Geometría Moderna II: Conservación de ángulos

Por Armando Arzola Pérez

Introducción

Ya analizado en el anterior tema, la inversión de rectas y circunferencias, es momento de ver como la inversión hace conservación de ángulos.

Conservación de ángulos y razón cruzada

Teorema. La inversión es una transformación, que preserva ángulos e invierte orientación.

Demostración. Para ello lo demostraré de dos maneras distintas:

1.º Forma

Conservación de Ángulos forma 1

Se tiene una circunferencia de inversión $C_o(O,r)$, $A$ y $B$ circunferencias que se intersecan, y sea $P$ uno de los puntos de intersección, además se tiene $P’$ inversa de $P$.
Ahora construyamos la circunferencia $C$ tangente a $A$ en $P$ y que pase por $P’$, de igual forma se construye $D$ tangente a $B$ en $P$ y que pase por $P’$. Sea $L_1$ recta tangente a $A$ en $P$ y de igual forma tangente a $C$ en $P$, sea $L_2$ recta tangente a $B$ en $P$ y es tangente a $D$ en $P$, entonces el ángulo entre $A$ y $B$ es el mismo entre $C$ y $D$.
Como $C$ y $D$ pasan por puntos inversos, entonces son ortogonales a $C_o$ la circunferencia de inversión, $P$ y $P’$ son ortogonales entre $A’$ y $B’$ dos circunferencias inversas a $A$ y $B$ respectivamente, entonces se tiene que el ángulo entre $A’$ y $B’$ es el mismo entre $A$ y $B$.
Por lo tanto, la inversión preserva ángulos e invierte orientación.

$\square$

2.º Forma

Conservación de Ángulos forma 2

Sean 2 curvas que se intersecan en $P$ y $P\neq O$. Tracemos una línea por $OP$ y otra por $O$ que corte a las curvas en $Q$ y $R$, $OQR$ colineales.
Se tiene que $P$, $Q$ y $R$ tienen inversos $P’$, $Q’$ y $R’$ respectivamente, entonces las inversas de dichas curvas $PQ$ y $PR$ tendrán que intersecarse en $P’$, $Q’$ y $R’$ respectivamente, ahora por definición de inversión $OP\times OP’=OQ\times OQ’=OR\times OR’$, por lo cual $\triangle OPQ \approx \triangle OQ’P’$ y también $\triangle OPR \approx \triangle OR’P’$, y si trazamos las secantes que corten a las curvas en $P$ y $P’$, y que pase por $Q$, $R$, $Q’$ y $R’$, entonces

$\angle OPQ = \angle P’Q’O$, $\angle OPR = \angle P’R’O .$

Y por lo cual $\angle QPR= \angle R’P’Q’$ y $\angle RPQ= – \angle R’P’Q’$, ahora si se tiene el límite cuando $Q$ y $R$ tienden a $P$, entonces $Q’$ y $R’$ tienden a $P’$, por lo cual $\angle RPQ$ y $ \angle R’P’Q’$ tienden a ser los angulos límite de la intersección de las curvas.
Por lo tanto, los ángulos preservan la inversión en magnitud pero opuestos en signo.

$\square$

Observación. Es por ello que se dice que la inversión es una transformación isogonal.

Corolario. Si dos curvas son tangente una a la otra en $P$, sus inversas son tangentes una a la otra en $P’$.

Conservación de ángulos 
Corolario 1

Corolario. Objetos ortogonales se invierten en objetos ortogonales.

Conservación de ángulos 
Corolario 2

Corolario. Rectas paralelas se invierten en circunferencias tangentes en el centro de inversión.

Conservación de ángulos 
Corolario 3

Teorema. Sea $A$ una circunferencia y $A’$ su inversa, entonces son homotéticas desde el centro de inversión.

Conservación de ángulos

Inversión y Distancias

Teorema. Sean $P$ y $P’$ puntos inversos y $B$ un punto colineal a $PP’$ y que corta al círculo de inversión, entonces

$BP’ = \frac{BP}{1+BP/r}$ y $BP=\frac{BP’}{1-BP’/r}.$

Conservación de ángulos

Demostración. Se tiene que $BP’=r-OP’=r- \frac{OP’ \times OP}{OP}$, entonces por definición de inversión:

$\begin{split} BP’ & =r- \frac{r^2}{OP} \\ & =r- \frac{r^2}{r+BP} \\ & =\frac{r \times BP}{r+BP} \\ & =\frac{BP}{1+BP/r} \end{split}$

