Álgebra Moderna I: Teorema fundamental de los grupos abelianos finitos.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

El temario de este curso consiste principalmente en el estudio de la Teoría de grupos, comenzamos su construcción desde las operaciones binarias, estudiamos distintos tipos de grupos y funciones entre ellos (homomorfismos) y seguimos intentando describir a los grupos. El primer gran escalón de nuestro curso fueron los Teoremas de isomorfía, luego los Teoremas de Sylow y ahora llegamos al tercero: el Teorema fundamental de los grupos abelianos finitos.

Otros dos teoremas fundamentales que seguramente conoces son el Teorema fundamental del álgebra y el Teorema fundamental de la aritmética, conviene recordar el segundo. Básicamente nos dice que a todo número entero lo podemos ver como un producto de primos, además nos dice que estos primos son únicos excepto por el orden en que aparecen. Este teorema es importante porque intuitivamente nos dice que los números primos son los ladrillos básicos para construir a cualquier número.

¿Cuáles son estos mismos ladrillos para los grupos abelianos finitos? En la entrada de Producto directo interno vimos un teorema en el que para ciertos casos podemos descomponer a un grupo finito $G$ en sus $p$-subgrupos de Sylow, donde cada $p$ corresponde a un factor primo del orden del grupo. ¿Qué podría ser más fundamental que eso?

Usaremos el teorema que vimos en Producto directo interno y veremos que un grupo abeliano finito $G$ es isomorfo a un producto directo de grupos ajenos a $G$ en lugar de los $p$-subgrupos de Sylow que dependen del grupo que los contiene. ¿Qué grupos finitos relacionados con primos conocemos aparte de los $p$-subgrupos? Los candidatos ideales son $\z_n$, con $n$ una potencia de un primo, que de acuerdo a lo que hemos estudiado son abelianos y finitos.

Así, el Teorema fundamental de los grupos abelianos finitos nos presenta a los $\z_n$, con $n$ una potencia de un primo, como nuestros ladrillos elementales para describir cualquier grupo abeliano finito $G$.

Último lema numerado

Como prometimos en la entrada anterior, aquí está el tercer lema numerado que usaremos para demostrar el Teorema fundamental de los grupos abelianos finitos.

Lema 3. Sean $p\in\z^+$ un primo y $G$ un $p$-grupo abeliano. Tenemos que $G$ es un producto directo interno de grupos cíclicos.

Demostración.
Por el segundo principio de inducción.

Sea $p\in\z^+$ un primo, $G$ un $p$-grupo abeliano.

Sea $g\in G$ un elemento de orden máximo (podemos suponer que $g\neq e$ ya que si $g = e$, entonces $G = \{e\}$).

H.I. Supongamos que todo $p$-grupo abeliano de orden menor que el orden de $G$ es un producto directo interno de grupos cíclicos.

Por el lema 2, $G$ es el producto directo de $\left< g \right>$ y un subgrupo $H$ de $G$. Entonces $|G| = |\left< g \right>|\,|H|$ lo que implica que $\displaystyle |H| = \frac{|G|}{|\left< g \right>|}$ y, esto implica que $ \displaystyle |H| < |G|$.

Además, $H$ también es un $p$-grupo abeliano. Así que por la hipótesis de inducción $H$ es el producto directo de grupos cíclicos.

Por lo tanto $G$ es producto directo de grupos cíclicos, a saber $\left< g \right>$ y los grupos cíclicos cuyo producto directo es $H$.

$\blacksquare$

Teorema fundamental de los grupos abelianos finitos

Recordemos que los isomorfismos preservan la estructura algebraica de los grupos. Recordemos que los grupos $\z_n$, con $n$ una potencia de un primo, son abelianos y finitos, por lo que sólo pueden ser isomorfos a otros grupos abelianos y finitos. Más aún, todo grupo abeliano finito es isomorfo a un producto directo de este tipo de grupos.

Teorema. (Fundamental de los Grupos Abelianos Finitos) Todo grupo abeliano finito $G$ es isomorfo a un producto directo de grupos cíclicos de la forma $$\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}$$ con $p_1,\dots, p_r,\alpha_1,\dots, \alpha_r \in \z^+$ y $p_1,\dots,p_r$ primos no necesariamente distintos.

Demostración.

Sea $G$ un grupo abeliano finito. Por ser $G$ abeliano todos sus subgrupos son normales, en particular sus subgrupos de Sylow.

Por el teorema de la entrada Producto directo interno, $G$ es isomorfismo al producto directo de sus subgrupos de Sylow, y por el lema 3 cada uno de ellos es un producto directo de subgrupos cíclicos. Además, como los subgrupos de Sylow son de orden una potencia de un primo, sus subgrupos también, por lo que son isomorfos a $\z_{p^\alpha}$ con $p,\alpha \in \z^+$ y $p$ un primo.

Así, $G$ es isomorfo a un producto directo de la forma
\begin{align*}
\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}
\end{align*}
con $p_1,\dots,p_r,\alpha_1,\dots, \alpha_r \in\z^+$, $p_1,\dots,p_r$ primos no necesariamente distintos.

$\blacksquare$

Apreciemos cómo la demostración de los lemas anteriores, nos facilitaron la demostración de este teorema fundamental.

Ejemplo.

Sea $G$ un grupo abeliano de orden $180 = 4\cdot 45 = 2^2\cdot 3^2 \cdot 5$.

Entonces, de acuerdo con el Teorema fundamental de los grupos abelianos finitos, $G$ es isomorfo a alguno de

  • $\z_2\times\z_2\times\z_3\times\z_3\times\z_5$,
  • $\z_4\times\z_3\times\z_3\times\z_5$,
  • $\z_2\times\z_2\times\z_9\times\z_5$ ó
  • $\z_4\times\z_9\times\z_5$.

Podría ser isomorfo a cualquiera de ellos, pero para saber a cuál requeriríamos más información. De cualquier modo este primer análisis nos ayuda mucho a entender cómo debe ser el grupo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Si $G$ es un grupo abeliano finito, definimos $v_k(G)$ como el número de elementos de $G$ de orden $k$.
    Prueba que si dos grupos finitos abelianos, $G$ y $G^*$ son isomorfos si y sólo si $v_k(G) = v_k(G^*)$ para todo entero $k$. (Este resultado no es cierto para grupos no abelianos).
  2. Prueba el Teorema Fundamental de la Aritmética aplicando el Teorema Fundamental de Grupos Abelianos Finitos a $G = \z_n$, con $n\in\n$.
  3. Usa el Teorema Fundamental de Grupos abelianos finitos para describir a…
    • Un grupo de orden $144.$
    • Un grupo de orden $360.$
    • Un grupo de orden $2783.$
  4. Encuentra para cuáles $n \in \z^+$ los grupos de orden $n$ son cíclicos.
  5. Prueba que $A$ es un grupo abeliano finito de orden $n$ si y sólo si para cada $d$ divisor de $n$, hay a lo más $d$ elementos $a\in A$ tales que $a^d = 1_A.$

Más adelante…

Esta entrada fue un tema muy anticipado. Ahora comenzaremos otro tema que, aunque sea corto, es igual de importante que el Teorema fundamental de grupos finitos abelianos. De hecho, comparte que también es semejante con el Teorema fundamental de la aritmética. Comenzaremos a estudiar el Teorema de Jordan-Hölder

Entradas relacionadas

Versión cuatro del Teorema de la Función Implícita

Por Angélica Amellali Mercado Aguilar

Ejemplo. Se da el nivel cero de una función diferenciable $F:\mathbb{R}^{4}\rightarrow \mathbb{R}$ y un punto P perteneciente a este nivel. Diga en cada caso si en los alrededores del punto p es posible ver la gráfica de F como la gráfica de una función diferenciable del tipo

$$a)~u=u(x,y,z)$$ $$b)~z=z(x,y,u)$$$$c)~y=y(x,u,z)$$ $$d)~x=x(y,z,u)$$ para $x^{2}+y^{2}+z^{2}+u^{u}=4$ en $p=(1,1,1,1)$

