Nota 5. Leyes de De Morgan y la diferencia simétrica.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción.

En este capítulo veremos las leyes de De Morgan, que nos hablan de cómo es el complemento de una unión o de una intersección de conjuntos. Para ello usaremos los resultados adquiridos en notas anteriores, notando que cuando un elemento del conjunto universo no es parte de un conjunto, es por que no cumple con la propiedad que caracteriza sus elementos, y por tanto cumple la negación de esa propiedad.

Una vez con las leyes de De Morgan en un nuestro repertorio de proposiciones adquiridas, junto con algunas propiedades de la diferencia de conjuntos, definiremos la diferencia simétrica y usaremos los resultados previos para obtener algunas propiedades derivadas.

Teorema. Leyes de De Morgan.

Sea $X$ el conjunto universo, $A$ y $B$ subconjuntos de $X$.

  1. $(A\cup B)^c=A^c\cap B^c$
  2. $(A\cap B)^c=A^c\cup B^c$

Demostración

Demostración de la propiedad 1.

Por demostrar que $(A\cup B)^c=A^c\cap B^c$.

Esta prueba la haremos por doble contención, la cadena de implicaciones de ida y regreso nos dará la prueba por doble contención.

Prueba condensada.
Explicación de las implicaciones de ida que probarán la primera contención
$(A\cup B)^c\subseteq A^c\cap B^c$
Explicación de las implicaciones de regreso que probarán la segunda contención
$(A\cup B)^c\supseteq A^c\cap B^c$
$z\in (A\cup B)^c$ Empezamos la prueba tomándonos un elemento en el conjunto $(A\cup B)^c$ , con la intención de mostrar que también está en $A^c\cap B^c$ Por definición de complemento.
$\Longleftrightarrow$ $z\notin A\cup B$Esto es por la definición de complemento.Si el elemento cumple con no estar ni en $A$ ni en $B$ entonces no está en la unión.
$\Longleftrightarrow$ $z\notin A$ y $z\notin B$ $\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, $Si $z$ no está en la unión, no cumple con la propiedad que caracteriza a los elementos de la unión, es decir $z$ no cumple que $z\in A$ o $z\in B$, por lo que $z$ no puede estar ni en $A$ ni en $B$, es decir $z\notin A$ y $z\notin B$. Nota cómo la negación de la disyunción es la conjunción. Por definición de complemento.
$\Longleftrightarrow$ $z\in A^c$ y $z\in B^c$Si $z$ no está en $A$, está en su complemento, y lo mismo pasa con $B$.Por definición de intersección.
$\Longleftrightarrow$ $z\in A^c\cap B^c$Por definición de intersección. Empezamos la prueba tomándonos un elemento en el conjunto $A^c\cap B^c$, con la intención de mostrar que también está en $(A\cup B)^c$.

Las explicaciones de la prueba en la tabla se leen de arriba a abajo para la primera contención y de abajo a arriba en el caso de la segunda contención, para saber cómo cambiamos de paso, o empezamos la prueba, atendemos a la explicación, cada columna nos da una contención, la primera nos muestra que $(A\cup B)^c\subseteq A^c\cap B^c$, y la segunda nos muestra que $A^c\cap B^c\subseteq (A\cup B)^c$, lo que nos garantiza según el axioma de extensionalidad lo que queríamos probar: $(A\cup B)^c=A^c\cap B^c$

$\square$

Demostración de la propiedad 2.

Por demostrar que $(A\cap B)^c=A^c\cup B^c$

Prueba condensada.
Explicación de las implicaciones de ida que probarán la primera contención
$(A\cap B)^c\subseteq A^c\cup B^c$
Explicación de las implicaciones de regreso que probarán la segunda contención
$(A\cap B)^c\supseteq A^c\cup B^c$

$z\in (A\cap B)^c$ Empezamos la prueba tomándonos un elemento en el conjunto $(A\cap B)^c$, con la intención de mostrar que también está en $A^c\cup B^c.$ Por definición de complemento.
$\Longleftrightarrow$ $z\notin A\cap B$ Por definición de complemento. Si el elemento cumple con no estar en $A$ o en $B$ entonces no está en la intersección.
$\Longleftrightarrow$ $z\notin A$ o $z\notin B$ $\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, $Si z no está en la intersección, no cumple con la propiedad que cumplen los elementos de la intersección, es decir $z$ no cumple que $z\in A$ y $z\in B$, por lo que debe fallar al menos una de ambas condiciones, es decir $z\notin A$ o $z\notin B$. Nota cómo la negación de la conjunción $y$ es la disyunción $o$. Por definición de complemento.
$\Longleftrightarrow$ $z\in A^c$ o $z\in B^c$Si no está en $A$, está en su complemento, y lo mismo pasa con $B$.Por definición de unión.
$\Longleftrightarrow$ $z\in A^c\cup B^c$Por definición de unión. Empezamos la prueba tomándonos un elemento en el conjunto $A^c\cup B^c$, con la intención de mostrar que también está en $(A\cap B)^c$

Igual que en la primera demostración las dos contenciones nos dan la igualdad y así:

$(A\cap B)^c=A^c\cup B^c$, que es lo queríamos demostrar.

$\square$

Hay que estar atentos pues usaremos el resultado anterior para probar algunas propiedades de una operación destacable, la diferencia simétrica, pero antes de llegar a ello, definamos una operación más.

Definición

Sea $X$ el conjunto universo, $A$,$B$, subconjuntos de $X$.

La diferencia de $A$ con $B$ es el conjunto de los elementos que están en $A$, pero no están en $B$.

$A \setminus B = \set{x\in A\mid x\notin B}$

Proposición

  1. $A\setminus B=A\cap B^c$
  2. $A\setminus (B\cap C)=(A\setminus B)\cup (A\setminus C)$
  3. $A\setminus (B\cup C)=(A\setminus B)\cap (A\setminus C)$

Demostración

Demostración de 1

Tenemos que:

$z\in A\setminus B = \set{x\in A\mid x\notin B}$ $\Longleftrightarrow$ $z\in A$ y $z\notin B$ $\Longleftrightarrow$ $z\in A$ y $z\in B^c$ $\Longleftrightarrow$ $z\in A\cap B^c$.

Nota que ésta es una prueba por doble contención, la cadena de si y sólo si ($\Longleftrightarrow$) nos dan las dos contenciones.

$\square$

Demostración de 2

De nuevo recurriremos a una tabla para ir mostrando los pasos, esta vez entre igualdades.

