Archivo de la etiqueta: análisis

Topología I: Espacios topológicos

Por Alfonso Zavala

Introducción

Antes de dar la definición de espacio topológico y ver ejemplos, siempre resulta conveniente familiarizarnos un poco con los conceptos a los que nos vamos a enfrentar, tratando de entender intuitivamente las bases de lo que vamos a estudiar. Seguramente ya has trabajado con conceptos de topología en tu curso de cálculo 3 (de hecho es altamente recomendado que hayas cursado esta materia antes de enfrentarte a un curso de topología) y conoces conceptos como abiertos, cerrados, compacidad, conexidad, etc., que usaste para entender las propiedades topológicas de Rn. A grandes rasgos, la topología se ocupa de entender las relaciones entre objetos que viven en cierto ambiente (en el caso de cálculo 3 el ambiente era Rn); estas relaciones no se preocupan por el tamaño o la forma específica de los objetos, más bien se ocupan de características como si el objeto está completamente conectado, la cantidad de agujeros que tiene, etc. Seguramente has escuchado el famoso ejemplo de que para un topólogo un taza y una dona son el mismo objeto. La explicación rápida de esto es que ambos objetos sólo tienen un agujero, y como a la topología no le interesa la forma específica de la taza y la dona, entonces topológicamente son lo mismo.

Nota. A lo largo de todo el curso se considerará al conjunto de los números naturales a partir del 1, es decir, N={1,2,3,}.

Definición de espacio topológico

Definición. Sean X un conjunto y τP(X). Decimos que τ es una topología para X si cumple:

  1. τ, Xτ
  2. Si U,Vτ, entonces UVτ
  3. Si {Ui}iIτ, entonces iIUiτ

A los elementos de τ les llamamos abiertos.

Una de las primeras consecuencias de esta definición es que la intersección finita de abiertos es abierto, en un momento probaremos este resultado. Por otro lado, observemos que la tercera indica que τ es cerrada bajo uniones arbitrarias, es decir, cualquier unión de abiertos siempre resulta en un abierto, sin importar cuántos sean.

Proposición. Sean X un conjunto, τ una topología para X y {Ui}i=1nτ. Entonces i=1nUiτ.

Demostración. P.D. i=1nUiτ. Procedamos por inducción sobre n.

Si n=2, tenemos que U1,U2τ, aplicando la propiedad 2 de la definición de topología, tenemos que U1U2τ.

Supongamos válido para n=k, i.e., i=1kUiτ.

P.D. i=1k+1Uiτ. Por hipótesis {Ui}i=1k+1τ, entonces U1,,Uk+1τ. Por hipótesis de inducción, i=1kUiτ, entonces aplicando la propiedad 2 de la definición de topología, tenemos que (i=1kUi)Uk+1τ, i.e., i=1k+1τ.

Por lo tanto, i=1nUiτ.

◻

Después de esta proposición, es natural preguntarse si la intersección arbitraria de abiertos siempre resulta ser un abierto. La respuesta es que no, y esto lo podemos comprobar con un simple ejemplo usando la topología usual de los números reales (esta es la topología con la que se trabaja en cálculo, más adelante la definiremos formalmente). Consideremos la familia de abiertos {Un}nN, donde Un:=(1n,1n). Cada Un es un intervalo abierto en la recta real, y el único elemento que tienen en común todos los intervalos es el cero, es decir, nNUn={0}, pero un conjunto unitario no puede ser abierto en la topología usual de los reales. Por lo tanto, concluimos que la intersección arbitraria de abiertos no necesariamente resulta en un abierto.

Ya que hemos definido qué es una topología, es natural tener la siguiente definición.

Definición. Si τ es topología para X, decimos que (X,τ) es un espacio topológico.

Veamos algunos ejemplos.

Ejemplos

Sea X={a,b,c,d,e}.