Solución. En este caso para todos los incisos podemos definir $f(x,y,z,u)=x^{2}+y^{2}+z^{2}+u^{u}-4=0$ y para el inciso a, se tiene
$$\frac{\partial F}{\partial u}=2u\left.\right|_{(1,1,1,1)}=2\neq0$$ por lo tanto es posible ver a la gráfica de F como una función diferenciable del tipo $u=u(x,y,z)$ y sus derivadas parciales seran:

$$\frac{\partial u}{\partial x}(1,1,1,1)=-\frac{\frac{\partial F}{\partial x}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial u}\left.\right|{(1,1,1,1)}}=-\frac{2x}{2u}=-1$$
$$\frac{\partial u}{\partial y}(1,1,1,1)=-\frac{\frac{\partial F}{\partial y}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial u}\left.\right|{(1,1,1,1)}}=-\frac{2y}{2u}=-1$$
$$\frac{\partial u}{\partial z}(1,1,1,1)=-\frac{\frac{\partial F}{\partial z}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial u}\left.\right|{(1,1,1,1)}}=-\frac{2z}{2u}=-1$$

para el inciso b, se tiene

$$\frac{\partial F}{\partial z}=2z\left.\right|{(1,1,1,1)}=2\neq0$$ por lo tanto es posible ver a la gráfica de F como una función diferenciable del tipo $z=z(x,y,u)$ y sus derivadas parciales seran: $$\frac{\partial z}{\partial x}(1,1,1,1)=-\frac{\frac{\partial F}{\partial x}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial z}\left.\right|{(1,1,1,1)}}=-\frac{2x}{2z}=-1$$ $$\frac{\partial z}{\partial y}(1,1,1,1)=-\frac{\frac{\partial F}{\partial y}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial z}\left.\right|{(1,1,1,1)}}=-\frac{2y}{2z}=-1$$ $$\frac{\partial z}{\partial z}(1,1,1,1)=-\frac{\frac{\partial F}{\partial z}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial z}\left.\right|_{(1,1,1,1)}}=-\frac{2u}{2z}=-1$$

para el inciso c, se tiene

$$\frac{\partial F}{\partial y}=2y\left.\right|{(1,1,1,1)}=2\neq0$$ por lo tanto es posible ver a la gráfica de F como una función diferenciable del tipo $y=y(x,z,u)$ y sus derivadas parciales seran: $$\frac{\partial y}{\partial x}(1,1,1,1)=-\frac{\frac{\partial F}{\partial x}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial y}\left.\right|{(1,1,1,1)}}=-\frac{2x}{2y}=-1$$ $$\frac{\partial y}{\partial z}(1,1,1,1)=-\frac{\frac{\partial F}{\partial z}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial y}\left.\right|{(1,1,1,1)}}=-\frac{2z}{2y}=-1$$ $$\frac{\partial y}{\partial u}(1,1,1,1)=-\frac{\frac{\partial F}{\partial u}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial y}\left.\right|{(1,1,1,1)}}=-\frac{2u}{2y}=-1$$ para el inciso d, se tiene $$\frac{\partial F}{\partial x}=2x\left.\right|{(1,1,1,1)}=2\neq0$$ por lo tanto es posible ver a la gráfica de F como una función diferenciable del tipo $x=x(y,z,u)$ y sus derivadas parciales seran:
$$\frac{\partial x}{\partial y}(1,1,1,1)=-\frac{\frac{\partial F}{\partial y}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial x}\left.\right|{(1,1,1,1)}}=-\frac{2x}{2y}=-1$$
$$\frac{\partial x}{\partial z}(1,1,1,1)=-\frac{\frac{\partial F}{\partial z}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial x}\left.\right|{(1,1,1,1)}}=-\frac{2z}{2y}=-1$$
$$\frac{\partial x}{\partial u}(1,1,1,1)=-\frac{\frac{\partial F}{\partial u}\left.\right|{(1,1,1,1)}}{\frac{\partial F}{\partial x}\left.\right|{(1,1,1,1)}}=-\frac{2u}{2y}=-1$$

Teorema de la Función Implicita (version (4))

Consideremos ahora el sistema
$$au+bv-k_{1}x=0$$ $$cu+dv-k_{2}y=0$$
con $a,b,c,d,k_{1},k_{2}$ constantes. Nos preguntamos cuando podemos resolver el sistema para $u$ y $v$ en términos de $x$ y $y$.
Si escribimos el sistema como
$$au+bv=k_{1}x$$ $$cu+dv=k_{2}y$$
y sabemos que este sistema tiene solución si $det \left|\begin{array}{cc} a&b \\c&d\end{array}\right|\neq0$ en tal caso escribimos
$u=\displaystyle \frac{1}{det \left|\begin{array}{cc} a&b \\c&d\end{array}\right|}(k_{1}dx-k_{2}by)$, $~~~$ $v=\displaystyle \frac{1}{det \left|\begin{array}{cc} a&b \\c&d\end{array}\right|}(k_{2}ay-k_{1}cx)$.
Esta solución no cambiaria si consideramos
$$au+bv=f_{1}(x,y)$$ $$cu+dy=f_{2}(x,y)$$

donde $f_{1}$ y $f_{2}$ son funciones dadas de $x$ y $y$. La posibilidad de despejar las variables $u$ y $v$ en términos de $x$ y $y$ recae sobre los coeficientes de estas variables en las ecuaciones dadas.

Ahora si consideramos ecuaciones no lineales en $u$ y $v$ escribimos el sistema como
$$g_{1}(u,v)=f_{1}(x,y)$$ $$g_{2}(u,v)=f_{2}(x,y)$$

nos preguntamos cuando del sistema podemos despejar a $u$y $v$ en términos de $x$ y $y$. Mas generalmente, consideramos el problema siguiente, dadas las funciones $F$ y $G$ de las variables $u,v,x,y$ nos preguntamos cuando de las expresiones

$$F(x,y,u,v)=0$$ $$G(x,y,u,v)=0$$

podemos despejar a $u$ y $v$ en términos de $x$ y $y$ en caso de
ser posible diremos que las funciones $u=\varphi_{1}(x,y)$ y
$v=\varphi_{2}(x,y)$ son funciones implícitas dadas. Se espera que
$\exists’$n funciones $u=\varphi_{1}(x,y)$ y
$v=\varphi_{2}(x,y)$ en
$$F(x,y,\varphi_{1}(x,y),\varphi_{2}(x,y)$$ $$G(x,y,\varphi_{1}(x,y),\varphi_{2}(x,y)$$
con $(x,y)$ en alguna vecindad $V$. Suponiendo que existen $\varphi_{1}$ y $\varphi_{2}$ veamos sus derivadas

$$\displaystyle \frac{\partial F}{\partial x}\displaystyle \frac{\partial x}{\partial
x}+\displaystyle \frac{\partial F}{\partial y}\displaystyle \frac{\partial y}{\partial x}+\displaystyle \frac{\partial F}{\partial u}\displaystyle \frac{\partial u}{\partial
x}+\displaystyle \frac{\partial F}{\partial v}\displaystyle \frac{\partial v}{\partial x}=0 \Rightarrow \displaystyle \frac{\partial F}{\partial u}\displaystyle \frac{\partial u}{\partial x}+\displaystyle \frac{\partial F}{\partial v}\displaystyle \frac{\partial v}{\partial x}=-\displaystyle \frac{\partial F}{\partial x}$$

$$\displaystyle \frac{\partial G}{\partial x}\displaystyle \frac{\partial x}{\partial x}+\displaystyle \frac{\partial G}{\partial y}\displaystyle \frac{\partial y}{\partial x}+\displaystyle \frac{\partial G}{\partial u}\displaystyle \frac{\partial u}{\partial x}+\displaystyle \frac{\partial G}{\partial v}\displaystyle \frac{\partial v}{\partial x}=0 ~~ \Rightarrow ~~ \displaystyle \frac{\partial G}{\partial u}\displaystyle \frac{\partial u}{\partial x}+\displaystyle \frac{\partial G}{\partial v}\displaystyle \frac{\partial v}{\partial x}=-\displaystyle \frac{\partial G}{\partial x}$$

