no necesariamente resulta en un abierto.
Ya que hemos definido qué es una topología, es natural tener la siguiente definición.
Definición. Si $\tau$ es topología para $X$, decimos que $(X,\tau)$ es un espacio topológico.
Veamos algunos ejemplos.
Ejemplos
Sea $X=\{a,b,c,d,e\}$.
$\tau_1 = \{\{b,c\}, X, \{a,d,e\}\}$. $\tau_1$ no es topología, pues $\varnothing\notin\tau_1$.
$\tau_2 = \{\varnothing, X\}$. $\tau_2$ sí es topología. Contiene el vacío y el total, y la intersección o unión entre ellos vuelve a ser el vacío o el total. A esta topología se le llama topología indiscreta y se suele denotar por $\tau_{\text{indis}}$.
$\tau_3 = \mathcal{P}(X)$. $\tau_3$ sí es topología, pues contiene a todos los subconjuntos de $X$. A esta topología se le llama topología discreta y se suele denotar por $\tau_{\text{dis}}$.
$\tau_4 = \{\varnothing, X, \{a,d,e\}, \{b,c,d,e\}, \{d\}\}$. $\tau_4$ no es topología, pues $\{a,d,e\}\cap\{b,c,d,e\} = \{d,e\} \notin \tau_4$.
$\tau_5 = \{\varnothing, X, \{a,d,e\}, \{b,d,e\}, \{d,e\}\}$. $\tau_5$ no es topología, pues $\{a,d,e\}\cup\{b,d,e\} = \{a,b,d,e\} \notin \tau_5$.
$\tau_6 = \{\varnothing, X, \{a,b\}, \{c,d\}, \{a,b,c,d\}\}$. $\tau_5$ sí es topología.
Hasta ahora todos los ejemplos que hemos visto son finitos, y para verificar si cierto conjunto es topología o no, basta verificar que se cumplan las propiedades con todos los elementos del conjunto, o encontrar algunos elementos que no cumplan con las propiedades. Ahora veremos un ejemplo con un conjunto que no necesariamente tiene que ser finito, y para verificar si es topología o no, tendremos que verificar las propiedades usando las propiedades del conjunto.
Topología del punto fijo
Sean $X$ un conjunto (puede ser finito o infinito) y $p\in X$. Definimos $\tau = \{A\subseteq X \,:\, p\in A\}$. Inmediatamente podemos ver que $\tau$ no es topología ya que $\varnothing\notin\tau$, pues por definición todo elemento de $\tau$ contiene a $p$. Entonces definimos $\tau_p = \{A\subseteq X \,:\, p\in A\}\cup \{\varnothing\}$. A esta topología se le llama topología del punto fijo. Veamos que $\tau_p$ sí es topología.
Demostración. Para demostrar que $\tau_p$ es topología tenemos que verificar las tres propiedades de la definición.
$\varnothing\in \tau_p$ por definición. Además, como $p\in X$, entonces $X\in\tau_p$. $\checkmark$
Sean $U,V\in \tau_p$. P.D. $U\cap V\in\tau_p$. Caso 1: $U=\varnothing$ o $V=\varnothing$. Entonces $U\cap V = \varnothing\in \tau_p$. $\checkmark$ Caso 2: $U\neq \varnothing$ y $V\neq \varnothing$. Como $U,V\in\tau_p$ y no son vacíos, entonces $p\in U$ y $p\in V$, por lo que $p\in U\cap V$, así $U\cap V\in\tau_p$. $\checkmark$
Sea $\{U_\alpha \,:\, \alpha\in\Gamma\}\subseteq\tau_p$. P.D. $\bigcup\limits_{\alpha\in\Gamma} U_\alpha \in \tau_p$. Caso 1: $U_\alpha \neq \varnothing$, $\forall \alpha \in \Gamma$. Entonces $\bigcup\limits_{\alpha\in\Gamma} U_\alpha = \varnothing \in \tau_p$. $\checkmark$ Caso 2: $\exists \alpha_0\in\Gamma$ tal que $U_{\alpha_0}\neq\varnothing$. Como $U_{\alpha_0} \in\tau_p$, entonces $p\in U_{\alpha_0}$, por lo que $p\in\bigcup\limits_{\alpha\in\Gamma} U_\alpha$, así $\bigcup\limits_{\alpha\in\Gamma} U_\alpha \in \tau_p$. $\checkmark$
Hemos demostrado que $\tau_p$ cumple todas las propiedades de la definición de topología, por lo tanto, $\tau_p$ es una topología para $X$.
