Introducción
En esta entrada hablaremos de matrices simétricas y de matrices positivas. Nos enfocaremos en el caso en el que sus entradas sean números reales. Ambos tipos de matrices son fundamentales en la teoría de álgebra lineal. Tanto para las matrices simétricas como para las positivas hay resultados de caracterización que podemos utilizar en varios problemas matemáticos.
El teorema espectral para matrices simétricas reales
Si $A$ es una matriz de $m\times n$, su transpuesta $^tA$ es la matriz de $n\times m$ que se obtiene de reflejar a las entradas de $A$ en su diagonal principal. Otra forma de decirlo es que si en términos de entradas tenemos $A=[a_{ij}]$, entonces $^tA=[a_{ji}]$. Una matriz y su transpuesta comparten muchas propiedades, como su determinante, su polinomio característico, su rango, sus eigenvalores, etc.
Decimos que una matriz es simétrica si es igual a su transpuesta. Una matriz es ortogonal si es invertible y $^tA = A^{-1}$. Las matrices simétricas y ortogonales con entradas reales son muy importantes y cumplen propiedades bonitas.
Teorema (teorema espectral). Si $A$ es una matriz de $n\times n$ con entradas reales y simétrica, entonces:
- Sus eigenvalores $\lambda_1,\ldots,\lambda_n$ (contando multiplicidades), son todos reales.
- Existe una matriz ortogonal $P$ de $n\times n$ y con entradas reales tal que si tomamos a $D$ la matriz diagonal de $n\times n$ cuyas entradas en la diagonal principal son $\lambda_1,\ldots,\lambda_n$, entonces $$A=P^{-1}DP.$$
No todas las matrices se pueden diagonalizar. Cuando una matriz sí se puede diagonalizar, entonces algunas operaciones se hacen más sencillas. Por ejemplo si $A=P^{-1}DP$ como en el teorema anterior, entonces
\begin{align*}
A^2&=(P^{-1}DP)(P^{-1}DP)\\
&=P^{-1}DDP\\
&=P^{-1}D^2P,
\end{align*}
y de manera inductiva se puede probar que $A^k=P^{-1}D^kP$. Elevar la matriz $D$ a la $k$-ésima potencia es sencillo, pues como es una matriz diagonal, su $k$-ésima potencia consiste simplemente en elevar cada una de las entradas en su diagonal a la $k$.
Problema. Sea $A$ una matriz de $n\times n$ simétrica y de entradas reales. Muestra que si $A^k = O_n$ para algún entero positivo $k$, entonces $A=O_n$.
Sugerencia pre-solución. La discusión anterior te permite enunciar la hipótesis en términos de los eigenvalores de $A$. Modifica el problema a demostrar que todos ellos son cero.
Solución. Como $A$ es simétrica y de entradas reales, entonces sus eigenvalores $\lambda_1,\ldots, \lambda_n$ son reales y es diagonalizable. Digamos que su diagonalización es $P^{-1} D P$. Tenemos que $$O_n = A^k = P^{-1} D^k P.$$ Multiplicando por la matriz $P$ a la izquierda, y la matriz $P^{-1}$ a la derecha, tenemos que $D^k=O_n$. Las entradas de $D^k$ son $\lambda_1^k,\ldots,\lambda_n^k$, y la igualdad anterior muestra que todos estos números son iguales a cero. De este modo, $$\lambda_1=\ldots=\lambda_n=0.$$
Concluimos que $D=O_n$, y que por lo tanto $A=P^{-1} O_n P = O_n$.
$\square$
Veamos ahora un bello problema que motiva una fórmula para los números de Fibonacci desde la teoría del álgebra lineal.
Problema. Toma la matriz $$A=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$ Calcula las primeras potencias de $A$ a mano. Conjetura y muestra cómo es $A^n$ en términos de la sucesión de Fibonacci. A partir de esto, encuentra una fórmula para el $n$-ésimo término de la sucesión de Fibonacci.
Sugerencia pre-solución. Para empezar, haz las primeras potencias y busca un patrón. Luego, para la demostración de esa parte, procede por inducción. Hay varias formas de escribir a la sucesión de Fibonacci, usa una notación que sea cómoda.