Lo anterior se puede ver como un sistema de 2 ecuaciones con 2 incógnitas $\displaystyle \frac{\partial u}{\partial x}$ y $\displaystyle \frac{\partial v}{\partial x}$. Aquí se ve que para que el sistema tenga solución

$det \left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial
u}&\displaystyle \frac{\partial F}{\partial v} \\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial v}\end{array}\right|\neq0$ en $(P)$ (el $det$ Jacobiano) y según la regla de Cramer

$\displaystyle \frac{\partial u}{\partial x}=-\frac{\det
\left|\begin{array}{cc} \displaystyle -\frac{\partial F}{\partial
x}&\displaystyle \frac{\partial F}{\partial v}
\\ \displaystyle -\frac{\partial G}{\partial x}&\displaystyle \frac{\partial G}{\partial
v}\end{array}\right|}{\det
\left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial
u}&\displaystyle \frac{\partial F}{\partial v}
\\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial
v}\end{array}\right|}$, $~~ $ $\displaystyle \frac{\partial v}{\partial x}=-\frac{\det \left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial u}&\displaystyle -\frac{\partial F}{\partial x} \\ \displaystyle \frac{\partial G}{\partial u}&\displaystyle -\frac{\partial G}{\partial x}\end{array}\right|}{det \left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial F}{\partial v} \\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial v}\end{array}\right|}$ (con los dos $det$ Jacobianos).

Análogamente si derivamos con respecto a $y$ obtenemos
$$\displaystyle \frac{\partial F}{\partial
u}\displaystyle \frac{\partial u}{\partial y}+\displaystyle
\frac{\partial F}{\partial v}\displaystyle \frac{\partial
v}{\partial y}=-\displaystyle \frac{\partial F}{\partial y}$$ ,$$\displaystyle \frac{\partial G}{\partial u}\displaystyle \frac{\partial u}{\partial y}+\displaystyle
\frac{\partial G}{\partial v}\displaystyle \frac{\partial v}{\partial y}=-\displaystyle \frac{\partial G}{\partial y}$$
de donde

$\displaystyle \frac{\partial u}{\partial y}=-\frac{\det
\left|\begin{array}{cc} \displaystyle -\frac{\partial F}{\partial
y}&\displaystyle \frac{\partial F}{\partial v}
\\ \displaystyle -\frac{\partial G}{\partial y}&\displaystyle \frac{\partial G}{\partial
v}\end{array}\right|}{det
\left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial
u}&\displaystyle \frac{\partial F}{\partial v}
\\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial
v}\end{array}\right|}$,$~~$ $\displaystyle \frac{\partial v}{\partial y}=-\frac{\det \left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial u}&\displaystyle -\frac{\partial F}{\partial y} \\ \displaystyle \frac{\partial G}{\partial u}&\displaystyle -\frac{\partial G}{\partial y}\end{array}\right|}{det \left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial F}{\partial v} \\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial v}\end{array}\right|}$ (con los dos $det$ Jacobianos).

Al determinante $det \left|\begin{array}{cc} \displaystyle
\frac{\partial F}{\partial u}&\displaystyle \frac{\partial F}{\partial v} \\ \displaystyle \frac{\partial G}{\partial u}&\displaystyle \frac{\partial G}{\partial v}\end{array}\right|$ lo llamamos Jacobiano y lo denotamos por $\displaystyle \frac{\partial (F,G)}{\partial (u,v)}$.

Teorema de la Función Implícita (Versión 4)

Teorema 1. Considere las funciones $z_{1}=F(x,y,u,v)$ y $z_{2}=G(x,y,u,v)$. Sea $P=(x,y,u,v) \in \mathbb{R}^{4}$ un punto tal que $F(P)=G(P)=0$.
Suponga que en una bola $\textit{B} \in \mathbb{R}^{4}$ de centro $P$ las funciones $F$ y $G$ tienen (sus cuatro) derivadas parciales continuas. Si el Jacobiano $\displaystyle \frac{\partial (F,G)}{\partial (u,v)}(P)\neq0$ entonces las expresiones
$F(x,y,u,v)=0$ y $G(x,y,u,v)=0$ definen funciones (implícitas) $u=\varphi_{1}(x,y)$ y $v=\varphi_{2}(x,y)$ definidas en una vecindad $v$ de $(x,y)$ las cuales tienen derivadas parciales continuas en $v$ que se pueden calcular como se menciona arriba.

Demostración. Dado que $$det \left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial F}{\partial v} \\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial v}\end{array}\right|\neq 0$$ entonces $\displaystyle{\frac{\partial F}{\partial u}(p)}$, $\displaystyle{\frac{\partial F}{\partial v}(p)}$, $\displaystyle{\frac{\partial G}{\partial u}(p)}$, $\displaystyle{\frac{\partial G}{\partial v}(p)}$ no son cero al mismo tiempo, podemos suponer sin pérdida de generalidad que $\displaystyle{\frac{\partial G}{\partial v}(p)}\neq0$. Entonces la función $z_{1}=G(x,y,u,v)$ satisface las hipótesis del T.F.I y en una bola abierta con centro p, v se puede escribir como $v=\psi(x,y,u)$. Hacemos ahora $$H(x,y,u)=F(x,y,u,\psi(x,y,u))$$ y tenemos que $$\frac{\partial H}{\partial u}=\frac{\partial F}{\partial x}\frac{\partial x}{\partial u}+\frac{\partial F}{\partial y}\frac{\partial y}{\partial u}+\frac{\partial F}{\partial u}\frac{\partial u}{\partial u}+\frac{\partial F}{\partial v}\frac{\partial \psi}{\partial u}=\frac{\partial F}{\partial u}+\frac{\partial F}{\partial v}\frac{\partial \psi}{\partial u}$$ por otro lado
$$\frac{\partial \psi}{\partial u}=-\frac{\frac{\partial G}{\partial u}}{\frac{\partial G}{\partial v}}$$ por lo tanto $$\frac{\partial H}{\partial u}=\frac{\partial F}{\partial u}+\frac{\partial F}{\partial v}\frac{\partial \psi}{\partial u}=\frac{\partial F}{\partial u}+\frac{\partial F}{\partial v}\left(-\frac{\frac{\partial G}{\partial u}}{\frac{\partial G}{\partial v}}\right)=\frac{\frac{\partial F}{\partial u}\frac{\partial G}{\partial v}-\frac{\partial F}{\partial v}\frac{\partial G}{\partial u}}{\frac{\partial G}{\partial v}}\neq0$$por lo tanto para $H(x,y,u)=0$ tenemos que existe una función $u=\varphi_{1}(x,y)$ y por lo tanto $v=\psi(x,y,u)=\psi(x,y,\varphi_{1}(x,y,u))=\varphi_{2}(x,y)$ y por tanto $u,v $ se pueden expresar en términos de $x,y$ en una vecindad de $p$ $\square$

Ejemplo. Analizar la solubilidad del sistema
$$e^{u}+e^{v}=x+ye$$ $$ue^{u}+ve^{v}=xye$$