$\square$
Topología cofinita
En $\mathbb{R}$ definimos $\tau = \{A\subseteq X \,:\, \mathbb{R}\backslash A \text{ es finito}\}$. Al igual que en el ejemplo anterior, inmediatamente podemos ver que $\tau$ no es topología pues $\varnothing \notin\tau$. Ahora definimos $\tau_{\text{cof}} = \{A\subseteq X \,:\, \mathbb{R}\backslash A \text{ es finito}\}\cup\{\varnothing\}$. Con esta definición resulta que $(\mathbb{R},\tau_{\text{cof}})$ sí es un espacio topológico. A $\tau_{\text{cof}}$ se le llama topología cofinita.
Observación. En la topología cofinita, $\mathbb{R}$ puede ser cualquier conjunto.
Más adelante…
En la próxima entrada veremos más ejemplos de espacios topológicos y su relación con espacios métricos.
Tarea moral
Demuestra que $(\mathbb{R},\tau_{\text{cof}})$ como se definió anteriormente es un espacio topológico. Es decir, demuestra que $\tau_{\text{cof}}$ es una topología para $\mathbb{R}$.
Sea $X=\{0,1\}$. Determina si $\tau = \{\varnothing, \{0\}, \{0,1\}\}$ es una topología para $X$.
Sea $X = \{a, b, c\}$. Encuentra todas las familias $\tau \subseteq \mathcal{P}(X)$ tales que $\tau$ es una topología en $X$.
Determina si $\tau_1 = \{U \subseteq X \,|\, 0 \in U \vee \{0,1\}\cap U=\varnothing\}$ es una topología en $X=[0,1]$.
Determina si $\tau_2= \left\{[0, b] \,|\, \frac{1}{2}<b \leq 1 \right\} \cup\{0\}$ es una topología en $X=[0,1]$.
En la entrada anterior empezamos a hablar del teorema de la función inversa. Dimos su enunciado y probamos varias herramientas que nos ayudarán ahora con su demostración.
Recordemos que lo que queremos demostrar es lo siguiente.
Teorema (de la función inversa). Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ de clase $C^{1}$ en el abierto $S$. Si $Df(\bar{a})$ es invertible, entonces, existe $\delta >0$ tal que:
$B_{\delta}(\bar{a})\subseteq S$ y $f$ es inyectiva en $B_{\delta}(\bar{a})$.
$f^{-1}:f(B_{\delta}(\bar{a}))\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ es continua en $f(B_{\delta}(\bar{a}))$.
$f(B_{\delta}(\bar{a}))\subseteq \mathbb{R}^{n}$ es un conjunto abierto.
$f^{-1}$ es de clase $C^{1}$ en $f(B_{\delta}(\bar{a}))$ y además, si $\bar{x}=f(\bar{v})\in f(B_{\delta}(\bar{a}))$, entonces, $Df^{-1}(\bar{x})=Df^{-1}(f(\bar{v}))=(Df(\bar{v}))^{-1}$.
La herramienta más importante que probamos en la entrada anterior nos dice que si una función $f:S\subseteq \mathbb{R}^n\to \mathbb{R}^n$ es de clase $C^1$, $\bar{a}\in S$ y $DF(\bar{a})$ es invertible, entonces existe una $\delta>0$ tal que $B_\delta(\bar{a})\subseteq S$ y $Df(\bar{b})$ es invertible para todo $\bar{b}\in B_\delta(\bar{a})$. Veremos cómo esta herramienta y otras que desarrollaremos en el transcurso de esta entrada nos permiten demostrar el teorema.