Prueba condensadaExplicación
$A\setminus (B\cap C)$ =Empezamos considerando
este conjunto.
$A\cap (B\cap C)^c$ =Por lo mostrado en la proposición anterior
$A\setminus B=A\cap B^c$.
$A\cap (B^c\cup C^c)$ =Observa que en este paso nos valimos
de las leyes de De Morgan y utilizamos
que $(B\cap C)^c= B^c\cup C^c $.
$(A\cap B^c)\cup (A\cap C^c)$=Esta igualdad es por la propiedad distributiva
de la intersección.
$(A\setminus B)\cup (A\setminus C)$ Por lo mostrado en la proposición anterior
$A\setminus B=A\cap B^c$ y $A\setminus C=A\cap C^c$.

Por lo tanto $A\setminus (B\cap C)=(A\setminus B)\cup (A\setminus C)$.

$\square$

Demostración de 3

Prueba condensadaExplicación
$A\setminus (B\cup C)$ =Empezamos considerando
este conjunto.
$A\cap (B\cup C)^c$ =Por lo mostrado en la propiedad 1
$A\setminus B=A\cap B^c$.
$A\cap (B^c\cap C^c)$ =Observa que en este paso nos valimos
de las leyes de De Morgan y utilizamos
que $(B\cup C)^c= B^c\cap C^c $.
$A\cap A\cap B^c \cap C^c$ =Como $ A\cap A=A$, simplente reescribimos a $A$ de esta forma.
$(A\cap B^c)\cap (A \cap C^c)$ = Por las propiedades de asociatividad y conmutatividad de la
intersección.
$(A\setminus B)\cap (A\setminus C)$ Por lo mostrado en la propiedad 1
$A\setminus B=A\cap B^c$.

Por lo tanto $A\setminus (B\cup C)=(A\setminus B)\cap (A\setminus C)$.

$\square$

Con estas herramientas estamos listos para dar la definición de diferencia simétrica.

Definición

Sea $X$ el conjunto universo, $A$, $B$, subconjuntos de $X$, la diferencia simétrica de $A$ con $B$ es la diferencia de la unión de los dos conjuntos con su intersección:

$A\vartriangle B=(A\cup B)\setminus (A\cap B).$

Proposición

  1. $A\vartriangle B=B\vartriangle A$
  2. $A\vartriangle B=(A\setminus B)\cup (B\setminus A)$

Demostración de 1

$A\vartriangle B= (A\cup B)\setminus (A\cap B) = (B\cup A)\setminus (B\cap A) =B\vartriangle A$, nota que en la prueba se está usando la conmutatividad de la unión y de la intersección.

$\square$

Demostración de 2

Prueba condensadaExplicación
$A\vartriangle B$=Empezamos con este conjunto.
$(A\cup B)\setminus (A\cap B)$=Por definición de diferencia simétrica.
$(A\cup B)\cap (A\cap B)^c$=Por lo mostrado en la propiedad 1
$A\setminus B=A\cap B^c$.
$(A\cup B)\cap (A^c\cup B^c)$=Por las leyes de De Morgan.
$[(A\cup B)\cap A^c]\cup [(A\cup B) \cap B^c]$=Por la propiedad distributiva
de la intersección sobre la unión.
$[(A\cap A^c)\cup (B\cap A^c)]\cup [(A\cap B^c)\cup (B\cap B^c)]$= Por la propiedad distributiva
de la intersección sobre la unión.
$[\emptyset\cup (B\cap A^c)]\cup [(A\cap B^c)\cup \emptyset ]$=La intersección de un conjunto con su complemento es el vacío.
$(B\cap A^c)\cup (A\cap B^c)$=El vacío unión cualquier conjunto nos deja
el mismo conjunto.
$(B\setminus A)\cup (A\setminus B)$ Por lo mostrado en la proposición anterior
$A\setminus B=A\cap B^c$.

Esto muestra que $A\vartriangle B=(A\setminus B)\cup (B\setminus A)$.

$\square$

Tarea Moral

En los siguientes incisos el conjunto universo es $X$, $A\subseteq X$, $B\subseteq X$.

i) Encuentra: $A^c$, $B^c$, $A^c\cup B^c$, $A^c\cap B^c$, $(A\cup B)^c$, $(A\cap B)^c$.

  1. $X=\mathbb{N}$
    $A=\set{x\in \mathbb{N}\mid x\,\,es\,\,un\,\,primo}$
    $B=\set{x\in \mathbb{N}\mid x\,\,es\,\,un\,\,impar}$
  2. $X=\mathbb{Z}$
    $A=\set{x\in \mathbb{Z}\mid x=4k+1,para\,\,alguna\,\,k\in \mathbb{Z}}$
    $B=\set{x\in \mathbb{N}\mid x\,\,es\,\,negativo}$
  3. $X=\mathbb{N}$
    $A=\set{x\in \mathbb{N}\mid x\,\,es\,\,un\,\,irracional}$
    $B=\set{x\in \mathbb{N}\mid x>3}$
  4. $X=\mathbb{N}$
    $A=\set{x\in \mathbb{N}\mid x\leq 5 }$
    $B=\set{x\in \mathbb{N}\mid 1\leq x<11}$

ii) Sean $A$ y $B$ conjuntos

  • ¿Cómo son $A\cup (B\setminus A)$ y $A\cap (B\setminus A)$?
  • ¿Cómo son $(B\setminus A)\cup (A\cap B)$ y $(B\setminus A)\cap (A\cap B)$

iii) Prueba que $A\vartriangle B\subseteq (A\vartriangle C)\cup (C\vartriangle B)$. Encuentra un ejemplo donde la contención sea propia y otro donde se dé la igualdad.

Más adelante

En la siguiente nota definiremos una manera de crear un nuevo subconjunto, estableceremos como un axioma que el conjunto de los subconjuntos de un conjunto dado $A$ también es un subconjunto y lo llamaremos el conjunto potencia, iremos encaminando nuestros esfuerzos para definir una de las mas útiles maneras de estudiar los distintos conjuntos, el concepto de función, pero para ello hablaremos de algo más primitivo, las relaciones entre conjuntos, que caracterizaremos y para las cuales deduciremos propiedades.

Entradas Relacionadas

Página principal del curso.

Nota Anterior del curso. Nota 4. Unión e intersección de conjuntos.

Nota siguiente del curso. Nota 6. Conjunto potencia y el producto cartesiano.

Investigación de Operaciones: El problema de la ruta más corta (8)

Por Aldo Romero

Introducción

Veamos un último ejemplo de los problemas que podremos resolver con la teoría que desarrollaremos más adelante. Se conoce como el problema de la ruta más corta, y la idea es muy sencilla. Se tiene una red de localizaciones en un mapa. Hay algunos tramos que conectan localizaciones. Atravesar cada uno de ellos tiene cierto costo (asociado por ejemplo, con la distancia). Si nos dan un origen y un destino, ¿cómo podremos determinar el camino a seguir que nos lleve del origen al destino con el menor costo posible? Comencemos con un ejemplo concreto.