Solución. En este caso definimos
$$F(x,y,u,v)=e^{u}+e^{v}-x-ye=0$$ $$G(x,y,u,v)=ue^{u}+ve^{v}-xye=0$$
por lo que el sistema tendrá solución si $\displaystyle{\det\left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial F}{\partial v}
\\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial
v}\end{array}\right|}\neq 0$
En este caso
$$\det\left|\begin{array}{cc} \displaystyle \frac{\partial F}{\partial
u}&\displaystyle \frac{\partial F}{\partial v}
\\ \displaystyle \frac{\partial F}{\partial u}&\displaystyle \frac{\partial G}{\partial
v}\end{array}\right|=\det\left|\begin{array}{cc} \displaystyle e^{u}&\displaystyle e^{v}\\ ue^{u}+e^{e^{u}}&ve^{v}+e^{v}\end{array}\right|=e^{u}\left(ve^{v}+e^{v}\right)-e^{v}\left(ue^{u}+e^{u}\right)=ve^{u+v}-ue^{v+u}\neq 0$$
por lo tanto u y v se pueden ver en términos de x,y $\therefore$ se pueden calcular sus parciales en $u=0,~v=1,~x=1, ~y=1$ que es este caso dan

$$\displaystyle \frac{\partial u}{\partial x}=-\frac{\det
\left|\begin{matrix}-1&-ye\\e^{v}&ve^{v}+e^{v}\end{matrix}\right|}{ve^{u+v}-ue^{v+u}}=-\frac{-(ve^{v}+e^{v})+e^{v}ye}{ve^{u+v}-ue^{v+u}}\left.\right|{(1,1,1,1)}=\frac{2e-e^{2}}{e}=2-e$$ $$\displaystyle \frac{\partial v}{\partial x}=-\frac{\det \left|\begin{matrix}e^{u}&ue^{u}+e^{u}\\-1&-ye\end{matrix}\right|}{ve^{u+v}-ue^{v+u}}=-\frac{-ye^{u}e+ue^{u}+e^{u}}{ve^{u+v}-ue^{v+u}}\left.\right|{(1,1,1,1)}=\frac{e-1}{e}=1-e^{-1}$$ $$\displaystyle \frac{\partial u}{\partial y}=-\frac{\det
\left|\begin{matrix}-e&-xe\\e^{v}&ve^{v}+e^{v}\end{matrix}\right|}{ve^{u+v}-ue^{v+u}}=-\frac{-e(ve^{v}+e^{v})+e^{v}xe}{ve^{u+v}-ue^{v+u}}\left.\right|{(1,1,1,1)}=\frac{e^{2}+e^{2}-e^{2}}{e}=e$$ $$\displaystyle \frac{\partial v}{\partial y}=-\frac{\det \left|\begin{matrix}e^{u}&ue^{u}+e^{u}\\-e&-xe\end{matrix}\right|}{ve^{u+v}-ue^{v+u}}=-\frac{-e^{u}xe+e(ue^{u}+e^{u})}{ve^{u+v}-ue^{v+u}}\left.\right|{(1,1,1,1)}=\frac{e-e}{e}=0$$

Tres versiones del Tema de la Función Inversa

Por Angélica Amellali Mercado Aguilar

Teorema de la Función Implicita (version (1))

Teorema 1. Considere la función $y=f(x)$. Sea $(x_{0},y_{0}) \in
\mathbb{R}^{2}$ un punto tal que $F(x_{0},y_{0})=0$. Suponga que la función F tiene derivadas parciales en alguna bola con centro $(x_{0},y_{0})$ y que $\displaystyle \frac{\partial F}{\partial y}(x_{0},y_{0})\neq 0$. Entonces $F(x,y)=0$ se puede resolver para $y$ en términos de $x$ y definir así una función $y=f(x)$ con dominio en una vecindad de $(x_{0},y_{0})$, tal que $y_{0}=f(x_{0})$, lo cual tiene derivadas continuas en $\mathcal{V}$ que pueden calcularse como $$y’=f'(x)=-\displaystyle \frac{\displaystyle \frac{\partial F}{\partial x}(x,y)}{\displaystyle \frac{\partial F}{\partial y}(x,y)}$, $x \in \mathcal{V}$$.

Vamos ahora a probar que f es continua en $(x_{0}-h,x_{0}+h)$ haciendo ver primero que es continua en$x_{0}$ y despues mostrando que es continua en todo $x\in (x_{0}-h,x_{0}+h)$

Demostración. Sea $0<\epsilon<k$. Si se repite el proceso para determinar la funcion f, pero ahora restringidos a un cuadrado más pequeño T, centrado en $(x_{0},y_{0})$, descrito por $$T={(x,y)\in\mathbb{R}^{2}~|~|x-x_{0}<\epsilon,|y-y_{0}|<\epsilon|}$$obtenemos la misma función pero con dominio restringido a un intervalo $(x_{0}-\delta,x_{0}+\delta)$ con $\delta0$ tal que para todo x, si $|x-x_{0}|<\delta$ entonces $|f(x)-f(x_{0})|<\epsilon$. Por tanto, f es continua en $x_{0}$.\Para probar que f es continua en x $\forall~x\in (x_{0}-h,x_{0}+h)$ tómese $x_{1}$ en $(x_{0}-h,x_{0}+h)$ con $x_{1}\neq x_{0}$ y un $\epsilon>0$ lo suficientemente pequeño para garantizar que el cuadrado $$U=\left\{(x,y)\in\mathbb{R}^{2}~|~|x-x_{1}<\epsilon,|y-y_{1}|<\epsilon|\right\}$$ centrado en $(x_{1},y_{1})$ y donde $y_{1}=f(x_{1})$ este totalmente contenido en el cuadrado original S, y ademas para todo x tal que $|x-x_{1}<\epsilon$, $x\in(x_{0}-h,x_{0}+h)$. Así, repitiendo el proceso para determinar f, ahora restringiendonos a las x que cumplen $|x-x_{1}<\epsilon$, encontramos que existe una $0<\delta_{1}<\epsilon$ tal que, para todo x, si $|x-x_{1}<\delta_{1}$ entonces $|f(x)-f(x_{1})<\epsilon$. lo cual quiere decir que f es continua en $x_{1}$. Por consiguiente, f es continua en $(x_{0}-h,x_{0}+h)$

Ahora probaremos que $y’$ es continua en $I=(x_{0}-h,x_{0}+h)$ con derivada
$$y’=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

Demostración. Como F tiene parciales continuas en $x_{0}$ entonces F es diferenciable en $x_{0}$ por lo tanto
$$F((x_{0},y_{0})+(h_{1},h_{2}))=F(x_{0},y_{0})+\frac{\partial F}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial F}{\partial y}(x_{0},y_{0})h_{2}+r(h_{1},h_{2})$$donde
$$\lim_{(h_{1},h_{2})\rightarrow(0,0)}\frac{r(h_{1},h_{2})}{|(h_{1},h_{2})|}=0$$
tomando $x_{0}+h_{1}\in I$ y haciendo $y_{0}+h_{2}=f(x_{0}+h_{1})$ se tiene
$$F((x_{0},y_{0})+(h_{1},h_{2}))=F(x_{0}+h_{1},f(x_{0}+h_{2}))=0$$
también
$$F(x_{0},y_{0})=0$$por lo tanto
$$F(x_{0}+h_{1},f(x_{0}+h_{2}))-F(x_{0},y_{0})=0$$esto quiere decir
$$\frac{\partial F}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial F}{\partial y}(x_{0},y_{0})h_{2}+r(h_{1},h_{2})=0$$
como
$$r(h_{1},h_{2})=0parah_{1},h_{2}$$ cercanas a 0
$$\frac{\partial F}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial F}{\partial y}(x_{0},y_{0})h_{2}=0$$
por lo tanto
$$\frac{h_{2}}{h_{1}}=-\frac{\frac{\partial F}{\partial x}(x_{0},y_{0})}{\frac{\partial F}{\partial y}(x_{0},y_{0})}$$
pero $h_{2}=\triangle y$ y $h_{1}=\triangle x$ por lo tanto
$$\frac{\triangle y}{\triangle x}=-\frac{\frac{\partial F}{\partial x}(x_{0},y_{0})}{\frac{\partial F}{\partial y}(x_{0},y_{0})}$$
haciendo $\triangle y~\triangle x~\rightarrow~0$ se tiene
$$y'(x_{0})=\frac{dy}{dx}=-\frac{\frac{\partial F}{\partial x}(x_{0},y_{0})}{\frac{\partial F}{\partial y}(x_{0},y_{0})}$$
este mismo razonamiento es valido para $x\in I$. $\quad$

Teorema de la Función Implícita ( Versión (2))

Considere la función $F(x,y,z)$. Sea $(x_{0},y_{0},z_{0}) \in \mathbb{R}^{3}$ un punto tal que $F(x_{0},y_{0},z_{0})=0$. Suponga que la función F tiene derivadas parciales $\displaystyle{\frac{\partial F}{\partial x},~\frac{\partial F}{\partial y},~\frac{\partial F}{\partial z}}$ continuas en alguna bola con centro $(x_{0},y_{0},z_{0})$ y que $\displaystyle \frac{\partial F}{\partial z}(x_{0},y_{0},z_{0})\neq 0$.
Entonces $F(x,y,z)=0$ se puede resolver para $z$ en términos de $x,y$ y definir así una función $z=f(x,y)$ con dominio en una vecindad de $(x_{0},y_{0},z_{0})$, tal que $z_{0}=f(x_{0},y_{0})$, lo cual tiene derivadas continuas en $\mathcal{V}$ que pueden calcularse como $$\frac{d z}{dx}(x,y)=-\displaystyle \frac{\displaystyle \frac{\partial F}{\partial x}(x,y)}{\displaystyle \frac{\partial F}{\partial z}(x,y)}~~~\frac{d z}{dy}(x,y)=-\displaystyle \frac{\displaystyle \frac{\partial F}{\partial y}(x,y)}{\displaystyle \frac{\partial F}{\partial z}(x,y)}$$
$\textbf{Importante:}$ Este es un resultado que garantiza la existencia de una función $z=f(x,y)$ definida implícitamente por $F(x,y,z)=0$. Esto es, puede resolverse para $z$ en términos de $x,y$, pero no nos dice como hacer el despeje.