  • τ1={{b,c},X,{a,d,e}}. τ1 no es topología, pues τ1.
  • τ2={,X}. τ2 sí es topología. Contiene el vacío y el total, y la intersección o unión entre ellos vuelve a ser el vacío o el total. A esta topología se le llama topología indiscreta y se suele denotar por τindis.
  • τ3=P(X). τ3 sí es topología, pues contiene a todos los subconjuntos de X. A esta topología se le llama topología discreta y se suele denotar por τdis.
  • τ4={,X,{a,d,e},{b,c,d,e},{d}}. τ4 no es topología, pues {a,d,e}{b,c,d,e}={d,e}τ4.
  • τ5={,X,{a,d,e},{b,d,e},{d,e}}. τ5 no es topología, pues {a,d,e}{b,d,e}={a,b,d,e}τ5.
  • τ6={,X,{a,b},{c,d},{a,b,c,d}}. τ5 sí es topología.

Hasta ahora todos los ejemplos que hemos visto son finitos, y para verificar si cierto conjunto es topología o no, basta verificar que se cumplan las propiedades con todos los elementos del conjunto, o encontrar algunos elementos que no cumplan con las propiedades. Ahora veremos un ejemplo con un conjunto que no necesariamente tiene que ser finito, y para verificar si es topología o no, tendremos que verificar las propiedades usando las propiedades del conjunto.

Topología del punto fijo

Sean X un conjunto (puede ser finito o infinito) y pX. Definimos τ={AX:pA}. Inmediatamente podemos ver que τ no es topología ya que τ, pues por definición todo elemento de τ contiene a p. Entonces definimos τp={AX:pA}{}. A esta topología se le llama topología del punto fijo. Veamos que τp sí es topología.

Demostración. Para demostrar que τp es topología tenemos que verificar las tres propiedades de la definición.

  1. τp por definición. Además, como pX, entonces Xτp.
  2. Sean U,Vτp. P.D. UVτp.
    Caso 1: U= o V=. Entonces UV=τp.
    Caso 2: U y V. Como U,Vτp y no son vacíos, entonces pU y pV, por lo que pUV, así UVτp.
  3. Sea {Uα:αΓ}τp. P.D. αΓUατp.
    Caso 1: Uα, αΓ. Entonces αΓUα=τp.
    Caso 2: α0Γ tal que Uα0. Como Uα0τp, entonces pUα0, por lo que pαΓUα, así αΓUατp.

Hemos demostrado que τp cumple todas las propiedades de la definición de topología, por lo tanto, τp es una topología para X.

◻

Topología cofinita

En R definimos τ={AX:RA es finito}. Al igual que en el ejemplo anterior, inmediatamente podemos ver que τ no es topología pues τ. Ahora definimos τcof={AX:RA es finito}{}. Con esta definición resulta que (R,τcof) sí es un espacio topológico. A τcof se le llama topología cofinita.

Observación. En la topología cofinita, R puede ser cualquier conjunto.

Más adelante…

En la próxima entrada veremos más ejemplos de espacios topológicos y su relación con espacios métricos.

Tarea moral

  1. Demuestra que (R,τcof) como se definió anteriormente es un espacio topológico. Es decir, demuestra que τcof es una topología para R.
  2. Sea X={0,1}. Determina si τ={,{0},{0,1}} es una topología para X.
  3. Sea X={a,b,c}. Encuentra todas las familias τP(X) tales que τ es una topología en X.
  4. Determina si τ1={UX|0U{0,1}U=} es una topología en X=[0,1].
  5. Determina si τ2={[0,b]|12<b1}{0} es una topología en X=[0,1].

Entradas relacionadas

  • Ir a Topología 1
  • Entrada siguiente del curso: Espacios métricos y topología inducida

Cálculo Diferencial e Integral III: Demostración del teorema de la función inversa

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior empezamos a hablar del teorema de la función inversa. Dimos su enunciado y probamos varias herramientas que nos ayudarán ahora con su demostración.

Recordemos que lo que queremos demostrar es lo siguiente.