Solución. Al calcular las primeras potencias de la matriz $A$ obtenemos:
\begin{align*}
A&=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},\\
A^2&=\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix},\\
A^3&=\begin{pmatrix} 1 & 2 \\ 2& 3 \end{pmatrix},\\
A^4&=\begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix},\\
A^5&=\begin{pmatrix} 3 & 5 \\ 5 & 8 \end{pmatrix}.
\end{align*}
Al parecer, en las entradas de $A$ van apareciendo los números de Fibonacci. Seamos más concretos. Definimos $F_0=0$, $F_1=1$ y para $n\geq 0$ definimos $$F_{n+2}=F_{n}+F_{n+1}.$$ La conjetura es que para todo entero $n\geq 1$, se tiene que $$A^n=\begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1}\end{pmatrix}.$$
Esto se puede probar por inducción. Arriba ya hicimos el caso $n=1$. Supongamos la conjetura cierta hasta un entero $n$ dado, y consideremos la matriz $A^{n+1}$. Tenemos haciendo el producto de matrices, usando la hipótesis inductiva y la recursión de Fibonacci, que
\begin{align*}
A^{n+1}&=AA^n\\
& =\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}\\
&= \begin{pmatrix} F_n & F_{n+1} \\ F_{n-1} + F_n & F_n + F_{n+1} \end{pmatrix}\\
&=\begin{pmatrix} F_n & F_{n+1} \\ F_{n+1} & F_{n+2} \end{pmatrix}.
\end{align*}
Esto termina el argumento inductivo y prueba la conjetura.
Para encontrar una fórmula para los Fibonaccis, lo que haremos ahora es usar el teorema espectral. Esto lo podemos hacer pues la matriz $A$ es de entradas reales y simétrica. Para encontrar la matriz diagonal de la factorización, necesitamos a los eigenvalores de $A$. Su polinomio característico es $$\begin{vmatrix} \lambda & -1 \\ – 1 & \lambda -1 \end{vmatrix}=\lambda^2-\lambda -1.$$
Usando la fórmula cuadrática, las raíces de este polinomio (y por tanto, los eigenvalores de $A$) son $$\frac{1\pm \sqrt{5}}{2}.$$ Por el momento, para simplificar la notación, llamemos $\alpha$ a la de signo más y $\beta$ a la raíz de signo menos. Por el teorema espectral, existe una matriz invertible $P$ de $2\times 2$ tal que $$A=P^{-1}\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} P.$$
De esta forma, $$A^n = P^{-1}\begin{pmatrix} \alpha^n & 0 \\ 0 & \beta^n \end{pmatrix} P.$$
Aquí no es tan importante determinar concretamente $P$ ni realizar las cuentas, sino darnos cuenta de que tras realizarlas cada entrada será una combinación lineal de $\alpha^n$ y $\beta^n$ y de que los coeficientes de esta combinación lineal ya no dependen de $n$, sino sólo de las entradas de $P$. En particular, la entrada superior derecha de $A^n$ por un lado es $F_n$, y por otro lado es $r\alpha^n + s\beta ^n$.
¿Cómo obtenemos los valores de $\alpha$ y $\beta$? Basta substituir $n=1$ y $n=2$ para obtener un sistema de ecuaciones en $\alpha$ y $\beta$. Aquí abajo usamos que como $\alpha$ y $\beta$ son raíces de $x^2-x-1$, entonces $\alpha^2=\alpha+1$, $\beta^2=\beta+1$ y $\alpha+\beta = 1$.
$$\begin{cases}
1= F_1 = r \alpha + s \beta \\
1= F_2 = r \alpha^2 + s \beta^2 = r + s + 1.
\end{cases}$$
De aquí, obtenemos la solución
\begin{align*}
r&=\frac{1}{\alpha-\beta} = \frac{1}{\sqrt{5}}\\
s&=-r = -\frac{1}{\sqrt{5}}.
\end{align*}
Finalmente, todo este trabajo se resume a que una fórmula para los números de Fibonacci es $$F_n=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^n – \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}.$$
$\square$
Matrices positivas y positivas definidas
Por definición, una matriz simétrica $A$ de $n\times n$ con entradas reales es positiva si para cualquier vector (columna) $v$ en $\mathbb{R}^n$ se tiene que $$^t v A v \geq 0.$$ Aquí $^tv$ es la transposición de $v$, es decir, el mismo vector, pero como vector fila.