Ejemplo. Sea $f(x,y,z)=x+y+z-ze^{z}$ entonces $\displaystyle{\frac{\partial F}{\partial z}=1-e^{z}(z+1)}$ si el punto $P(x_{0},y_{0},z_{0}) \in \mathbb{R}^{3}$ es tal que $x_{0}+y_{0}+z_{0}e^{z_{0}}=0$ y $z\neq0$ y como $\displaystyle \frac{\partial F}{\partial z}\neq 0$. El $\textbf{T.F.Im.}$ sugiere que podamos despejar $z$ en términos de $x$ y $y$ y establecer así una función $z=f(x,y)$ con $z_{0}=f(x_{0},y_{0})$ de modo que su gráfica en los alrededores de $P$ coincide con $F(x,y,z)=0$. Las parciales de la función $f$ son

$\displaystyle \frac{\partial F}{\partial x}= \displaystyle \frac{\displaystyle \frac{-\partial F}{\partial x}}{\displaystyle \frac{\partial F}{\partial z
}}=\displaystyle \frac{-1}{1-e^{z}(z+1)}$,$~~~~$ $\displaystyle
\frac{\partial F}{\partial y}= \displaystyle \frac{\displaystyle
\frac{-\partial F}{\partial y}}{\displaystyle \frac{\partial
F}{\partial z }}=\displaystyle \frac{-1}{1-e^{z}(z+1)}$.

Ejercicio. Si $$\frac{d z}{dx}(x,y)=-\displaystyle \frac{\displaystyle \frac{\partial F}{\partial x}(x,y)}{\displaystyle \frac{\partial F}{\partial z}(x,y)}$$ calcular $$\frac{\partial^{2}F}{\partial x^{2}}$$

Solución. tenemos que
$$\frac{\partial^{2}F}{\partial x^{2}}=\frac{\partial}{\partial x}\left(-\displaystyle
\frac{\displaystyle \frac{\partial F}{\partial x}(x,y)}{\displaystyle \frac{\partial F}{\partial z}(x,y)}\right)=-\frac{\left( \frac{\partial F}{\partial z}\right)\left[ \frac{\partial^{2} F}{\partial x^{2}} \frac{dx}{d x}+ \frac{\partial^{2} F}{\partial y\partial x} \frac{dy}{dx}+ \frac{\partial^{2} F}{\partial z\partial x} \frac{dz}{dx}\right]-\left( \frac{\partial F}{\partial x}\right)\left[ \frac{\partial^{2} F}{\partial x \partial z}\frac{dx}{d x}+ \frac{\partial^{2} F}{\partial y\partial z} \frac{dy}{dx}+ \frac{\partial^{2} F}{\partial z^{2}} \frac{dz}{dx}\right]}{\left(\frac{\partial F}{\partial z}\right)^{2}}$$
$$=-\frac{\left( \frac{\partial F}{\partial z}\right)\left[ \frac{\partial^{2} F}{\partial x^{2}}+ \frac{\partial^{2} F}{\partial z\partial x} \frac{dz}{dx}\right]-\left( \frac{\partial F}{\partial x}\right)\left[ \frac{\partial^{2} F}{\partial x \partial z}+\frac{\partial^{2} F}{\partial z^{2}} \frac{dz}{dx}\right]}{\left(\frac{\partial F}{\partial z}\right)^{2}}$$
$$=-\frac{\left( \frac{\partial F}{\partial z}\right)\left[ \frac{\partial^{2} F}{\partial x^{2}}+ \frac{\partial^{2} F}{\partial z\partial x} \left(-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}\right)\right]-\left( \frac{\partial F}{\partial x}\right)\left[ \frac{\partial^{2} F}{\partial x \partial z}+\frac{\partial^{2} F}{\partial z^{2}}\left(-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}\right)\right]}{\left(\frac{\partial F}{\partial z}\right)^{2}}$$
$$=-\frac{\left( \frac{\partial F}{\partial z}\right)^{2} \frac{\partial^{2} F}{\partial x^{2}}-2 \frac{\partial^{2} F}{\partial z\partial x} \frac{\partial F}{\partial x}\frac{\partial F}{\partial z}+\left(\frac{\partial F}{\partial x}\right)^{2}{\frac{\partial^{2} F}{\partial z^{2}}}}{\left(\frac{\partial F}{\partial z}\right)^{3}}$$

Teorema de la Función Implícita (Versión (3))

Teorema 1. Considere la función $z=f(x_{1},…,x_{n})$. Sea $p=(x_{1},…,x_{n},y) \in \mathbb{R}^{n+1}$ un punto tal que $F(p)=0$. Suponga que la función $F$ tiene derivadas parciales $\displaystyle \frac{\partial F}{\partial x_{i}}$, $i=1,…,n$, y $\displaystyle \frac{\partial F}{\partial y}$ continuas en alguna bola con centro $P$ y que $\displaystyle \frac{\partial F}{\partial y}\neq 0$.
Entonces, $F(x_{1}$,…,$x_{n})=0$ puede resolverse para $y$ en términos de $x$ y definir así una vecindad $v$ de $\mathbb{R}^{n}$ del punto $(x_{1},$…,$x_{n})$, una función $y=f(x_{1}$,…,$x_{n})$ lo cual tiene derivadas parciales continuas en $v$ que se pueden calcular con las fórmulas $\displaystyle \frac{\partial F}{\partial x_{i}}(x_{1}$,…,$x_{n})=\displaystyle \frac{\displaystyle \frac{-\partial F}{\partial x_{i}}(x_{1},….,x_{n})}{\displaystyle \frac{\partial F}{\partial y}(x_{1},…,x_{n})}$ con $(x_{1},…,x_{n}) \in v$.

Demostración. Una idea de como probar lo anterior es la siguiente:
Como $\frac{\partial F}{\partial \textcolor{Red}{y}}\neq 0$ entonces tenemos que $\frac{\partial F}{\partial \textcolor{Red}{y}}> 0$ ó $\frac{\partial F}{\partial \textcolor{Red}{y}}<0$ supongamos sin perdida de generalidad que $\frac{\partial F}{\partial \textcolor{Red}{y}}> 0$ entonces tenemos que $F(x_{1},x_{2},…,x_{q},y)$ es creciente cuando $(x_{1},…,x_{q})$ es constante $F(a_{1},…,a_{q},\textcolor{Red}{y})$ es creciente $\forall y\in [b-\epsilon,b+\epsilon]$ además se tiene que $F(a_{1},…,a_{q},b)=0$ entonces $$F(a_{1},…,a_{q},b+\epsilon)>0\quad
F(a_{1},…,a_{q},b-\epsilon)<0$$ $\therefore$ Si $(x_{1},…,x_{q})\in B_{\delta}(a_{1},…,a_{q})$ entonces $$F(x_{1},…,x_{q},b+\epsilon)>0\quad
F(x_{1},…,x_{q},b-\epsilon)<0\quad y\quad F\quad continua$$ se
tiene entonces que $\exists !\quad \textcolor{Red}{y}=f(x_{1},…,x_{q})\in [b-\epsilon,b+\epsilon]$ tal que $F(x_{1},x_{2},…,x_{q},f(x_{1},x_{2},…,x_{q}))=0$ y
$b=f(x_{1},x_{2},…,x_{q})$. Hemos encontrado que si $(x_{1},…,x_{q})\in B_{\delta}(a_{1},…,a_{q})$ entonces $f(x_{1},…,x_{q})=\textcolor{Red}{y}\in (b-\epsilon,b+\epsilon)$
$\therefore$ f es continua. $\square$

Convergencia y diferenciación

Por Lizbeth Fernández Villegas

Introducción

En la entrada anterior vimos que cuando una sucesión de funciones continuas converge uniformemente, podemos concluir que el límite es también una función continua. ¿Qué ocurrirá con funciones diferenciables?