La función $f$ es inyectiva en una vecindad de $\bar{a}$
Vamos a enfocarnos en el punto $(1)$ del teorema. Veremos que existe la $\delta$ que hace que la función restringida a la bola de radio $\delta$ centrada en $\bar{a}$ es inyectiva. En esta parte de la prueba es conveniente que recuerdes que la norma infinito de un vector $(x_1,\ldots,x_n)\in \mathbb{R}^n$ es $$||\bar{x}||_{\infty}:=máx\{ |x_{1}|,\dots ,|x_{n}|\}.$$
Además, cumple para todo $\bar{x}\in \mathbb{R}^{n}$ que $$||\bar{x}||\leq \sqrt{n} ||\bar{x}||_{\infty}.$$
Veamos que bajo las hipótesis del problema se puede acotar $||f(\bar{u})-f(\bar{v})||$ en términos de $||\bar{u}-\bar{v}||$ dentro de cierta bola.
Proposición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ de clase $C^{1}$ en el conjunto abierto $S$, y $\bar{a}\in S$. Si $Df(\bar{a})$ es invertible, entonces existe $\delta >0$ y $\varepsilon>0$ tal que $B_{\delta}(\bar{a})\subseteq S$ y $||f(\bar{u})-f(\bar{v})||\geq \varepsilon||\bar{u}-\bar{v}||$ para cualesquiera $\bar{u},\bar{v}\in B_{\delta}(\bar{a})$.
Demostración. Por la diferenciabilidad de $f$ en $\bar{a}$, tenemos
para cada $\bar{a}\in S$ y cada $\bar{x}\in \mathbb{R}^{n}$.
Como $Df(\bar{a})$ es invertible, por los resultados de la entrada anterior existe un $m>0$ tal que
\[ ||Df(\bar{a})(\bar{x})||\geq m||\bar{x}|| \]
para todo $\bar{x}\in \mathbb{R}^{n}$.
También por resultados de la entrada anterior, para $\epsilon:=\frac{m}{2\sqrt{n}}>0$ existe $\delta >0$ tal que si $\bar{b}\in B_{\delta}(\bar{a})\subseteq S$ entonces
Usaremos en un momento estas desigualdades, pero por ahora fijemos nuestra atención en lo siguiente. Dados $\bar{u},\bar{v}\in B_{\delta}(\bar{a})$, tomemos el $k\in \{1,\dots ,n\}$ tal que $$||Df(\bar{a})(\bar{u}-\bar{v})||_{\infty}=|\triangledown f_{k}(\bar{a})\cdot (\bar{u}-\bar{v})|.$$
¿Cómo podemos seguir con nuestras desigualdades? Necesitamos usar el teorema del valor medio. Bastará el que demostramos para campos escalares. Aplicándolo a $f_k$ en los puntos $\bar{u},\bar{v}$ cuyo segmento se queda en la bola convexa $B_\delta(\bar{a})$, podemos concluir que existe un vector $\bar{w}$ en el segmento $\bar{\bar{u}\bar{v}}$ que cumple
Sabemos que para cualquier vector el valor absoluto de cualquiera de sus coordenadas es en valor menor o igual que la norma del vector. Además, demostramos inicialmente unas desigualdades anteriores. Juntando esto, obtenemos la siguiente cadena de desigualdades:
La gran conclusión de esta cadena de desigualdades es que $$||f(\bar{u})-f(\bar{v})||\geq \varepsilon||\bar{u}-\bar{v}||,$$ que es lo que buscábamos.
$\square$
¡Esto es justo lo que nos pide el primer punto! Hemos encontrado una bola alrededor de $\bar{a}$ dentro de la cual si $\bar{u}\neq \bar{v}$, entonces $||f(\bar{u})-f(\bar{v})||\geq \varepsilon ||\bar{u}-\bar{v}||>0$, de modo que $f(\bar{u})\neq f(\bar{v})$. ¡La función restringida en esta bola es invertible! En términos geométricos el último teorema nos dice lo siguiente: Si $f$ es diferenciable en un abierto $S$, y $Df(\bar{a})$ es invertible, entonces hay una vecindad alrededor de $\bar{a}$ en donde $f$ «no se pega», es decir $f$ es inyectiva.