Ejemplo del problema de la ruta más corta

Supongamos que un empleado sale de trabajar a cierta hora de la noche y para regresar a su casa evalúa las posibles rutas a tomar en una aplicación móvil. La aplicación le indica algunas calles y avenidas que lo llevan de su trabajo (1) a su casa (7). Los vértices de en medio (2, 3, 4, 5 y 6) representan los cruces de calles por los que se transita en estas posibles rutas. También le indica cual es el tiempo que le tomará ir por cada calle o avenida en minutos, tomando en cuenta no solo la distancia, sino también el tráfico y los accidentes que se presentan. El empleado busca la ruta más rápida para poder llegar a su casa a descansar.

Una representación gráfica del problema presentado

Aunque parezca que este problema es muy geométrico, en realidad también se puede plantear en términos algebraicos, como veremos a continuación.

Variables de decisión del problema de la ruta más corta

En otros problemas hemos tenido variables de decisión que nos dicen cuánto producir, cuánto transportar, cuánto comer, etc. En esta caso, nuestras variables de decisión no representarán una cantidad, sino simplemente una decisión de «sí» o «no». Lo que haremos es establecer una variable $x_{ij}$ por cada uno de los posibles tramos del destino $i$ al $j$, y será una variable binaria que indique la decisión de recorrer o no tal tramo. Si sí lo recorremos tendrá valor $1$ y si no, tendrá valor $0$.

Por ejemplo si tomamos la ruta {1,2,3,7}, tendremos $x_{12} = x_{23} = x_{37}=1$, lo cual nos indicará que sí se recorren los tramos $(1,2)$, $(2,3)$, y $(3,7)$. Por otro lado, tomaremos $x_{ij} = 0$ para los demás tramos, que nos indicará que no se recorren.

Explícitamente, en nuestro ejemplo tomaremos variables $x_{ij}$ con $i<j$, y tales que $(i,j)$ esté en el conjunto $A$ de todas las parejas $i<j$ para las cuales haya un tramo entre $i$ y $j$ (en cualquier dirección). La interpretación que les daremos será la siguiente:

$$x_{ij}=\begin{cases} 1 \quad \text{si se recorre el tramo $(i,j)$} \\ 0 \quad \text{si no}. \end{cases}$$

Restricciones del problema de la ruta más corta

Ya establecidas las variables de decisión, lo que debemos hacer ahora es dar restricciones que hagan que los tramos elegidos definan una ruta.

Pensemos en qué sucede desde el trabajo. De ahí es donde debemos empezar. Solamente debemos tomar un tramo desde el trabajo, pues si pasamos por el trabajo más de una vez, en realidad nos podemos ahorrar esa vuelta que dimos de más para llegar más rápido a casa . Esto significa o que $x_{12} = 1$, o que $x_{14}=1$, y sólo una de estas dos igualdades se cumple. Ya que las variables sólo serán $0$ ó $1$, otra manera de escribir esto mismo es pedir que $$x_{12}+x_{14}=1.$$

Del mismo modo, debemos garantizar que se llegue a casa por un solo tramo, que se puede escribir como $$x_{37}+x_{57}+x_{67}=1,$$ o bien $$-x_{37}-x_{57}-x_{67}=-1.$$

Para el resto de las zonas, debemos tomar en cuenta que si se entra a una, también se debe salir. Y si no se entra tampoco se sale. Veamos qué pasa, por ejemplo, con el cruce 2:

  • Si se entra entonces $x_{12}=1$. Deberá cumplirse entonces que $x_{23} = 1$ o $x_{26} = 1$ y sólo una de éstas.
  • Si no se entra entonces $x_{12}=0$. Deberá cumplirse entonces: $x_{23}=x_{26} = 0$.

Podemos reescribir ambos casos anteriores de manera simplificada con la igualdad $$x_{12} = x_{23}+x_{26},$$ que también se puede escribir como $$x_{23}+x_{26}-x_{12}=0.$$

Cada uno de los cruces $3,4,5,6$ nos dan restricciones similares.

Función objetivo del problema de la ruta más corta

Finalmente, debemos determinar cuánto nos costará recorrer una ruta una vez fijas las variables de decisión. Esto es sencillo. Si el tramo de $i$ a $j$ tiene un costo de $c_{ij}$, entonces recorrerlo nos costará $x_{ij}c_{ij}$. En nuestro problema, la función objetivo quedaría como sigue:

\begin{align*}z&=30x_{12}+20x_{14}+20x_{23}+8x_{26}\\
&+10x_{36}+50x_{37}+20x_{45}+10x_{56}\\
&+50x_{57}+30x_{67}.\end{align*}

Resumen de formulación del problema de la ruta más corta

Así, el problema de ruta más corta que vimos como ejemplo queda descrito como sigue.
\begin{align*}
z&=30x_{12}+20x_{14}+20x_{23}+8x_{26}\\
&+10x_{36}+50x_{37}+20x_{45}+10x_{56}\\
&+50x_{57}+30x_{67}.
\end{align*}
\begin{align*}
s.a.\\
x_{12}+x_{14} &= 1\\
-x_{12}+x_{23}+x_{26} &= 0\\
-x_{14}+x_{45} &= 0\\
-x_{23}+x_{36}+x_{37} &= 0\\
-x_{45}+x_{56}+x_{57} &= 0\\
-x_{26}-x_{36}-x_{56}+x_{67} &= 0\\
-x_{37}-x_{57}-x_{67} &= -1\\
x_{ij}=0,1 \quad \forall (i,j) &\in A.\\
\end{align*}

Este problema podría plantearse en general, bajo algunas condiciones sobre el tipo de mapas en los que se puede resolver. Este es un modelo lineal entero binario que tiene la propiedad de que puede ser resuelto eficientemente con algoritmos de programación lineal

Otro ejemplo de ruta más corta

La idea anterior puede servir no sólo para resolver problemas en donde nos interesen las distancias geográficas. En otros problemas, nos interesa llegar «rápidamente» a una meta que tenemos, pero quizás con una noción un poco distinta de «rapidez». Esto puede querer decir llegar a un objetivo de negocio en pocos días. Hay casos en los que también podremos plantear esta situación como un problema de ruta más corta. Considera el siguiente ejemplo.

Una compañía que renta automóviles está desarrollando una política de reemplazo para su flotilla de automóviles en un horizonte de planeación de 4 años. Al inicio de cada año, un automóvil se reemplaza o se conserva en operación durante un año más. Un automóvil debe estar en servicio de 1 a 3 años. La siguiente tabla proporciona el costo de reemplazo como una función del año en que se adquiere un automóvil y los años en operación.