Considera el espacio de funciones con dominio en $[a,b]$ con $a,b$ e imagen en $\mathbb{R}.$ Tal vez intuimos que si tenemos una sucesión de funciones diferenciables $(f_n)_{n \in \mathbb{N}}$ que convergen uniformemente a una función $f$ en $[a,b]$ entonces $f$ también es diferenciable y la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}$ converge uniformemente en $f’.$ Esto es falso, como muestra el siguiente:

Ejemplo. La sucesión $\left( \dfrac{sen (nx)}{\sqrt{n}} \right) _{n \in \mathbb{N}}$

Para cada $n \in \mathbb{N}$ sea $f_n:[0,1] \to \mathbb{R} \,$ tal que $f_n(x)=\dfrac{sen (nx)}{\sqrt{n}}.$ Ocurre que $\left( \dfrac{sen (nx)}{\sqrt{n}} \right) _{n \in \mathbb{N}}$ converge uniformemente a la función $f(x)=0.$

Sucesión $\left( \dfrac{sen (nx)}{\sqrt{n}} \right) _{n \in \mathbb{N}}.$

Esto es porque, para cualquier $x \in [0,1], \, |sen(nx)|<1.$ Por otro lado, $\sqrt{n} \to \infty.$ Por lo tanto $\left|\dfrac{sen (nx)}{\sqrt{n}} \right| = \dfrac{|sen(nx)|}{\sqrt{n}} \leq \dfrac{1}{\sqrt{n}} \to 0.$

Por otro lado, para cada $n \in \mathbb{N}$ se tiene que $f'(x)= \sqrt{n} \, cos(nx).$ Pero $(f’_n)_{n \in \mathbb{N}} \,$ no converge a $f’$ ni de forma puntual. Por ejemplo $f’_n(0)=\sqrt{n}$ tiende a $\infty$ mientras que $f'(0)=0.$

Ejemplo. La sucesión $\left( \dfrac{x}{1 + n x^2} \right) _{n \in \mathbb{N}}$

Para cada $n \in \mathbb{N}$ sea $f_n:\mathbb{R} \to \mathbb{R}$ tal que $f_n(x)=\dfrac{x}{1 + n x^2}.$

Sucesión $\left( \dfrac{x}{1 + n x^2} \right) _{n \in \mathbb{N}}.$

Comencemos identificando la función límite $f$ de la sucesión $(f_n)_{n \in \mathbb{N}}$ y la función límite $g$ de la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}.$

Ya la imagen anterior nos induce a proponer $f=0.$ También podemos observar que cada función tiene máximo y mínimo global cuya distancia a $0$ coincide. Además, estos se van acercando más al eje horizontal a medida que avanzamos en las funciones de la sucesión.

En efecto, cuando la derivada es $0,$ la función $f_n$ alcanza su máximo o mínimo global:
$$\dfrac{1-nx^2}{(nx^2+1)^2}=0 \, \iff \, 1-nx^2 = 0 \, \iff \, x = \pm \sqrt{\frac{1}{n}}$$

Esto significa que cada $f_n$ está acotada como sigue:
$|f_n(x)|= \left| \dfrac{x}{1 + n x^2} \right| \leq \left|\dfrac{\sqrt{\frac{1}{n}}}{1 + n \sqrt{\frac{1}{n}}^2}\right| = \dfrac{1}{2\sqrt{n}} \, \to \, 0.$

Lo cual prueba que $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a $0.$

Para el límite de la sucesión de derivadas veamos la siguiente imagen.

Esto incentiva proponer $g$ como:

\begin{equation*}
g(x) = \begin{cases}
0 & \text{si x $\neq$ 0} \\
1 & \text{si $x = 0$}
\end{cases}
\end{equation*}

Entonces $f’$ no coincide con $g,$ pues asignan valores diferentes al ser evaluadas en $0.$ Dejaremos como ejercicio lo siguiente:

  1. Probar que $(f’_n)_{n \in \mathbb{N}} \to g.$ ¿La convergencia es puntual o uniforme?
  2. Identifica para qué valores de $x \in \mathbb{R}$ sí se cumple que $f'(x)=g(x).$
  3. ¿En qué intervalos de $\mathbb{R}$ se da la convergencia uniforme de $(f_n)_{n \in \mathbb{N}}$ en $f.$
  4. ¿En qué intervalos de $\mathbb{R}$ se da la convergencia uniforme de $(f’_n)_{n \in \mathbb{N}}$ en $g.$

Ejemplo. La sucesión $\left( \dfrac{1}{n} \, e^{-n^2x^2} \right) _{n \in \mathbb{N}}$

Para cada $n \in \mathbb{N}$ sea $f_n:\mathbb{R} \to \mathbb{R}$ tal que $f_n(x)=\dfrac{1}{n} \, e^{-n^2x^2}.$

Sucesión $\left( \dfrac{1}{n} \, e^{-n^2x^2} \right) _{n \in \mathbb{N}}.$

Veamos que $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $\mathbb{R}$ a la función $f=0.$

Para cada $n \in \mathbb{N}$ y para cada $x \in \mathbb{R}, \, f'(x)= -2nxe^{-n^2x^2}.$ Se puede demostrar que esta función alcanza su máximo global cuando $f'(x)=0, \,$ lo cual ocurre cuando $x=0.$ Entonces el máximo de $f_n$ está dado por $f(0)= \frac{1}{n} \, \to \, 0.$ Por lo tanto $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $\mathbb{R}$ a la función $f=0.$

Ahora observemos la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}.$

Dejamos como ejercicio al lector probar que $(f’_n)_{n \in \mathbb{N}}$ converge puntualmente a la función $g=0.$ No obstante, esta convergencia no es uniforme en ningún intervalo que contenga al origen.

Habiendo visto estas situaciones, conozcamos algunas condiciones de convergencia para $(f_n)_{n \in \mathbb{N}} \,$ y para $(f’_n)_{n \in \mathbb{N}} \,$ que implican que $f’ =g.$

Proposición: Para cada $n \in \mathbb{N}$ sea $f_n:[a,b] \to \mathbb{R}$ continua y diferenciable en $[a,b],$ tal que la sucesión $(f_n)_{n \in \mathbb{N}}$ converge puntualmente a $f:[a,b] \to \mathbb{R}$ y la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}$ converge uniformemente a $g:[a,b] \to \mathbb{R}.$ Entonces $f$ es continua y diferenciable en $[a,b]$ y $f’=g.$

Demostración:
Sean $j,k \in \mathbb{N}$ y $x_0 \in (a,b).$ La función $f_j-f_k$ es continua y diferenciable en $[a,b],$ particularmente, para cada $x \in (a,b),$ también lo será en el intervalo $(x_0,x)$ (o $(x,x_0)$ dependiendo del orden de los puntos). Según el teorema del valor medio, que se puede consultar en Cálculo Diferencial e Integral I: Teorema de Rolle y teorema del valor medio, existe $\xi_x \in (x_0,x)$ tal que:

$$\frac{(f_j-f_k)(x)-(f_j-f_k)(x_0)}{x-x_0}=(f’_j-f’_k)(\xi_x)$$

Entonces
$$(f_j-f_k)(x)-(f_j-f_k)(x_0)=((f’_j-f’_k)(\xi_x))(x-x_0)$$
Y si desarrollamos vemos que
$$f_j(x)-f_j(x_0)-f_k(x)+f_k(x_0)=(f’_j(\xi_x)-f’_k(\xi_x))(x-x_0)$$
Así
\begin{align*}
|f_j(x)-f_j(x_0)-f_k(x)+f_k(x_0)|&=|(f’_j(\xi_x)-f’_k(\xi_x))(x-x_0)| \\
& \leq \norm{f’_j-f’_k}_\infty |x-x_0|
\end{align*}