$\Rightarrow BP’= \frac{BP}{1+BP/r} $

Ahora

$\begin{split} BP & =OP-r \\ & =\frac{OP’ \times OP}{OP’} -r \\ & =\frac{r^2}{OP’} -r \\ & =\frac{r^2}{r-BP’} -r \\ & =\frac{r \times BP’}{r-BP’} \\ & =\frac{BP’}{1-BP’/r} . \end{split}$

$\square$

Teorema. Sea $C(O,r)$ una circunferencia de inversión y $P$ y $Q$ dos puntos con inversos $P’$ y $Q’$ respectivamente, entonces

$P’Q’= \frac{r^2 \times QP}{OP \times OQ}.$

Conservación de ángulos

Demostración. Se tiene por definición de inversión: $OP \times OP’=r^2$ y $OQ \times OQ’=r^2.$

$\begin{split} & \Rightarrow OP \times OP’ = OQ \times OQ’ \\ &\Rightarrow \frac{OP}{OQ’} = \frac{OQ}{OP’} \\ & \Rightarrow \triangle OQP \approx \triangle OP’Q’ \\ & \Rightarrow \frac{OP}{OQ’} = \frac{OQ}{OP’} = \frac{QP}{P’Q’} \\ & \Rightarrow \frac{OQ}{OP’} = \frac{QP}{P’Q’} \\ & \Rightarrow P’Q’ = \frac{QP \times OP’}{OQ} \\ & \Rightarrow P’Q’ = \frac{QP \times OP’ \times OP}{OQ \times OP} \\ & \Rightarrow P’Q’ = \frac{r^2 \times QP }{OQ \times OP}. \end{split} $

$\square$

Si $P$, $Q$ y $O$ son colineales, asumiendo $OP < OQ$.

Conservación de ángulos

Entonces $OP \times OP’ = OQ \times OQ’$ y $P’Q’=OP’-OQ’$

$\begin{split} \Rightarrow P’Q’ & =\frac{OP \times OP’}{OP} \\ & =\frac{r^2}{OP} – \frac{r^2}{OQ} \\ & =r^2(\frac{OQ-OP}{OP \times OQ}) \\ & =\frac{r^2 \times PQ}{OP \times OQ} . \end{split} $

$\square$

Teorema de Ptolomeo. Sea $ABCD$ un cuadrilátero cíclico convexo, entonces

$BC \times BD = BC \times AD + CD \times AB.$

Demostración. Sea una circunferencia de inversión $C(A,r)$ y se tiene una circunferencia circunscrita del cuadrilátero cíclico. La circunferencia invierte los puntos en una línea, es decir, se tiene $B’$ inverso de $B$, $C’$ inverso de $C$ y $D’$ inverso de $D$, los cuales forman la línea «$L$», se muestra:

Conservación de ángulos 
Teorema Ptolomeo

Entonces se maneja las distancias de la línea «L$, se tiene $B’D’=B’C’+C’D’$ y por el teorema anterior:

$B’D’= \frac{BD \times r^2}{AB \times AD}$, $B’C’= \frac{BC \times r^2}{AB \times AC}$ y $C’D’= \frac{CD \times r^2}{AC \times AD}$

$\Rightarrow \frac{BD \times r^2}{AB \times AD}= \frac{BC \times r^2}{AB \times AC}= \frac{CD \times r^2}{AC \times AD}$

Entonces se cancelan las $r^2$ y si nos fijamos en el denominador tenemos en comun $AB$, $AD$ y $AC$. Por lo cual multiplicamos por $AB \times AD \times AC$

$\Rightarrow \frac{BD \times AB \times AD \times AC}{AB \times AD}= \frac{BC \times AB \times AD \times AC}{AB \times AC}= \frac{CD \times AB \times AD \times AC}{AC \times AD}$

Por lo tanto, $AC \times BD = BC \times AD + CD \times AB .$

$\square$

Teorema de Feuerbach

Teorema. La circunferencia de los nueve puntos del triángulo es tangente al incirculo y a los tres excirculos.

Inversión
Teorema de Feuerbach

Demostración. Sea el triángulo $\triangle ABC$ con $C_I$ el incirculo y $C_E$ el excirculo, sea $BC$ la tangente a $C_1$ y $C_E$, se tiene otra tangente $B’C’$ la cual es simétrica a $BC$ con respecto a la bisectriz $AI$, de lo anterior se tienen tres cosas: $C \in AB$, $B’ \in AC$ y $A’=BC \cap B’C’$.

Por otra parte, los puntos $A$ y $A’$ son centros de homotecia de $C_I$ y $C_E$ respectivamente, entonces $I_E$ es dividido por $A’$ y $A$ interna y externamente en razón de sus radios.