Equipo adquirido al inicio del añoCosto de reemplazo ($) para años dados en operación
123
1400054009800
2430062008700
348007100______
44900____________

El problema puede formularse como una red en la que los nodos 1 a 5 representan el inicio de los años 1 a 5. Los arcos a partir del nodo 1 (año 1) pueden llegar a los nodos 2, 3 y 4 porque un automóvil puede estar en operación de 1 a 3 años. Los arcos a partir de los demás nodos pueden interpretarse del mismo modo. La longitud de cada arco es igual al costo de reemplazo. La solución del problema es equivalente a determinar la ruta más corta entre los nodos 1 y 5.

El problema puede ser representado con la siguiente red:

Más adelante…

Con esto terminamos los últimos planteamientos de problemas ejemplo de programación lineal. Por un lado, estos nos servirán como motivación para saber el tipo de problemas que podemos resolver. Por otro lado, nos irán guíando para el desarrollo de distintas técnicas de solución.

Ya que conocemos el tipo de problemas que podremos resolver, platicaremos ahora un poco de la teoría general que respaldará nuestros métodos. En la siguiente entrada introduciremos algunos aspectos teóricos de los problemas de programación lineal.

Tarea moral

  1. Intenta resolver el ejemplo de la ruta más corta que pusimos como ejemplo usando técnicas elementales y una división en casos. ¿Cuál sería la ruta más corta? ¿Por qué crees que sea importante tener métodos generales si este ejemplo se puede resolver de manera muy sencilla con unos pocos casos?
  2. Formula el segundo ejemplo del problema de la ruta más corta como un problema de programación lineal. ¿Qué interpretación tendría encontrar la ruta más corta?
  3. Pedro va en auto diariamente a la facultad. Pedro siempre toma la misma ruta para llegar a la facultad. Por desgracia, en ocasiones hay algunos asaltos sobre la ruta, y a Pedro le gustaría disminuir lo más posible la probabilidad de que esto suceda. Pedro ha decidido por lo tanto elegir una ruta que minimice la probabilidad de ser asaltado.
    La red presentada a continuación muestra las posibles rutas de su casa a la facultad y la probabilidad asociada de no ser asaltado en cada segmento.

La probabilidad de no ser asaltado en la ruta es el producto de las probabilidades de sus segmentos. Por ejemplo, la probabilidad de no ser asaltado en la ruta $1 \rightarrow 3 \rightarrow 5\rightarrow 7$ es $.9 \times .3 \times .25 = .0675$. El objetivo de Pedro es seleccionar la ruta que minimice la probabilidad de ser asaltado.
¿Puedes pensar en una manera de formular este problema como un modelo de la ruta más corta? Como sugerencia, trata de usar la función logaritmo.

  1. Una vez planteado el problema anterior, intenta resolverlo con herramientas básicas y algunos casos.
  2. Intenta plantear por tu cuenta una versión general del segundo problema que vimos en esta entrada. ¿Qué sucedería si tenemos más periodos en los que se puede renovar la flotilla? ¿Cómo se vería el problema?

Entradas relacionadas

Teoría de los Conjuntos I: Suma en los naturales

Por Gabriela Hernández Aguilar

Introducción

Como lo dijimos en la entrada anterior, buscamos la manera de definir a la suma en el conjunto de los naturales y esto nos lo permitirá el teorema de recursión. En esta nueva entrada presentaremos la definición formal de la suma y demostraremos algunas de las propiedades que satisface.

Suma de naturales

El teorema de recursión nos garantiza que la siguiente definición es correcta.

Definición. Dado $n\in \mathbb{N}$ fijo pero arbitrario, la función sumar $n$ es la una única función $f_n:\mathbb{N}\to \mathbb{N}$ tal que $f_n(0)=n$ y $f_n(s(m))=s(f_n(m))$ para cualquier $m\in \mathbb{N}$.

Está definición nos dice cómo sumar a un número natural con un $n$ fijo. Sin embargo, usualmente entendemos a la suma como una operación binaria, que toma dos sumandos y nos da un resultado. A continuación hacemos esto.

Definición. Definimos a la suma de los naturales como la función $+: \mathbb{N}\times \mathbb{N}\to \mathbb{N}$ tal que $+(m,n)=f_m(n)$ para cualesquiera $n,m\in \mathbb{N}$. Definimos también la notación $m+n:=+(m,n)$.

Como la función $+$ está basada en las funciones $f_n$, obtenemos de manera inmediata que se satisfacen las siguientes propiedades:

  1. $0+n=n$ para cualquier $n\in \mathbb{N}$,
  2. $s(m)+n=s(m+n)$ para cualesquiera $m,n\in \mathbb{N}$.

¿Habrá otra función que satisfaga esto?

Teorema. La función $+$ es la única función de $\mathbb{N}\times \mathbb{N}$ en $\mathbb{N}$ que satisface las propiedades 1) y 2) de arriba.

Demostración.

Sea $+$ la función que definimos arriba y supongamos que existe $h:\mathbb{N}\times \mathbb{N}\to \mathbb{N}$ que satisface $h(0,n)=n$ y $h(s(m), n)= s(h(m,n))$ para cualesquiera $m,n\in \mathbb{N}$. Veamos que $+=h$.

Definamos para cada $n\in\mathbb{N}$ la función $h_n:\mathbb{N}\to\mathbb{N}$ por medio de $h_n(0)=h(n,0)$ y $h_n(m)=h(n,m)$. Notemos que para todo $n\in\mathbb{N}$, $h_n(0)=n$ y $h_n(s(m))=h(n,s(m))=s(h(n,m))=s(h_{n}(m))$, y por el teorema de recursión se sigue que $h_n=f_n$.

Así, para $n,m\in\mathbb{N}$ arbitrarios, $+(m,n)=f_n(m)=h_n(m)=h(n,m)$ y en consecuencia, $+=h$.

$\square$

Dado que seguimos trabajando con conjuntos y hemos definido una nueva operación binaria, podemos preguntarnos si esta operación conmuta, es asociativa o si cumple alguna otra propiedad algebraica. Notaremos que para demostrar estas propiedades ocuparemos en todo momento el principio de inducción.

Asociatividad de la suma

Teorema. Para cualesquiera $m,n,k\in \mathbb{N}$, se tiene que $m+(n+k)=(m+n)+k$.

Demostración.

Procederemos por inducción sobre $m$ y dejaremos fijos a $n$ y $k$.

Base de inducción. Si $m=0$, $0+(n+k)=n+k=(0+n)+k$.

Hipótesis de inducción. Supongamos que se cumple para $m$, es decir, $m+(n+k)= (m+n)+k$.

Paso inductivo. Veamos que se cumple para $s(m)$, es decir, $s(m)+(n+k)=(s(m)+n)+k$.

\begin{align*}
s(m)+(n+k)&=s(m+(n+k)) \tag{Definición $+$}\\
&= s((m+n)+k) \tag{Hipótesis de inducción}\\
&= s(m+n)+k\tag{Definición $+$}\\
&= (s(m)+n)+k\tag{Definición $+$}.
\end{align*}

Por lo tanto, $+$ es asociativa.