Teorema (de la función inversa). Sea f:SRnRn de clase C1 en el abierto S. Si Df(a¯) es invertible, entonces, existe δ>0 tal que:

  1. Bδ(a¯)S y f es inyectiva en Bδ(a¯).
  2. f1:f(Bδ(a¯))RnRn es continua en f(Bδ(a¯)).
  3. f(Bδ(a¯))Rn es un conjunto abierto.
  4. f1 es de clase C1 en f(Bδ(a¯)) y además, si x¯=f(v¯)f(Bδ(a¯)), entonces, Df1(x¯)=Df1(f(v¯))=(Df(v¯))1.

La herramienta más importante que probamos en la entrada anterior nos dice que si una función f:SRnRn es de clase C1, a¯S y DF(a¯) es invertible, entonces existe una δ>0 tal que Bδ(a¯)S y Df(b¯) es invertible para todo b¯Bδ(a¯). Veremos cómo esta herramienta y otras que desarrollaremos en el transcurso de esta entrada nos permiten demostrar el teorema.

La función f es inyectiva en una vecindad de a¯

Vamos a enfocarnos en el punto (1) del teorema. Veremos que existe la δ que hace que la función restringida a la bola de radio δ centrada en a¯ es inyectiva. En esta parte de la prueba es conveniente que recuerdes que la norma infinito de un vector (x1,,xn)Rn es ||x¯||:=máx{|x1|,,|xn|}.

Además, cumple para todo x¯Rn que ||x¯||n||x¯||.

Veamos que bajo las hipótesis del problema se puede acotar ||f(u¯)f(v¯)|| en términos de ||u¯v¯|| dentro de cierta bola.

Proposición. Sea f:SRnRn de clase C1 en el conjunto abierto S, y a¯S. Si Df(a¯) es invertible, entonces existe δ>0 y ε>0 tal que Bδ(a¯)S y ||f(u¯)f(v¯)||ε||u¯v¯|| para cualesquiera u¯,v¯Bδ(a¯).

Demostración. Por la diferenciabilidad de f en a¯, tenemos

Df(a¯)(x¯)=(f1(a¯)x¯fn(a¯)x¯)

para cada a¯S y cada x¯Rn.

Como Df(a¯) es invertible, por los resultados de la entrada anterior existe un m>0 tal que

||Df(a¯)(x¯)||m||x¯||

para todo x¯Rn.

También por resultados de la entrada anterior, para ϵ:=m2n>0 existe δ>0 tal que si b¯Bδ(a¯)S entonces

||(Df(b¯)Df(a¯))(x¯)||m2n||x¯||

para todo x¯Rn.

Usaremos en un momento estas desigualdades, pero por ahora fijemos nuestra atención en lo siguiente. Dados u¯,v¯Bδ(a¯), tomemos el k{1,,n} tal que ||Df(a¯)(u¯v¯)||=|fk(a¯)(u¯v¯)|.

Para dicho k, tenemos

|fk(a¯)(u¯v¯)|=||Df(a¯)(u¯v¯)||1n||Df(a¯)(u¯v¯)||.

¿Cómo podemos seguir con nuestras desigualdades? Necesitamos usar el teorema del valor medio. Bastará el que demostramos para campos escalares. Aplicándolo a fk en los puntos u¯,v¯ cuyo segmento se queda en la bola convexa Bδ(a¯), podemos concluir que existe un vector w¯ en el segmento u¯v¯¯ que cumple

fk(u¯)fk(v¯)=f(w¯)(u¯v¯).

Sabemos que para cualquier vector el valor absoluto de cualquiera de sus coordenadas es en valor menor o igual que la norma del vector. Además, demostramos inicialmente unas desigualdades anteriores. Juntando esto, obtenemos la siguiente cadena de desigualdades:

||f(u¯)f(v¯)|||fk(u¯)fk(v¯)|=|f(w¯)(u¯v¯)||fk(a¯)(u¯v¯)||fk(w¯)(u¯v¯)fk(a¯)(u¯v¯)|1n||Df(a¯)(u¯v¯)||||Df(w¯)(u¯v¯)Df(a¯)(u¯v¯)||1n(m||u¯v¯||)m2n||u¯v¯||=m2n||u¯v¯||=ε||u¯v¯||.