Si además la igualdad se da sólo para el vector $v=0$, entonces decimos que $A$ es positiva definida. Un ejemplo sencillo de matriz positiva es la matriz $A=\begin{pmatrix} 1 & -1 \\ -1 & 1\end{pmatrix},$ pues para cualquier vector $v=(x,y)$ se tiene que $$^t v A v = x^2-2xy+y^2=(x-y)^2\geq 0.$$ Sin embargo, esta matriz no es positiva definida pues la expresión anterior se anula en vectores no cero como $(1,1)$. Como puedes verificar, un ejemplo de matriz positiva definida es $$B=\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}.$$
Las matrices reales que son positivas definidas son importantes pues caracterizan todos los productos interiores en $\mathbb{R}^n$. Una vez que se tiene un producto interior en un espacio vectorial de dimensión finita, se pueden aprovechar muchas de sus propiedades o consecuencias, por ejemplo, la desigualdad de Cauchy-Schwarz o la existencia de bases ortogonales para hacer descomposiciones de Fourier.
Para cuando se quieren resolver problemas, es muy útil conocer varias equivalencias de que una matriz sea positiva.
Equivalencias para matrices positivas
El siguiente resultado enuncia algunas de las equivalencias para que una matriz sea positiva
Teorema. Sea $A$ una matriz simétrica. Entonces todas las siguientes afirmaciones son equivalentes:
- $A$ es positiva.
- Todos los eigenvalores de $A$ son no negativos.
- $A=B^2$ para alguna matriz simétrica $B$ en $M_n(\mathbb{R})$.
- $A= {^tC} C$ para alguna matriz $C$ en $M_n(\mathbb{R})$.
Hay un resultado análogo para cuando se quiere determinar si una matriz $A$ es positiva definida. En ese caso, los eigenvalores tienen que ser todos positivos. Para los puntos $3$ y $4$ se necesita además que $B$ y $C$ sean invertibles.
Problema. Sea $A$ una matriz de $n\times n$ con entradas reales, simétrica y positiva. Muestra que si $$\text{tr}(A) = n \sqrt[n]{\det(A)},$$ entonces $A$ conmuta con cualquier matriz de $n\times n$.
Sugerencia pre-solución. Necesitarás usar que matrices similares tienen la misma traza y el mismo determinante, o una versión particular para este problema.
Solución. Las siguientes son propiedades de la traza y el determinante:
- El determinante de una matriz diagonal es el producto de las entradas en su diagonal.
- Si tenemos dos matrices similares, entonces tienen la misma traza.
En particular, las hipótesis implican, por el teorema espectral, que $A$ se puede diagonalizar con matrices $A=P^{-1} D P$, donde $D$ es la matriz diagonal que tiene en su diagonal principal a los eigenvalores $\lambda_1,\ldots,\lambda_n$ de $A$, y $P^{-1}$ es una matriz invertible. Como $A$ y $D$ son similares, se tiene que
\begin{align*}
\text{tr}(A)=\text{tr}(D)=\lambda_1+\ldots+\lambda_n\\
\det(A)=\det(D)=\lambda_1\cdot\ldots\cdot\lambda_n.
\end{align*}
Como $A$ es positiva, entonces todos sus eigenvalores son no negativos, así que satisfacen la desigualdad MA-MG:
$$\frac{\lambda_1+\ldots+\lambda_n}{n} \geq \sqrt[n]{\lambda_1\cdot\ldots\cdot\lambda_n}.$$
Por la última hipótesis del problema, esta desigualdad es de hecho una igualdad. Pero la igualdad en MA-MG se alcanza si y sólo si todos los números son iguales entre sí. Tenemos entonces que todos los eigenvalores son iguales a un cierto valor $\lambda$, y entonces $D=\lambda I_n$. Como cualquier múltiplo escalar de la matriz identidad conmuta con cualquier matriz de $n\times n$, tendríamos entonces que
\begin{align*}
A&=P^{-1}D P \\
&=P^{-1}(\lambda I_n) P\\
&=(\lambda I_n) (P^{-1}P)\\
&=\lambda I_n.
\end{align*}
Con esto probamos que $A$ es de hecho un múltiplo de la matriz identidad, y por lo tanto conmuta con cualquier matriz de $n\times n$.
$\square$
Más problemas
Puedes encontrar más problemas del teorema espectral, de formas y matrices positivas en la Sección 10.2 y la Sección 10.8 del libro Essential Linear Algebra de Titu Andreescu.