Dado que $(f’_n)_{n \in \mathbb{N}}$ converge uniformemente en $\mathcal{C}^0[a,b],$ para cada $\varepsilon >0$ existe $N_1 \in \mathbb{N}$ tal que para cada $x \in (a,b)$ y para cada $j,k \geq N_1:$

\begin{align*}
|f_j(x)-f_j(x_0)-f_k(x)+f_k(x_0)|& \leq \norm{f’_j-f’_k}_\infty |x-x_0| \\
& \leq \frac{\varepsilon}{3}|x-x_0|.
\end{align*}
Haciendo $j \to \infty$ se sigue que
$$|f(x)-f(x_0)-f_k(x)+f_k(x_0)|\leq \frac{\varepsilon}{3}|x-x_0|.$$

Por otro lado, como $(f’_n(x_0))_{n \in \mathbb{N}} \to g(x_0)$ existe $N_2 \in \mathbb{N}$ tal que para cada $k \geq N_1, \, |f’_k(x_0) – g(x_0)|< \frac{\varepsilon}{3}$

Sea $N= máx \{ N_1,N_2 \}.$ Existe $\delta >0$ tal que si $|x – x_0| < \delta$ entonces
$$\left| \frac{f_N(x)-f_N(x_0)}{x-x_0}-f’_N(x_0) \right| <\frac{\varepsilon}{3}.$$

Finalmente aplicamos la desigualdad de triángulo para concluir que
\begin{align*}
\left| \frac{f(x)-f(x_0)}{x-x_0}-g(x_0) \right| &\leq \left| \frac{f(x)-f(x_0)}{x-x_0} – \frac{f_N(x)-f_N(x_0)}{x-x_0} \right| + \left| \frac{f_N(x)-f_N(x_0)}{x-x_0}-f’_N(x_0) \right|+ |f’_N(x_0) – g(x_0)|\\
&\leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}\\
&= \varepsilon
\end{align*}

Por lo tanto $f$ es diferenciable en $x_0$ y $f'(x_0)=g(x_0).$ Ya que las derivadas $f’_n$ son continuas y convergen uniformemente se sigue por lo visto en la entrada anterior que $f$ es continuamente diferenciable.

Hay un resultado más fuerte sobre convergencia uniforme y diferenciación. La prueba de este se omite pero puede consultarse en Apostol, T., Análisis Matemático (2a ed.). México: Editorial Reverté, 1996. Pag 278. Se enuncia como sigue:

Proposición: Para cada $n \in \mathbb{N}$ sea $f_n:(a,b) \to \mathbb{R}.$ Supongamos que para un punto $x_0 \in (a,b)$ la sucesión $(f_n(x_0))_{n \in \mathbb{N}}$ converge. Supongamos además que la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}$ converge uniformemente en $(a,b)$ a una función $g.$ Entonces la sucesión $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $(a,b)$ a una función $f$ derivable en $(a,b)$ y $f’=g.$

Más adelante…

Conoceremos la relación entre una sucesión de funciones integrables con su función límite. ¿Bajo qué condiciones será también integrable?

Tarea moral

  1. Resuelve las actividades que quedaron pendientes en los ejemplos de esta entrada.

Enlaces:

Regla de la Cadena, Teorema de la función implícita

Por Angélica Amellali Mercado Aguilar

Regla de la Cadena

Ejemplo. Dadas $g(x,y)=(xy,5x,y^{3})$ y $f(x,y,z)=(3x^{2}+y^{2}+z^{2},5xyz)$.

Calcular $JF\circ g$

Demostración. En este caso

$$Jf(g)=\left(\begin{matrix}\frac{\partial f_{1}}{\partial x}(xy,5x,y^{3})&\frac{\partial f_{1}}{\partial y}(xy,5x,y^{3})&\frac{\partial f_{1}}{\partial z}(xy,5x,y^{3})\\ \frac{\partial f_{2}}{\partial x}(xy,5x,y^{3})&\frac{\partial f_{2}}{\partial y}(xy,5x,y^{3})&\frac{\partial f_{2}}{\partial z}(xy,5x,y^{3})\end{matrix}\right)=$$

$$\left(\begin{matrix}\frac{\partial (3x^{2}+y^{2}+z^{2})}{\partial x}(xy,5x,y^{3})&\frac{\partial (3x^{2}+y^{2}+z^{2})}{\partial y}(xy,5x,y^{3})&\frac{\partial (3x^{2}+y^{2}+z^{2})}{\partial z }(xy,5x,y^{3})\\ \frac{\partial (5xyz)}{\partial x}(xy,5x,y^{3})&\frac{\partial (5xyz)}{\partial y}(xy,5x,y^{3})&\frac{\partial (5xyz)}{\partial z}(xy,5x,y^{3})\end{matrix}\right)=$$

$$\left(\begin{matrix}6x\left|_{(xy,5x,y^{3})}\right.&2y\left|_{(xy,5x,y^{3})}\right.&2z\left|_{(xy,5x,y^{3})}\right.\\ 5yz\left|_{(xy,5x,y^{3})}\right.&5xz\left|_{(xy,5x,y^{3})}\right.&5xy\left|_{(xy,5x,y^{3})}\right.\end{matrix}\right)=\left(\begin{matrix}6xy&10x&2y^{3}\\ 25xy^{3}&5xy^{4}&25x^{2}y\end{matrix}\right)$$

Mientras que

$$Jg=\left(\begin{matrix}\frac{\partial g_{1}}{\partial x}&\frac{\partial g_{1}}{\partial y}\ \\ \frac{\partial g_{2}}{\partial x}&\frac{\partial g_{2}}{\partial y}\\ \frac{\partial g_{3}}{\partial x}&\frac{\partial g_{3}}{\partial y}\end{matrix}\right)=\left(\begin{matrix}\frac{\partial (xy)}{\partial x}&\frac{\partial (xy)}{\partial y}\\ \frac{\partial (5x)}{\partial x}&\frac{\partial (5x)}{\partial y}\ \frac{\partial (y^{3})}{\partial x}&\frac{\partial (y^{3})}{\partial y}\end{matrix}\right)=\left(\begin{matrix}y&x\\5&0\\0&3y^{2}\end{matrix}\right)$$

Por lo tanto

$$Jf\circ g=Jf(g)\cdot Jg=\left(\begin{matrix}6xy&10x&2y^{3}\\25xy^{3}&5xy^{4}&25x^{2}y\end{matrix}\right)\left(\begin{matrix}y&x\\5&0\\0&3y^{2}\end{matrix}\right)=\left(\begin{matrix}6xy^{2}+50x&6x^{2}y+6x^{5}\\50xy^{4}&100x^{2}y^{3}\end{matrix}\right)$$

Teorema 1. Sea $f:D’\subset \mathbb{R}^{m}\rightarrow \mathbb{R}^{p}$ una función definida en el abierto $D’\subset \mathbb{R}^{m}$ y sea $g:D\subset \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ una función definida en el abierto $D\subset \mathbb{R}^{n}$. Si g es diferenciable en $x_{0}\in D$ y f es diferenciable en $g(x_{0})\in D’$ entonces la función $f\circ g:\mathbb{R}^{n}\rightarrow \mathbb{R}^{p}$ es diferenciable en $x_{0}$