La gran conclusión de esta cadena de desigualdades es que ||f(u¯)f(v¯)||ε||u¯v¯||, que es lo que buscábamos.

◻

¡Esto es justo lo que nos pide el primer punto! Hemos encontrado una bola alrededor de a¯ dentro de la cual si u¯v¯, entonces ||f(u¯)f(v¯)||ε||u¯v¯||>0, de modo que f(u¯)f(v¯). ¡La función restringida en esta bola es invertible! En términos geométricos el último teorema nos dice lo siguiente: Si f es diferenciable en un abierto S, y Df(a¯) es invertible, entonces hay una vecindad alrededor de a¯ en donde f «no se pega», es decir f es inyectiva.

Figura 1: Si la función no es inyectiva, lo que tenemos es que proyecta el rectángulo R en una superficie que pega los puntos a¯ y b¯. Arriba una función inyectiva y abajo una que no lo es.

Ya vimos cómo encontrar una bola Bδ(a¯) dentro de la cual f es inyectiva. Si pensamos que el contradominio es exactamente f(Bδ(a¯)), entonces la función también es suprayectiva. Esto hace que sea biyectiva y por tanto que tenga inversa f1.

La función inversa es continua

Veamos ahora que la función inversa es continua. De hecho, mostraremos algo un poco más fuerte.

Teorema. Sea f:SRnRn de clase C1 en el abierto S, y a¯S. Si Df(a¯) es invertible, entonces existe δ>0 tal que Bδ(a¯)S, f es inyectiva en Bδ(a¯) y además f1:f(Bδ(a¯))RnRn es uniformemente continua en su dominio.

Demostración. La primera parte y la existencia de f1:f(Bδ(a))RnRn se debe a la discusión de la sección anterior. De hecho, lo que mostramos es que existe δ>0 y ε>0 tal que ||f(v¯)f(u¯)||ε||v¯u¯|| para todo u¯,v¯Bδ(a¯).

Supongamos que nos dan un ε. Tomemos δ=εε. Tomemos x¯,y¯ en f(Bδ(a¯)) tales que ||y¯x¯||<δ. Como x¯ y y¯ están en dicha bola, podemos escribirlos como x¯=f(u¯), y¯=f(v¯) con u¯,v¯Bδ(a¯). Notemos entonces que

||f1(y¯)f1(x¯)||=||v¯u¯||1ε||f(v¯)f(u¯)||=1ε||y¯x¯||<εεε=ε.

Tenemos entonces que f1 es uniformemente continua en f(Bδ(a¯)).

◻

Esto demuestra el punto (2) de nuestro teorema. La prueba de que el conjunto f(Bδ(a¯)) es abierto no es para nada sencilla como parecería ser. Una demostración muy instructiva, al nivel de este curso, se puede encontrar en el libro Cálculo diferencial de varias variables del Dr. Javier Páez Cárdenas editado por la Facultad de Ciencias de la Universidad Nacional Autónoma de México (UNAM) en las páginas 474-476.

La función inversa es diferenciable

Resta hacer la demostración de (4). En esta sección veremos que la inversa f1 es derivable y que la derivada es precisamente lo que propone el teorema. En la siguiente sección veremos que la inversa es C1.

Tomemos un punto x¯0=f(v¯0)f(Bδ(a¯)). Mostraremos que, en efecto, T=(Df(v¯0))1 es la derivada de f1 en x¯0, lo cual haremos por definición verificando que

limx¯x¯0f1(x¯)f1(x¯0)T(x¯x¯0)||x¯x¯0||=0.

Para ello, introducimos la siguiente función auxiliar g:Bδ(a¯)RnRn dada por:

g(v¯)={v¯v¯0T(f(v¯)f(v¯0))||f(v¯)f(v¯0)||v¯v¯00¯v¯=v¯0.