$\square$

Conmutatividad de la suma

Ahora vamos a ver que la suma conmuta, para ello demostraremos los siguientes lemas:

Lema 1. Para cualquier $m\in \mathbb{N}$, se tiene que $0+m=m+0$.

Demostración.

Procederemos por inducción sobre $m$.

Base de inducción. Si $m=0$, tenemos que $0+0=0=0+0$.

Hipótesis de inducción. Supongamos que para algún $k\in \mathbb{N}$ se satisface que $0+k=k+0$.

Paso de inductivo. Veamos que se cumple para $s(k)$, es decir, $0+s(k)=s(k)+0$.

\begin{align*}
s(k)+0 &=s(k+0)\tag{Definición $+$}\\
&= s(0+k)\tag{Hipótesis de inducción}\\
&= s(k)\tag{Definición $+$}\\
&= 0+s(k)\tag{Definición $+$}.
\end{align*}

Por lo tanto, $0+m=m+0$, para cualquier $m\in \mathbb{N}$.

$\square$

Lema 2. Para cualesquiera $m,n\in \mathbb{N}$, se tiene que $s(n)+m=n+s(m)$.

Demostración.

Procederemos por inducción sobre $m$.

Base de inducción. Si $n=0$, tenemos que $s(0)+m=s(0+m)= s(m)=0+s(m)$.

Hipótesis de inducción. Supongamos que para algún $k\in \mathbb{N}$ se satisface que $s(k)+m=k+s(m)$.

Paso de inductivo. Veamos que se cumple para $s(k)$, es decir, $s(s(k))+m=s(k)+s(m)$.

\begin{align*}
s(s(k))+m &=s(s(k)+m) \tag{Definición $+$}\\
&= s(k+s(m)) \tag{Hipótesis de Inducción}\\
&= s(k)+s(m) \tag{Definición $+$}.
\end{align*}

Por lo tanto, para cualesquiera $m,n\in \mathbb{N}$, se tiene que $s(n)+m=n+s(m)$.

$\square$

Proposición. Para cualesquiera $m,n\in \mathbb{N}$, se tiened que $n+m=m+n$.

Demostración.

Por inducción sobre $m$.

Base de inducción. Si $m=0$, entonces $n+0=0+n$. (Lo probamos por inducción en el primer lema 1).

Hipótesis de inducción. Supongamos que para $k$ se cumple que $n+k=k+n$.

Paso inductivo. Veamos que para $s(k)$ se satisface que $n+s(k)= s(k)+n$.

\begin{align*}
s(k)+n&= s(k+n)\tag{Definición $+$}\\
&= s(n+k)\tag{Hipótesis de Inducción}\\
&= s(n)+k\tag{Definición $+$}\\
&= n+s(k)\tag{Lema 2}.
\end{align*}

Por lo tanto, $+$ es conmutativa.

$\square$

Ley de cancelación

En álgebra, cuando tenemos una ecuación como la siguiente:

$x+5=y+5$,

dado que $5=5$, entonces ponemos $x=y$. Esto tiene una justificación y la llamaremos ley de cancelación de la suma. El teorema dice lo siguiente:

Teorema. Si se tienen números naturales $n,m,k$ tales que $n+k=m+k$, entonces $n=m$.

Demostración.

Demostraremos que si $n\not=m$, entonces $n+k\not=m+k$. Procederemos por inducción sobre $k$.

Base de inducción. Supongamos que $n\not=m$. Luego, $n+0=0+n=n$ y $m+0=0+m=m$ y así, $n+0=n\not=m=m+0$.

Hipótesis de inducción. Supongamos que para algún $k\in \mathbb{N}$, se satisface que si $n\not=m$, entonces $n+k\not=m+k$.

Paso inductivo. Veamos que se cumple para $s(k)$, es decir, si $n\not=m$, entonces $n+s(k)\not=m+s(k)$.

Supongamos que $n\not=m$. Luego,

\begin{align*}
n+s(k)&= s(n)+k\tag{Lema 2}\\
&= s(n+k)\tag{Definición $+$}\\
&\not= s(m+k)\tag{Hipótesis de inducción e inyectividad de $s$}\\
&= s(m)+k\tag{Definición $+$}\\
&= m+s(k)\tag{Lema 2}.
\end{align*}

Por lo tanto, se cumple la ley de cancelación para la suma.

$\square$

Como último resultado de esta entrada, probaremos que $s(m)=m+1$ para cualquier $m\in \mathbb{N}$.

Teorema. Para cualquier $m\in \mathbb{N}$, se tiene que $s(m)=m+1$.

Demostración.

Procederemos por inducción sobre $m$.

Base de inducción. Si $m=0$, entonces $s(0)=1=0+1$.

Hipótesis de inducción. Supongamos que para $k\in \mathbb{N}$ se cumple que $s(k)=k+1$.

Paso inductivo. Veamos que la propiedad se satisface para $s(k)$, es decir, $s(s(k))= s(k)+1$.

\begin{align*}
s(k)+1&= s(k+1)\tag{Definición $+$}\\
&= s(s(k))\tag{Hipótesis de inducción}.
\end{align*}

Por lo tanto, $s(m)=m+1$ para cualquier $m\in \mathbb{N}$.

$\square$

A partir de este momento usaremos el hecho de que $s(m)=m+1$.

Tarea moral

La siguiente lista de ejercicios te permitirá reforzar el contenido de esta entrada.

  1. Verifica totalmente a partir de las definiciones que $2+2=4$.
  2. Reflexiona sobre por qué sí se tiene que usar inducción para demostrar que $n+0=n$ para todo número natural $n$, pero no es necesario usar inducción para demostrar que $0+n=n$ para todo número natural $n$.
  3. Demuestra que si $n,m\in \mathbb{N}$ tales que $n\not=m$, entonces $s(n)\not= s(m)$.
  4. Demuestra usando el principio de inducción que para cualesquiera $m, n \in \mathbb{N}$, se tiene que $m + n \geq n$.
  5. Prueba que para cualesquiera $m,n\in \mathbb{N}$ tales que $m+n=0$, se cumple que $m=0$ y $n=0$.
  6. Demuestra usando únicamente las definiciones dadas que no existe un entero $n$ tal que $4+n = 2$.

Más adelante…

En la siguiente entrada definiremos al producto en el conjunto de los números naturales. Al igual que en la definición de la suma, podremos notar que usaremos un proceso recursivo para definir esta operación.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Teorema de recursión

Por Gabriela Hernández Aguilar

Introducción

A lo largo de la historia, el ser humano tuvo la necesidad de contar sus pertenencias. Esta idea la podemos asociar con los números naturales. Dado que la cantidad de cosas que alguien puede aumentar o disminuir, se tuvo la necesidad de sumar y restar. Ya definimos a los números naturales. Ahora hablaremos de la operación de suma. Pero para ello, primero necesitamos enunciar y demostrar un teorema muy importante: el teorema de recursión.