Demostración. Tenemos que probar que

$\begin{equation}
\lim_{h\rightarrow0}\frac{|f(g(x_{0}+h))-f(g(x_{0}))-Jf(g(x_{0}))Jg(x_{0})h|}{|h|}=0
\end{equation}$

y para esto vamos a trabajar el numerador de la expresión anterior, tenemos entonces que

$$|f(g(x_{0}+h))-f(g(x_{0}))-Jf(g(x_{0}))Jg(x_{0})h|=$$
$$|f(g(x_{0}+h))-f(g(x_{0}))-Jf(g(x_{0}))(g(x_{0}+h)-gx_{0})+Jf(g(x_{0}))(g(x_{0}+h)-gx_{0})-Jf(g(x_{0}))Jg(x_{0})h|=$$
$$|f(g(x_{0}+h))-f(g(x_{0}))-Jf(g(x_{0}))(g(x_{0}+h)-gx_{0})+Jf(g(x_{0}))\left[(g(x_{0}+h)-gx_{0})-Jg(x_{0})h\right]|\leq$$
$$|f(g(x_{0}+h))-f(g(x_{0}))-Jf(g(x_{0}))(g(x_{0}+h)-gx_{0})|+|Jf(g(x_{0}))\left[(g(x_{0}+h)-gx_{0})-Jg(x_{0})h\right]|\leq$$

Como $|Jf(g(x_{0}))h|\leq M|h|$
$$|f(g(x_{0}+h))-f(g(x_{0}))-Jf(g(x_{0}))(g(x_{0}+h)-gx_{0})|+M|(g(x_{0}+h)-gx_{0})-Jg(x_{0})h|$$
Como g es diferenciable en $x_{0}$, dado $\epsilon>0$, existe $\delta_{1}>0$ tal que $|h|<\delta_{1}$ entonces
$$\frac{|(g(x_{0}+h)-gx_{0})-Jg(x_{0})h|}{|h|}<\frac{\epsilon}{2M}$$
por lo tanto
$$|(g(x_{0}+h)-gx_{0})-Jg(x_{0})h|<\frac{\epsilon|h|}{2M}$$
Ahora para
$$|f(g(x_{0}+h))-f(g(x_{0}))-Jf(g(x_{0}))(g(x_{0}+h)-g(x_{0})|$$
Como f es diferenciable en $g(x_{0})$ entonces
$$\frac{|f(g(x_{0}+h))-f(g(x_{0}))-Jf(g(x_{0}))h|}{|h|}<\frac{\epsilon}{2M_{1}}~\Rightarrow~|f(g(x_{0}+h))-f(g(x_{0}))-Jf(g(x_{0}))h|<\frac{\epsilon}{2M_{1}}|h|$$
por lo tanto
$$|f(g(x_{0}+h))-f(g(x_{0}))-Jf(g(x_{0}))(g(x_{0}+h)-g(x_{0})|<\frac{\epsilon}{2M_{1}}|g(x_{0}+h)-g(x_{0})|$$
ahora bien
$$|g(x_{0}+h)-g(x_{0})|=|g(x_{0}+h)-g(x_{0})-Jg(x_{0})h+Jg(x_{0})h|\leq |g(x_{0}+h)-g(x_{0})-Jg(x_{0})h|+|Jg(x_{0})h|\underbrace{\leq}_{\epsilon=1} |h|+M|h|=|h|M{1} $$
por lo tanto
$$|f(g(x_{0}+h))-f(g(x_{0}))-Jf(g(x_{0}))(g(x_{0}+h)-g(x_{0})|<\frac{\epsilon}{2M_{1}}|g(x_{0}+h)-g(x_{0})|\leq \frac{\epsilon}{2M_{1}}|h|M_{1}=\frac{\epsilon}{2}|h|$$
regresando ahora a (1) y tomando $\delta=\min{\delta_{1},\delta_{2},\delta_{3}}$ se tiene que si $|h|<\delta$
$$\frac{|f(g(x_{0}+h))-f(g(x_{0}))-Jf(g(x_{0}))Jg(x_{0})h|}{|h|}<\frac{1}{|h|}\left(\frac{\epsilon}{2}|h|+M\frac{\epsilon|h|}{2M}\right)=\epsilon$$
por lo tanto
$$\lim_{h\rightarrow0}\frac{|f(g(x_{0}+h))-f(g(x_{0}))-Jf(g(x_{0}))Jg(x_{0})h|}{|h|}=0$$

Teorema de la Función Implícita (versión 1)

Teorema 2. Considere la función $y=f(x)$. Sea $(x_{0},y_{0}) \in \mathbb{R}^{2}$ un punto tal que $F(x_{0},y_{0})=0$. Suponga que la función $F$ tiene derivadas parciales continuas en alguna bola con centro $(x_{0},y_{0})$ y que $\displaystyle \frac{\partial F}{\partial y}(x_{0},y_{0})\neq 0$.
Entonces $F(x,y)=0$ se puede resolver para $y$ en términos de $x$ y definir así una función $y=f(x)$ con dominio en una vecindad de $(x_{0},y_{0})$, tal que $y_{0}=f(x_{0})$, lo cual tiene derivadas continuas en $\mathcal{V}$ que pueden calcularse como $y’=f'(x)=-\displaystyle \frac{\displaystyle \frac{\partial F}{\partial
x}(x,y)}{\displaystyle \frac{\partial F}{\partial y}(x,y)}$, $x \in \mathcal{V}$.

Demostración. Como $\displaystyle{\frac{\partial
F}{\partial y}(x_{0},y_{0})\neq 0}$ supongamos sin perdida de generalidad que $\displaystyle{\frac{\partial
F}{\partial y}(x_{0},y_{0})> 0}$. Por ser $\displaystyle{\frac{\partial
F}{\partial y}}$ continua en una vecindad de $(x_{0},y_{0})$ entonces exite un cuadrado S, centrado en $(x_{0},y_{0})$ totalmente contenido en esa vecindad, en donde $\displaystyle{\frac{\partial
F}{\partial y}(x,y)> 0}$ $\forall~x,y\in S$. Sea
$$S=\left\{(x,y)\in\mathbb{R}^{2}~|~|x-x_{0}|<k~y~|y-y_{0}<k|\right\}$$

En todo punto $(x,y)$ que pertenece a S, $\displaystyle{\frac{\partial F}{\partial y}(x,y)>0}$. Esto quiere decir que en $S$,$F$ es creciente y fijando $x_{0}$ en $[x_{0}-h,x_{0}+h])$ se tiene que F es creciente en $[y_{0}-k,y_{0}+k]$ y se anula en $y_{0}$, por lo que
$$F(x_{0},y_{0}-k)<0~~y~~F(x_{0},y_{0}+k)>0$$

Consideremos ahora el par de funciones $F(x,y_{0}-k)$ y $F(x,y_{0}+k)$ definidas en el intervalo $(x_{0}-k,x_{0}+k)$. Donde ambas funciones solo tienen $x$ como variable. La primera función cumple $F(x_{0},y_{0}-k)<0$ y por ser continua en $x_{0}$, es negativa en toda una vecindad $(x_{0}-h_{1}x_{0}+h_{1})$ de $x_{0}$. Análogamente, la segunda función cumple $F(x_{0},y_{0}+k)>0$ y por ser continua en $x_{0}$, es positiva en toda una vecindad $(x_{0}-h_{2}x_{0}+h_{2})$ de $x_{0}$. Sea $h=\min \left\{h_{1},h_{2}\right\}$. Entonces para toda $x$ tal que $$|x-x_{0}|~y~F(x,y_{0}+k)>0$$
Fijemos $x$ en el intervalo $(x_{0}-h,x_{0}+h)$, y consideremos a $F(x,y)$, sólo como función de y, sobre $[y_{0}-k,y_{0}+k]$. Esta función cumple que
$$F(x,y_{0}-k)<0~y~F(x,y_{0}+k)>0$$ por lo tanto segun el teorema del valor intermedio, existe un único y en $(y_{0}-k,y_{0}+k)$ tal que $F(x,y)=0$. Así queda establecida la existencia y unicidad de la función $y=f(x)$. Donde además, $y_{0}=f(x_{0})$, y para todo $x\in(x_{0}-h,x_{0}+h)$
$$F(x,f(x))=0,~~y~~\frac{\partial
F}{\partial y}(x_{0},y_{0})\neq 0$$ $\quad$