Esta función está bien definida, pues f es inyectiva en la bola Bδ(a¯). La composición gf1 también está bien definida en el abierto f(Bδ(a¯)) y

(gf1)(x¯)={f1(x¯)f1(x¯0)T(x¯x¯0)||x¯x¯0||x¯x¯00¯x¯=x¯0

para todo x¯f(Bδ(a¯)). Esto nos permite poner el límite buscado como el límite de una composición de la siguiente forma:

limx¯x¯0f1(x¯)f1(x¯0)T(x¯x¯0)||x¯x¯0||=limx¯x¯0(gf1)(x¯)

Como f1 es continua en x¯0, basta demostrar que g es continua en v¯0=f1(x¯0). Esto equivale a probar que

limv¯v¯0g(v¯)=limv¯v¯0v¯v¯0(Df(v¯0))1(f(v¯)f(v¯0)))||f(v¯)f(v¯0)||=0.

Hay que demostrar este último límite. Reescribimos la expresión

v¯v¯0(Df(v¯0))1(f(v¯)f(v¯0))||f(v¯)f(v¯0)|| como

(Df(v¯0))1[Df(v¯0)(v¯v¯0)(f(v¯)f(v¯0))]||f(v¯)f(v¯0)||,

y luego multiplicamos y dividimos por ||v¯v¯0|| y reorganizamos para obtener

||v¯v¯0||||f(v¯)f(v¯0)||(Df(v¯0))1(f(v¯)f(v¯0)Df(v¯0)(v¯v¯0)||v¯v¯0||).

Como (Df(v¯0))1 es continua (por ser lineal) y f es diferenciable en v¯0, se tiene que

limv¯v¯0(Df(v¯0))1(f(v¯)f(v¯0)Df(v¯0)(v¯v¯0)||v¯v¯0||)=(Df(v¯0))1(limv¯v¯0f(v¯)f(v¯0)Df(v¯0)(v¯v¯0)||v¯v¯0||)=(Df(v¯0))1(0¯)=0¯.

El factor que nos falta entender es ||v¯v¯0||||f(v¯)f(v¯0)||. Pero por la primera proposición de esta entrada, sabemos que existe una ϵ>0 que acota este factor superiormente por 1ϵ. De esta manera,

limv¯v¯0g(v¯)=limv¯v¯0||v¯v¯0||||f(v¯)f(v¯0)||acotado(Df(v¯0))1(f(v¯)f(v¯0)Df(v¯0)(v¯v¯0)||v¯v¯0||)0=0.

Esto nos dice entonces que g es continua en v¯0 y por lo tanto:

limx¯x¯0(gf1)(x¯)=g(limx¯x¯0f1(x¯))=g(f1(x¯0))=g(v¯0)=0¯.

Por lo tanto f1 es diferenciable en x¯0 mediante la derivada que propusimos, es decir,

Df1(x¯0)=Df1(f(v¯0))=(Df(v¯0))1=(Df(f1(x¯0)))1

para todo x¯0f(Bδ(a¯)).

La función inversa es de clase C1

Resta verificar que f1 es de clase C1 en f(Bδ(a¯)). Lo haremos con la caracterización de la entrada anterior. Tomemos una μ>0. Nos gustaría ver que si x¯ y x¯0 están suficientemente cerca, entonces

||Df1(x¯)(z¯)Df1(x¯0)(z¯)||<μ||z¯||

para toda z¯Rn.

Recordemos que por la entrada anterior hay una m>0 tal que para todo z¯ en Rn se cumple

(1)1m||z¯||=1m|Df(v¯)((Df(v¯))1)(z¯)||||(Df(v¯))1(z¯)||

También notemos que, si X,Y son matrices invertibles en Mn(R), tenemos:

X1(YX)Y1=X1YY1X1XY1=X1Y1.

Tomando X=Df(v¯) y Y=Df(v¯0), aplicando la igualdad anterior en un punto x¯ en Rn, sacando normas y usando la desigualdad (1), obtenemos:

||(X1Y1)(z¯)||=||(X1(YX)Y1)(z¯)||1m||((YX)Y1)(z¯)||=1m||((Df(v¯0)Df(v¯))Df1(f(v¯0)))(z¯)||.