Motivación del proceso recursivo

Definir una operación de forma recursiva es de los procesos más comunes que hay. La suma y el producto son operaciones que se definirán con este proceso. Veamos, de manera intuitiva cómo queremos definir a la suma en los naturales.

La operación $+:(\mathbb{N}\times \mathbb{N})\to \mathbb{N}$ queremos que cumpla lo siguiente:

\begin{align*}
+(n,0)&=n+0=n\\
+(n,s(0))&= n+s(0)=n+1=s(n)=s(n+0)\\
+(n, s(1))&=n+s(1)=n+2=s(n+1)\\
\vdots\\
\end{align*}

En vez de poner puntos suspensivos, podemos reescribir esto como sigue.

\begin{align*}
+(n,0)&=n\\
+(n,s(m))&=s(n+m)\ \text{para cualquier}\ m\in\mathbb{N}.
\end{align*}

Observa estas propiedades con cuidado. Pensemos en que el número $n$ es fijo y vemos qué está sucediendo con $m$. En primer lugar, estamos diciendo qué queremos que suceda cuando $m=0$: estamos pidendo que se cumpla que $n+0=n$. En segundo lugar, estamos diciendo qué queremos que suceda con el sucesor de $m$: queremos que $n+s(m)=s(n+m)$. Esto tiene sentido pues si vamos definiendo «en orden» la suma, ya sabremos cuál es el valor de $n+m$, y para calcular $n+s(m)$ basta aplicar la función sucesor al número ya conocido $n+m$.

A este procedimiento es al que le llamaremos recursión. Para definir una función $f:\mathbb{N}\to A$, estableceremos un «caso base» diciendo quién es $f(0)$ y luego daremos una manera de obtener $f(n+1)$ a partir de $f(n)$. Antes de enunciar y demostrar esto formalmente, veremos un concepto que nos será de utilidad.

Cálculos de longitud $m$

Definición. Sea $A$ un conjunto y $a\in A$. Sea $g:A\to A$ una función. Sea $m\in \mathbb{N}$. Decimos que $t$ es un cálculo de longitud $m$ basado en $g$ si y sólo si $t$ es una función que satisface:

\begin{align*}
t&:s(m)\to A\\
t(0)&=a\\
t(s(k))&=g(t(k))\ \text{para cualquier}\ k\in\mathbb{N}\ \text{tal que}\ 0<k< m.
\end{align*}

Ejemplo.

¿Cómo se ve un cálculo de longitud $0$?

Sea $A$ un conjunto y $a\in A$ y sea $g:A\to A$. Un cálculo de longitud $0$ es una función $t: s(0)\to A$ tal que $t(0)=a$. (La segunda propiedad de la definición se satisface por vacuidad).

Y, ¿cómo se ve un cálculo de longitud $1$?

Sea $A$ un conjunto y $a\in A$ y sea $g:A\to A$. Un cálculo de longitud $1$ es una función

\begin{align*}
t&: s(1)\to A\\
t(0)&=a\\
t(s(0))&=g(t(0))= g(a)\ \text{con}\ 0<s(0)=1.
\end{align*}

El $dom(t)=s(1)=\set{0,1}$ por lo que para saber quién es $t$ basta con saber a dónde envía al $0$ y al $1$, lo cuál sabemos: $0\to a$ y $1\to g(a)$, donde $g(a)\in A$.

$\square$

Ahora que tenemos ejemplos de cálculos de longitud $0$ y $1$, vamos a proceder a enunciar el teorema de recursión. En la demostración notaremos que será de gran importancia conocer el concepto de cálculo de longitud $m$.

Teorema de recursión

Teorema. Sean $A$ un conjunto cualquiera, $a\in A$ y $g:A\to A$ una función. Existe una única función $f: \mathbb{N}\to A$ que satisface:

a) $f(0)=a$,

b) $f(s(n))=g(f(n))$ para todo $n\in \mathbb{N}$.

Demostración.

Para hacer la demostración primero vamos a ver que para cada número natural $m$ existe un único cálculo de longitud $m$ basado en $g$. Este hecho lo vamos a probar por inducción.

Base de inducción. En el ejemplo anterior vimos que existe el cálculo de longitud $0$, por lo que basta ver que esta función es única. Supongamos que existe $l: s(0)\to A$ tal que $l(0)=a$. Como $t=\set{(0,a)}$ y $l=\set{(0,a)}$, entonces $s=t$, y por lo tanto el cálculo de longitud $0$ es único.

Hipótesis de inducción. Supongamos que existe un único cálculo de longitud $n$ basado en $g$, es decir, existe una única función $t:s(n)\to A$ que satisface:

\begin{align*}
t&: s(n)\to A\\
t(0)&=a\\
t(s(k))&=g(t(k))\ \text{con}\ 0<k< n
\end{align*}

Paso inductivo. Veamos que existe un único cálculo de longitud $s(n)$.

Proponemos $t^{*}:s(s(n))\to A$ dada por $t^{*}=t\cup \set{(s(n), g(t(n)))}$. Se tiene que $t^{*}$ es un cálculo de longitud $s(n)$. Para comprobarlo, notemos primero que $t\cap\{(s(n),g(t(n)))\}=\emptyset$, pues $s(n)\notin s(n)=dom(f)$, de modo que la pareja $(s(n),g(t(n)))$ no está en $f$. Por tanto, $t$ y $\{(s(n),g(t(n)))\}$ son funciones compatibles y, en consecuencia, $t^{*}$ es una función. Además, $domt^{*}=dom(t)\cup\{s(n)\}=s(n)\cup\{s(n)\}=s(s(n))$, por lo que $t^{*}$ es una función de $s(s(n))$ en $A$. Notemos ahora que $t^{*}(0)=t(0)=a$; por otro lado, si $k\in\mathbb{N}$ es tal que $0<k<n$, entonces, $t^{*}(s(k))=t(s(k))=g(t(k))=g(t^{*}(k))$ y, además, $t^{*}(s(n))=g(t(n))=g(t^{*}(n))$. Por tanto, $t^{*}$ es un cálculo de longitud $s(n)$. Resta ver que $t^{*}$ es el único cálculo de longitud $s(n)$.