$\Rightarrow \frac{IA’}{A’E}=-\frac{IA}{AE}=\frac{r}{rA}$

Entonces $A$ y $A’$ son armónicos respecto a $I$ y $E$. Trazamos perpendiculares $E$, $I$ y $A$ sobre $BC$ y sus pies los llamamos $P_e$, $P_i$ y $P_a$ respectivamente, entonces los triángulos $\triangle EP_eA’ \approx \triangle IP_iA’ \approx AP_aA’$, entonces $P_a$ y $A’$ son armonicos respecto a $P_i$ y $P_e$.
Ahora sea $M_A$ punto medio de $BC$ entonces también lo es de $P_i$ y $P_e$, trazamos la circunferencia $Z$ con centro $M_A$ y radio $M_AP_i$, entonces $A’$ y $P_a$ son inversos respecto a $Z$

Por lo cual

$P_eP_i=BC-2P_iC=a-2(s-c)=c-b.$

Donde $a$ es el lado opuesto al vértice $A$, de igual forma $b$ es de $B$, $c$ es de $C$ y $s$ es el semiperímetro.

Entonces el radio de $z$ es de $\frac{c-b}{2}$ y $M_AM_B=c/2.$

Por lo cual $S=B’C’ \cap M_AM_B.$

$\Rightarrow M_AS=M_AM_B + M_BS=M_AM_B -SM_B$, y $M_AM_B$ paralelo a $BA$ entonces $\triangle B’SM_B \approx \triangle B’C’A $ por lo cual sus lados son proporcionales $\frac{SM_B}{C’A}=\frac{M_BB’}{AB’}.$.

$\Rightarrow SM_B =\frac{C’A\times B’M_B}{B’A}$

Y como $CA=C’A$ y $B’A=BA$ entonces

$SM_B=\frac{C’A\times B’M_B}{B’A}=\frac{CA(BA-M_BA)}{BA}=\frac{2bc-b^2}{2c}$

$\Rightarrow M_AS=M_AM_B-SM_B=\frac{c}{2} – \frac{2bc-b^2}{2c} = \frac{(c-b)^2}{2c}.$

Así,

$M_AS \times M_AM_B = \frac{(c-b)^2}{2c} \times \frac{c}{2} = (\frac{c-b}{2})^2.$

Y por lo cual $S$ y $M_B$ son inversos respecto a la circunferencia $Z$ con diámetro $P_iP_e$. El inverso de $B’C’$ es una circunferencia que pasa por $M_A$ el centro de inversión y por $P_a$ y $M_B$. Como una circunferencia está determinada por tres puntos y la circunferencia de los nueve puntos cumple esto, entonces $C_N$ es la inversa de la recta $B’C’$ con respecto a la circunferencia $Z$.
Pero el inverso de $C_I$ con respecto a $Z$ es $C_I$, al igual $C_E$ su inverso con respecto a $Z$ es $C_E$, ya que son ortogonales a $Z$; $B’C’$ es tangente a $C_I$ y $C_E$ y como la inversión conserva ángulos se sigue que la circunferencia $C_N$ será tangente a las circunferencias $C_I$ y $C_E$ (De igual forma para los otros 2 excirculos).

$\square$

Teorema. La razón cruzada es invariante bajo inversiones.

Demostración. (Se debe de interpretar como la razón cruzada entre puntos colineales y rectas concurrentes).

Sea, $C(O, r)$ circunferencia, $A$, $B$, $C$ y $D$ cuatro puntos colineales distintos de $O$, sus inversos $A’$, $B’$, $C’$ y $D’$ con respecto a $C$ y $a’=OA’$, $b’=OB’$, $c’=OC’$ y $d’=OD’.$

Inversión en razón cruzada

Ahora las razones cruzadas coinciden: $O(a’b’, c’d’)=o(AB, CD).$

Como la razón cruzada es una propiedad proyectiva y las inversiones respeten ángulos e invierten orientación.

$o(AB, CD)=\frac{sen \angle AOC}{sen \angle AOD} \times \frac{sen \angle DOB}{sen \angle COB}=\frac{-sen \angle A’OC’}{-sen \angle A’OD’} \times \frac{-sen \angle D’OB’}{-sen \angle C’OB’}=O(a’b’, c’d’) .$

$\square$

Más adelante…

Se verá como la inversión es una forma alterna de resolver problemas ya demostrados y más fáciles de ver, además se revisará un tema de importante, la circunferencia de antisimilitud.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.