Ya vimos cómo encontrar una bola $B_\delta(\bar{a})$ dentro de la cual $f$ es inyectiva. Si pensamos que el contradominio es exactamente $f(B_\delta(\bar{a}))$, entonces la función también es suprayectiva. Esto hace que sea biyectiva y por tanto que tenga inversa $f^{-1}$.
La función inversa es continua
Veamos ahora que la función inversa es continua. De hecho, mostraremos algo un poco más fuerte.
Teorema. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ de clase $C^{1}$ en el abierto $S$, y $\bar{a}\in S$. Si $Df(\bar{a})$ es invertible, entonces existe $\delta >0$ tal que $B_{\delta}(\bar{a})\subseteq S$, $f$ es inyectiva en $B_{\delta}(\bar{a})$ y además $f^{-1}:f(B_{\delta}(\bar{a}))\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ es uniformemente continua en su dominio.
Demostración. La primera parte y la existencia de $f^{-1}:f(B_\delta(a))\subseteq \mathbb{R}^n \to \mathbb{R}^n$ se debe a la discusión de la sección anterior. De hecho, lo que mostramos es que existe $\delta >0$ y $\varepsilon>0$ tal que $||f(\bar{v})-f(\bar{u})||\geq \varepsilon||\bar{v}-\bar{u}||$ para todo $\bar{u},\bar{v}\in B_{\delta}(\bar{a})$.
Supongamos que nos dan un $\varepsilon^\ast$. Tomemos $\delta^\ast=\varepsilon^\ast \varepsilon$. Tomemos $\bar{x},\bar{y}$ en $f(B_\delta(\bar{a}))$ tales que $||\bar{y}-\bar{x}||<\delta ^{\ast}$. Como $\bar{x}$ y $\bar{y}$ están en dicha bola, podemos escribirlos como $\bar{x}=f(\bar{u})$, $\bar{y}=f(\bar{v})$ con $\bar{u},\bar{v}\in B_{\delta}(\bar{a})$. Notemos entonces que
Tenemos entonces que $f^{-1}$ es uniformemente continua en $f(B_\delta(\bar{a}))$.
$\square$
Esto demuestra el punto $(2)$ de nuestro teorema. La prueba de que el conjunto $f(B_\delta(\bar{a}))$ es abierto no es para nada sencilla como parecería ser. Una demostración muy instructiva, al nivel de este curso, se puede encontrar en el libro Cálculo diferencial de varias variables del Dr. Javier Páez Cárdenas editado por la Facultad de Ciencias de la Universidad Nacional Autónoma de México (UNAM) en las páginas 474-476.
La función inversa es diferenciable
Resta hacer la demostración de $(4)$. En esta sección veremos que la inversa $f^{-1}$ es derivable y que la derivada es precisamente lo que propone el teorema. En la siguiente sección veremos que la inversa es $C^1$.
