Introducción
Bienvenidos a la tercera unidad del curso de Ecuaciones diferenciales ordinarias, donde estudiaremos sistemas de ecuaciones diferenciales lineales de primer orden.
Un sistema de ecuaciones es una familia de ecuaciones diferenciales de la forma $$\begin{alignedat}{4} \dot{x}_{1} &= F_{1}(t,x_{1},x_{2},…,x_{n}) \\ \dot{x}_{2} &= F_{2}(t,x_{1},x_{2},…,x_{n}) \\ & \; \; \vdots \notag \\ \dot{x}_{n} &= F_{n}(t,x_{1},x_{2},…,x_{n}) \end{alignedat}$$ donde $t$ es la variable independiente, cada $x_{i}$ es una variable dependiente de $t$ y cada $F_{i}$ es una función que depende de las $n+1$ variables.
Los sistemas de ecuaciones aparecen con frecuencia en problemas de física o biología, en los que el fenómeno en cuestión involucra más de una variable. Estas variables interactúan entre sí, por lo que la razón de cambio de éstas depende tanto del tiempo como de las variables restantes.
Vamos a estudiar propiedades que cumple el conjunto de soluciones a un sistema lineal homogéneo, y posteriormente resolveremos estos sistemas desde un punto de vista matricial, por lo que tus conocimientos de Álgebra lineal serán de utilidad.
En esta entrada definiremos lo que es un sistema de ecuaciones de primer orden, así como también una solución. Hablaremos del problema de condición inicial y enunciaremos el teorema de existencia y unicidad, el cual es la base para desarrollar toda la teoría alrededor de los sistemas lineales. Escribiremos el sistema de ecuaciones en forma matricial, y finalizaremos haciendo un cambio de variable para transformar una ecuación de orden $n\geq 2$ en un sistema de $n$ ecuaciones diferenciales de primer orden. Con esta transformación podremos encontrar soluciones a ecuaciones de cualquier orden resolviendo su sistema de ecuaciones asociado.
Como te habrás dado cuenta, en el sistema de ecuaciones escrito al inicio, para denotar a la derivada de una función utilizaremos la siguiente notación: $$\dot{y}=y’=\frac{dy}{dt}.$$
Además, denotaremos por $x_{1}, x_{2},…,x_{n}$ a las variables dependientes de $t$. Para los sistemas de dos o tres ecuaciones diferenciales denotaremos $x$, $y$, $z$ a las variables dependientes de $t$, salvo que esta notación cause confusión.
Vamos a comenzar.
Sistemas de ecuaciones de primer orden y ejemplos
En el primer video de esta entrada damos las definiciones de un sistema de ecuaciones diferenciales de primer orden, una solución al sistema, diremos cuándo el sistema es lineal, no lineal, homogéneo o no homogéneo. Finalizamos dando dos ejemplos de problemas donde aparecen sistemas de ecuaciones de primer orden.
Problema de condición inicial y el teorema de existencia y unicidad
En el segundo video hablamos un poco de los problemas de condición inicial y enunciamos el teorema de existencia y unicidad para sistemas de ecuaciones de primer orden, tanto la versión general como la versión para sistemas lineales homogéneos. Mas adelante daremos una demostración de la segunda versión.
Sistemas de ecuaciones en forma matricial y transformación de una ecuación de orden superior en un sistema de ecuaciones de primer orden
En el último video, damos la notación matricial para los sistemas de ecuaciones de primer orden. Además, transformamos una ecuación de orden $n\geq 2$ en un sistema de $n$ ecuaciones diferenciales haciendo un sencillo cambio de variable.
Tarea moral
Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.
- Transforma las ecuaciones $a\ddot{y}+b\dot{y}+cy=0$ y $a\dddot{y}+b\ddot{y}+c\dot{y}+dy=0$, donde $a$,$b$,$c$,$d$ son constantes y $a\neq0$ en sistemas de ecuaciones de primer orden, y escribe el sistema en forma matricial.
- Transforma la ecuación diferencial no lineal $$\ddot{y}+\cos{y}=t$$ en un sistema de ecuaciones de primer orden.
- Considera la ecuación $$a\ddot{y}+b\dot{y}+cy=0.$$ Prueba que si $$\textbf{X}=\begin{pmatrix} x_{1}(t) \\ x_{2}(t) \end{pmatrix}$$ es solución al sistema de ecuaciones $$\dot{\textbf{X}}=\begin{pmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{pmatrix} \textbf{X}$$ entonces $y(t)=x_{1}(t)$ es solución a la ecuación diferencial.
- Prueba que si $y(t)$ es solución a la ecuación diferencial $$a\ddot{y}+b\dot{y}+cy=0$$ entonces $$\textbf{X}=\begin{pmatrix} y(t) \\ \dot{y}(t) \end{pmatrix}$$ es solución al sistema de ecuaciones $$\dot{\textbf{X}}=\begin{pmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{pmatrix} \textbf{X}.$$
Más adelante
Una vez que hemos establecido las definiciones básicas, la notación y el teorema de existencia y unicidad, vamos a estudiar propiedades que cumple el conjunto de soluciones a un sistema lineal de ecuaciones. Estas propiedades son en su mayoría análogas a las que enunciamos y probamos para ecuaciones diferenciales de segundo orden, por lo que será fácil abordarlas.
¡Hasta la próxima!
Entradas relacionadas
- Ir a Ecuaciones Diferenciales I
- Entrada anterior del curso: Método de la transformada de Laplace
- Siguiente entrada del curso: Propiedades del conjunto de soluciones a un sistema lineal de ecuaciones de primer orden
- Notas escritas relacionadas con el tema: Sistemas de ecuaciones diferenciales
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»