Ecuaciones Diferenciales I – Videos: Ecuaciones lineales no homogéneas de segundo orden. Solución por variación de parámetros

Por Eduardo Vera Rosales

Introducción

Es momento de estudiar el caso no homogéneo, es decir, ecuaciones del tipo d2ydt2+p(t)dydt+q(t)y=g(t) donde la función g no es la función constante cero. El primer método que estudiaremos es el de variación de parámetros que es, en cierta parte, análogo al método de variación de parámetros para ecuaciones lineales no homogéneas de primer orden, y que puedes encontrar en el siguiente enlace.

El teorema principal de esta entrada nos dice que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada, que denotaremos por yH, y una solución particular a la ecuación no homogénea denotada por yP.

Dado que en entradas anteriores estudiamos ecuaciones lineales homogéneas y sabemos cómo encontrar su solución general, nos enfocaremos en encontrar únicamente la solución particular. El método de variación de parámetros nos ayudará a resolver este problema.

Vamos a comenzar!

Soluciones a ecuaciones lineales no homogéneas de segundo orden

En el video demostramos que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada y una solución particular a la ecuación no homogénea denotada.

Método de variación de parámetros

En el primer video desarrollamos el método de variación de parámetros para encontrar a la solución particular yP. En el segundo video empleamos este método para resolver dos ejemplos particulares.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra una expresión para u2(t) similar a la encontrada para u1(t) en el segundo video: u1(t)=g(t)y2(t)W[y1,y2](t)dt con u1(t), u2(t) que satisfacen yP(t)=u1(t)y1(t)+u2(t)y2(t) donde yP(t) es una solución particular a la ecuación diferencial d2ydt2+p(t)dydt+q(t)y=g(t) y y1, y2 son soluciones a la ecuación homogénea asociada. (Revisa el video para mayor referencia).
  • Prueba que yP(t)=u1(t)y1(t)+u2(t)y2(t) es solución a la ecuación diferencial d2ydt2+p(t)dydt+q(t)y=g(t) una vez que has encontrado las expresiones para u1(t) y u2(t).
  • Resuelve la ecuación diferencial d2ydt2+2dydt+y=3et por el método de variación de parámetros.
  • Resuelve el problema de condición inicial 3d2ydt2+4dydt+y=etsint;y(0)=1,dydt(0)=0.

Más adelante

Hemos presentado un primer método para resolver ecuaciones lineales no homogéneas de segundo orden. En la siguiente entrada estudiaremos otro método de resolución, en particular para resolver ecuaciones de la forma ad2ydt2+bdydt+cy=g(t) donde a, b y c son constantes, a0 y en la función g(t) aparecen funciones exponenciales, polinómicas y funciones sinβt y cosβt.

El método que estudiaremos será llamado coeficientes indeterminados.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.