Tomemos un punto $\bar{x}_0=f(\bar{v}_0)\in f(B_{\delta}(\bar{a}))$. Mostraremos que, en efecto, $T=(Df(\bar{v}_0))^{-1}$ es la derivada de $f^{-1}$ en $\bar{x}_0$, lo cual haremos por definición verificando que
Esta función está bien definida, pues $f$ es inyectiva en la bola $B_{\delta}(\bar{a})$. La composición $g\circ f^{-1}$ también está bien definida en el abierto $f(B_{\delta}(\bar{a}))$ y
El factor que nos falta entender es $\frac{||\bar{v}-\bar{v}_{0}||}{||f(\bar{v})-f(\bar{v}_{0})||}$. Pero por la primera proposición de esta entrada, sabemos que existe una $\epsilon>0$ que acota este factor superiormente por $\frac{1}{\epsilon}$. De esta manera,
Resta verificar que $f^{-1}$ es de clase $C^{1}$ en $f(B_{\delta}(\bar{a}))$. Lo haremos con la caracterización de la entrada anterior. Tomemos una $\mu>0$. Nos gustaría ver que si $\bar{x}$ y $\bar{x}_0$ están suficientemente cerca, entonces
Tomando $X=Df(\bar{v})$ y $Y=Df(\bar{v}_0)$, aplicando la igualdad anterior en un punto $\bar{x}$ en $\mathbb{R}^n$, sacando normas y usando la desigualdad \eqref{eq:clasec1}, obtenemos:
Como $f$ es de clase $C^1$, por la entrada anterior podemos construir una $\delta^\ast$ tal que $B_{\delta^\ast}(\bar{v}_0)\subseteq B_\delta(\bar{a})$ y para la cual si $\bar{v}$ está en $B_{\delta^\ast}(\bar{v}_0)$, entonces:
Finalmente, como $f^{-1}$ es continua en $f(B_{\delta}(\bar{a}))$, si $\bar{x}$ y $\bar{x}_0$ están suficientemente cerca, digamos $||\bar{x}-\bar{x}_0||<\nu$, entonces
Esto implica que $f^{-1}$ es de clase $C^1$. Como tarea moral, revisa los detalles y di explícitamente qué resultado de la entrada anterior estamos usando.
$\square$
Ejemplo del teorema de la función inversa
Ejemplo. Consideremos $\xi :\mathbb{R}^{3}\rightarrow \mathbb{R}^{3}$ dada por $\xi (r,\theta, \phi)=(r\hspace{0.15cm}sen \phi \hspace{0.15cm}cos\theta ,r\hspace{0.15cm} sen \phi \hspace{0.15cm}sen\theta ,r\hspace{0.15cm}cos \phi)$. Se tiene que $\xi$ es diferenciable en todo su dominio pues cada una de sus derivadas parciales es continua. Esta es la función de cambio de coordenadas de esféricas a rectangulares o cartesianas. La matriz jacobiana está dada como sigue.
Luego $\det(D\xi (r,\theta ,\phi ))=-r^{2}\hspace{0.1cm}sen\phi$ entonces $D\xi$ es invertible cuando $r\neq 0$ y $\phi \neq k\pi$, $k\in \mathbb{Z}$. Su inversa es:
El teorema de la función inversa nos garantiza la existencia local de una función $\xi ^{-1}$. En este caso, sería la función de cambio de coordenadas rectangulares a esféricas. Si $f:S\subseteq \mathbb{R}^{3}\rightarrow \mathbb{R}$ es una función $C^{1}$ dada en coordenadas esféricas; podemos asumir que $f\circ \xi ^{-1}$ es la misma función pero en términos de coordenadas rectangulares.
$\triangle$
Más adelante…
¡Lo logramos! Hemos demostrado el teorema de la función inversa, uno de los resultados cruciales de nuestro curso. El siguiente tema es el teorema de la función implícita, que será otro de nuestros resultados principales. Uno podría pensar que nuevamente tendremos que hacer una demostración larga y detallada. Pero afortunadamente la demostración del teorema de la función implícita se apoya fuertemente en el teorema de la función inversa que ya demostramos. En la siguiente entrada enunciaremos y demostraremos nuestro nuevo resultado y una entrada más adelante veremos varios ejemplos para profundizar en su entendimiento.
Tarea moral
En el ejemplo que dimos, verifica que el determinante en efecto es $-r^2\sin\phi$. Verifica también que la inversa es la matriz dada.
Repasa cada una de las demostraciones de esta entrada y asegúrate de entender por qué se siguen cada una de las desigualdades. Explica en qué momentos estamos usando resultados de la entrada anterior.
Da la función inversa de la transformación de cambio de coordenadas polares a rectangulares $g(r,\theta)=(r\hspace{0.1cm}cos\theta , r\hspace{0.1cm}sen\theta )$.
Demuestra que para todo $\bar{x}\in \mathbb{R}^{n}$ se tiene $||\bar{x}||\leq \sqrt{n}||\bar{x}||_{\infty}.$
Verifica que en efecto $||\cdot||_{\infty}$ es una norma.