En efecto, supongamos que $t_1$ y $t_2$ son dos cálculos de longitud $s(n)$. Veamos que $t_1=t_2$. Sean $p_1=t_1\setminus \set{(s(n), t_1(s(n)))}$ y $p_2=t_2\setminus \set{(s(n), t_2(s(n)))}$. Veamos que $p_1$ y $p_2$ son cálculos de longitud $n$. Notemos que $dom(p_1)=dom(t_1)\setminus\set{s(n)}=s(s(n))\setminus\{s(n)\}=s(n)$ y $dom(p_2)=dom(t_2)\setminus\set{s(n)}=s(s(n))\setminus\set{s(n)}=s(n)$. Por otro lado, $p_1(0)=t_1(0)=a=t_2(0)=p_2(0)$ y, para cada $k\in s(n)$ tal que $0<k<n$ tenemos $p_1(s(k))=t_1(s(k))=g(t_1(k))=g(p_1(k))$ y $p_2(s(k))=t_2(s(k))=g(t_2(k))=g(p_2(k))$. Esto muestra que $p_1$ y $p_2$ son cálculos de longitud $s(n)$ y, por hipótesis de inducción, tenemos que $p_1=p_2$ y, por tanto, $t_1\setminus\set{(s(n),t_1(s(n)))}=t_2\setminus\set{(s(n),t_2(s(n)))}$. Resta mostrar que $t_1(s(n))=t_2(s(n))$, lo cual ocurre debido a lo siguiente

$t_1(s(n))= g(t_1(n))=g(t_2(n))=t_2(s(n))$.

Por lo tanto, $t_1=t_2$. Esto prueba la unicidad del cálculo de longitud $s(n)$. Llamemos entonces $t_m$ al único cálculo de longitud $m$ para cada $m\in \mathbb{N}$.

Ahora consideremos $\mathcal{F}=\set{t_m: m\in \mathbb{N}}$ y sea $f=\bigcup\mathcal{F}$. Afirmamos que $f$ es función. Por lo que se discutió en la entrada anterior, basta ver que $\mathcal{F}$ es un sistema compatible de funciones.

Sean $t_n,t_m\in \mathcal{F}$ cualesquiera funciones. Veamos que $t_n:s(n)\to A$ y $t_m:s(m)\to A$ son funciones compatibles. Para ello, mostraremos que para cualquier $x\in dom(t_n)\cap dom(t_m)$, se tiene que $t_n(x)=t_m(x)$.

Primero, tenemos que $dom(t_n)=s(n)$ y $dom(t_m)= s(m)$. Supongamos, sin pérdida de generalidad, que $s(n)\leq s(m)$, por lo que $s(n)\subseteq s(m)$ y así, $dom(t_n)\cap dom(t_m)= s(n)\cap s(m)= s(n)$. Así, debemos ver que para cualquier $x\in s(n)$, se tiene que $t_n(x)=t_m(x)$. Notemos que $t_m\upharpoonright_{s(n)}$ es un cálculo de longitud $s(n)$, pues $t_m\upharpoonright_{s(n)}(0)=t_m(0)=a$ y $t_m\upharpoonright_{s(n)}(s(k))=t_m(s(k))=g(t_m(k))=g(t_m\upharpoonright(k))$ para cada $k\in\mathbb{N}$ tal que $0<k<n$. Por tanto, $t_n=t_m\upharpoonright_{s(n)}$, es decir, $t_n(x)=t_m(x)$ para cada $x\in s(n)$. Por tanto, $t_n$ y $t_m$ son funciones compatibles.

Tenemos entonces que $f=\bigcup\mathcal{F}$ es función y además, es tal que $dom(f)=\mathbb{N}$ y $Im(f)\subseteq A$ (en los ejercicios mostrarás que $\bigcup \mathbb{N}=\mathbb{N}$).

Esto prueba que existe $f:\mathbb{N}\to A$ que satisface las condiciones enunciadas en el teorema.

Nos resta ver que $f$ es única. Para ello, supongamos que existe $h:\mathbb{N}\to A$, tal que:

  1. $h(0)=a$,
  2. $h(s(n))= g(h(n))$ para cualquier $n\in \mathbb{N}$.

Veremos por inducción que $h(n)=f(n)$ para cada $n\in\mathbb{N}$. Primero, $h(0)=a=f(0)$. Ahora supongamos que $h(n)=f(n)$ para algún $n\in\mathbb{N}$. Para el paso inductivo, tenemos que:

$h(s(n))= g(h(n))=g(f(n))=f(s(n))$.

Por lo tanto, para cualquier $n\in \mathbb{N}$ se cumple que $h(n)=f(n)$. Esto prueba la unicidad de $f$ y concluye la prueba del teorema de recursión.

$\square$

Tarea moral

La siguiente lista de ejercicios te permitirá reforzar el contenido de esta entrada.

  1. Demuestra que $\bigcup \mathbb{N} = \mathbb{N}$.
  2. Sea $A$ un conjunto y $f : A\to A$ una función. Definimos:

$f_0 = Id_A$,
$\vdots$
$f_{n+1} = f_n\circ f$.

Demuestra que para cada $n \in \mathbb {N}$, $f_n$ es un elemento unívocamente determinado de $A^A$.

3. Demuestra la siguiente versión más general del teorema de recursión, en donde en cada «paso» se permite aplicar una función distinta. Sean $A$ un conjunto cualquiera y $a\in A$. Sea $\mathcal{G}=\{g_i\}_{i\in \mathbb{N}}$ una familia de funciones de $A$ en $A$. Entonces, existe una única función $f: \mathbb{N}\to A$ que satisface:
a) $f(0)=a$,
b) $f(s(n))=g_n(f(n))$ para todo $n\in \mathbb{N}$.

Más adelante…

Ahora que hemos enunciado y demostrado el teorema de recursión, podemos definir la suma en el conjunto de los números naturales. En la siguiente entrada definiremos esta operación y a su vez probaremos algunas de sus propiedades haciendo uso del principio de inducción.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Teoría de los Conjuntos I: Funciones compatibles

Por Gabriela Hernández Aguilar

Introducción

Esta entrada nos permitirá dar un breve espacio a las funciones compatibles. Será de gran importancia hacer una parada en este concepto pues será de gran utilidad en la demostración de nuestro siguiente teorema: el teorema de recursión.

Funciones compatibles

En esta entrada exploraremos la pregunta de cuándo y en qué sentido la unión de dos o más funciones es una función. La definición que nos ayudará a explorar esto es la siguiente.

Definición. Sean $f$ y $g$ funciones. Decimos que $f$ y $g$ son funciones compatibles si y sólo si $f(x)=g(x)$ para cualquier $x\in dom(f)\cap dom(g)$.

Como consecuencia de la definición, si $f$ y $g$ son funciones tales que $dom(f)\cap dom(g)=\emptyset$, entonces por vacuidad $f$ y $g$ son compatibles.

Ejemplo.

Consideremos las funciones $f:\{1,2,3\}\to\{1,2\}$ y $g:\{0,4\}\to \{1,2,3\}$ dadas por $f(1)=f(2)=1$, $f(3)=2$, $g(0)=1$, $g(4)=3$. Como $dom(f)\cap dom(g)=\emptyset$, entoces $f$ y $g$ son compatibles.