Como f es de clase C1, por la entrada anterior podemos construir una δ tal que Bδ(v¯0)Bδ(a¯) y para la cual si v¯ está en Bδ(v¯0), entonces:

(2)||(Df(v¯0)Df(v¯))(z¯)||m2μ||z¯||.

Para todo x¯Rn.

Finalmente, como f1 es continua en f(Bδ(a¯)), si x¯ y x¯0 están suficientemente cerca, digamos ||x¯x¯0||<ν, entonces

(3)||f1(x¯)f1(x¯0)||=||v¯v¯0||<δ..

Usamos todo lo anterior para establecer la siguiente cadena de desigualdades cuando ||x¯x¯0||<ν:

||Df1(x¯)(z¯)Df1(x¯0)(z¯)||=||Df1(f(v¯))(z¯)Df1(f(v¯0))(z¯)||1m||[Df(v¯0)Df(v¯)](Df1(f(v¯0)))(z¯)||1m(m2μ||Df1(f(v¯0))(z¯)||)=mμ||Df1(f(v¯0))(z¯)||mμ(1m||z¯||)=μ||z¯||.

Esto implica que f1 es de clase C1. Como tarea moral, revisa los detalles y di explícitamente qué resultado de la entrada anterior estamos usando.

◻

Ejemplo del teorema de la función inversa

Ejemplo. Consideremos ξ:R3R3 dada por ξ(r,θ,ϕ)=(rsenϕcosθ,rsenϕsenθ,rcosϕ). Se tiene que ξ es diferenciable en todo su dominio pues cada una de sus derivadas parciales es continua. Esta es la función de cambio de coordenadas de esféricas a rectangulares o cartesianas. La matriz jacobiana está dada como sigue.

Dξ(r,θ,ϕ)=(senϕcosθrsenϕsenθrcosϕcosθsenϕsenθrsenϕcosθrcosϕsenθcosϕ0rsenϕ).

Luego det(Dξ(r,θ,ϕ))=r2senϕ entonces Dξ es invertible cuando r0 y ϕkπ, kZ. Su inversa es:

(Dξ(r,θ,ϕ))1=(senϕcosθsenϕsenθcosϕsenθrsenϕcosθrsenϕ01rcosθcosϕ1rcosϕsenθ1rsenϕ).

El teorema de la función inversa nos garantiza la existencia local de una función ξ1. En este caso, sería la función de cambio de coordenadas rectangulares a esféricas. Si f:SR3R es una función C1 dada en coordenadas esféricas; podemos asumir que fξ1 es la misma función pero en términos de coordenadas rectangulares.

Más adelante…

¡Lo logramos! Hemos demostrado el teorema de la función inversa, uno de los resultados cruciales de nuestro curso. El siguiente tema es el teorema de la función implícita, que será otro de nuestros resultados principales. Uno podría pensar que nuevamente tendremos que hacer una demostración larga y detallada. Pero afortunadamente la demostración del teorema de la función implícita se apoya fuertemente en el teorema de la función inversa que ya demostramos. En la siguiente entrada enunciaremos y demostraremos nuestro nuevo resultado y una entrada más adelante veremos varios ejemplos para profundizar en su entendimiento.

Tarea moral

  1. En el ejemplo que dimos, verifica que el determinante en efecto es r2sinϕ. Verifica también que la inversa es la matriz dada.
  2. Repasa cada una de las demostraciones de esta entrada y asegúrate de entender por qué se siguen cada una de las desigualdades. Explica en qué momentos estamos usando resultados de la entrada anterior.
  3. Da la función inversa de la transformación de cambio de coordenadas polares a rectangulares g(r,θ)=(rcosθ,rsenθ).
  4. Demuestra que para todo x¯Rn se tiene ||x¯||n||x¯||.
  5. Verifica que en efecto |||| es una norma.

Entradas relacionadas