$\square$

Ejemplo.

Consideremos las funciones $h:\{1,3\}\to \{0,1\}$ y $k:\{0,1,2\}\to \{0,1,2,3,4\}$ dadas como sigue:

\begin{align*}
h&=\{(1,0), (3,1)\}\\
k&=\{(0,3),(1,0),(2,2)\}
\end{align*}

Para ver que $h$ y $k$ son funciones compatibles, basta ver que para cada elemento $x$ en $dom(h)\cap dom(k)=\{1\}$ se cumple que $h(x)=k(x)$. Como el único elemento en la intersección es el $1$, basta ver que $h(1)=k(1)$. Y en efecto, $h(1)=0=k(1)$. Por lo tanto, $f$ y $g$ son funciones compatibles.

$\square$

Hay una definición más general, para cuando se tienen varias funciones.

Definición. Sea $\mathcal{F}$ un conjunto de funciones. Diremos que $\mathcal{F}$ es un sistema compatible de funciones si para cualesquiera $f,g\in \mathcal{F}$, se tiene que $f$ y $g$ son compatibles.

Ejemplo.

Si consideramos a $\mathcal{F}=\set{h,k}$ con $h$ y $k$ como en el ejemplo anterior, tenemos que $\mathcal{F}$ es un sistema compatible de funciones pues $h$ y $k$ son funciones compatibles.

$\square$

Ejemplo.

Para cada $n\in\mathbb{N}\setminus\set{0}$ definamos $f_n:n\to\mathbb{N}$ por medio de $f_n(k)=s(k)$ para cada $k\in n$, donde $s(k)$ es el sucesor de $k$. Veamos que $\mathcal{F}=\set{f_n:n\in\mathbb{N}\setminus\set{0}}$ es un sistema de funciones compatibles. Si $n,m\in\mathbb{N}\setminus\set{0}$, entonces, $n\leq m$ o $m\leq n$ y, por consiguiente, $dom(f_n)\subseteq dom(f_m)$ o $dom(f_m)\subseteq dom(f_n)$; más aún, $f_n\subseteq f_m$ o $f_m\subseteq f_n$ y, por tanto, $f_n$ y $f_m$ son funciones compatibles. Por tanto, $\mathcal{F}$ es un sistema de funciones compatibles.

$\square$

Cuándo la unión de funciones es función

Teorema. Sean $f:X\to Y$ y $g:X’\to Y’$ funciones compatibles. Entonces $f\cup g$ es una función de $X\cup X’$ en $Y\cup Y’$.

Demostración.

Sean $f:X\to Y$ y $g:X’\to Y’$ funciones compatibles. Consideremos $f\cup g$. Debemos ver que $f\cup g$ tiene el dominio y codominio correctos, que es total y que es funcional.

La unión de $f$ y $g$ tiene el dominio y codominio correctos

Veamos que $f\cup g$ es una relación de $X\cup X’$ en $Y\cup Y’$. En efecto, cada pareja en $f\cup g$ es de la forma $(x,y)$ con $(x,y)$ en $X\times Y$, o $(x,y)$ en $X’\times Y’$. Si $(x,y)\in X\times Y$, entonces $x\in X \subseteq X\cup X’$ y $y\in Y\subseteq Y\times Y’$, y así $(x,y)\in (X\cup X’)\times (Y \cup Y’)$. De manera análoga, si $(x,y)\in X’\times Y’$, entonces $(x,y)\in (X\cup X’)\times (Y \cup Y’)$.

$f\cup g$ es total

Consideremos $x\in X\times X’$. Si $x\in X$, como $f$ es función, entonces es total y por lo tanto existe $y\in Y$ tal que $(x,y)\in f$. Así, $(x,y)\in f\cup g$. Si $x\in X’$, como $g$ es función, entonces es total y por lo tanto existe $y\in Y’$ tal que $(x,y)\in g$. Así, $(x,y)\in f\cup g$. En cualquier caso, existe $y\in Y\cup Y’$ para el cual $(x,y)\in f\cup g$. Esto muestra que $f\cup g$ es total.

$f\cup g$ es funcional

Supongamos que $(x,y) \in f\cup g$ y $(x,y’)\in f\cup g$. Debemos mostrar que $y=y’$.

Caso 1. $(x,y)\in f$ y $(x,y’)\in f$. En este caso, como $f$ es función, entonces es funcional y así $y=y’$.

Caso 2. $(x,y)\in g$ y $(x,y’)\in g$. Análogamente al caso anterior, $y=y’$.

Caso 3. $(x,y)\in f$ y $(x,y’)\in g$. Tenemos entonces que $x\in dom(f)\cap dom(g)$ y, por tanto, $f(x)=g(x)$, es decir, $y=y’$, ya que $f$ y $g$ son funciones compatibles.

Caso 4.$(x,y)\in g$ y $(x,y’)\in f$. Análogamente al caso anterior.

Por lo tanto $f\cup g$ es funcional.

Por lo tanto, $f\cup g$ es función de $X\cup X’$ en $Y\cup Y’$.

$\square$

El siguiente teorema generaliza el resultado anterior

Teorema. Sea $\mathcal{F}$ una familia de funciones compatibles. Entonces se cumple que $\bigcup \mathcal{F}$ es una función con dominio $\bigcup\set{dom(f):f\in \mathcal{F}}$ y codominio $\bigcup\set{cod(f):f\in \mathcal{F}}$.

Como parte de los ejercicios de esta entrada, deberás demostrar esta generalización.

Tarea moral

La siguiente lista de ejercicios te permitirá reforzar el contenido visto en esta entrada.

  1. En esta entrada probamos que si $f$ y $g$ son funciones compatibles, entonces $f\cup g$ es función. ¿Será cierto que si $f\cup g$ es función, entonces $f$ y $g$ son funciones compatibles?
  2. ¿Qué se necesita para que si $f:X\to Y$ y $g:X’\to Y’$ son funciones, entonces $f\cap g$ sea función de $X\cap X’$ en $Y\cap Y’$?
  3. Muestra que la unión de funciones compatibles es función, en el sentido en el que lo enuncia la generalización de la sección anterior.
  4. Sea $\mathcal{F}=\{f_i\}_{i\in \mathbb{N}}$ una familia de funciones tal que $f_{i}\subseteq f_{i+1}$. Demuestra que $\bigcup \mathcal{F}$ es una función con dominio $\bigcup\set{dom(f):f\in \mathcal{F}}$ y codominio $\bigcup\set{cod(f):f\in \mathcal{F}}$.

Más adelante…

En la siguiente entrada enunciaremos y probaremos el teorema de recursión. Dicho teorema nos permitirá definir operaciones como la suma y el producto en el conjunto de los números naturales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»