Introducción
En la entrada anterior resolvimos ecuaciones lineales no homogéneas de segundo orden por el método de variación de parámetros. Como pudiste advertir después de resolver algunas ecuaciones por dicho método, las integrales que se deben resolver para encontrar la solución particular $y_{P}$ a la ecuación diferencial no homogénea son, en muchos casos, bastante complicadas. Es por eso que debemos hallar otros métodos para solucionar este problema.
El método que presentaremos en esta entrada recurre a la forma que presenta la función $g(t)$ en la ecuación diferencial $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=g(t)$$ donde $a$, $b$ y $c$ son constantes y $a\neq0$. Si $g(t)$ es el producto de funciones polinómicas, exponenciales, $\cos{\beta t}$ o $\sin{\beta t}$, entonces podremos conjeturar la forma de la solución particular gracias a que las derivadas de dichas funciones tienen la misma forma. A este método lo llamaremos coeficientes indeterminados.
Vamos a comenzar!
Consideraciones generales y caso cuando $g$ es un polinomio
En el video describimos de manera general el método de coeficientes indeterminados, y revisamos el caso cuando $g(t)$ es un polinomio de grado $n$. Finalizamos el video con un ejemplo.
Caso cuando $g$ es producto de un polinomio y una función exponencial
En el video encontramos una solución particular a la ecuación diferencial $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=(\sum_{k=0}^{n} a_{k}t^{k})e^{rt}, \,\,\,\,\, r\neq0$$ y resolvemos un ejemplo referente al caso.
Caso cuando $g$ es producto de un polinomio y una función seno o coseno
Finalizamos el tema considerando el caso cuando la función $g(t)$ es el producto de un polinomio y una función $\sin{\beta t}$ o una función $\cos{\beta t}$. En el segundo video aplicamos el método de coeficientes indeterminados para resolver la ecuación diferencial $$m\frac{d^{2}y}{dt^{2}}+ky=F_{0}\cos{\omega t}$$ donde $\omega=\sqrt{\frac{k}{m}}$.
Tarea moral
Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.
- Muestra que si $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}=\sum_{k=0}^{n} a_{k}t^{k}$$ entonces $$y_{P}(t)=t[\sum_{k=0}^{n} A_{k}t^{k}]$$ es solución particular a la ecuación diferencial, mostrando también que se pueden encontrar expresiones para cada $A_{k}$.
- Encuentra una solución particular $y_{P}(t)$ para la ecuación $$\frac{d^{2}y}{dt^{2}}-5\frac{dy}{dt}=2t^{3}-4t^{2}-t+6$$ por el método de coeficientes indeterminados.
Considera la ecuación $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=(\sum_{k=0}^{n} a_{k}t^{k})e^{rt}, r\neq0.$$ Muestra lo siguiente:
- Si $$ar^{2}+br+c\neq0$$ entonces una solución particular a la ecuación es $$y_{P}(t)=(\sum_{k=0}^{n} A_{k}t^{k})e^{rt}.$$
- Cuando $$ar^{2}+br+c=0, \,\,\,\,\, 2ar+b\neq0$$ entonces una solución particular a la ecuación es $$y_{P}(t)=t(\sum_{k=0}^{n} A_{k}t^{k})e^{rt}.$$
- Si $$ar^{2}+br+c=0, \,\,\,\,\, 2ar+b=0$$ entonces una solución particular a la ecuación es $$y_{P}(t)=t^{2}(\sum_{k=0}^{n} A_{k}t^{k})e^{rt}.$$
Hint: Supón que $y_{P}(t)=e^{rt}u(t)$ es solución particular, y considera la ecuación $$a\frac{d^{2}u}{dt^{2}}+(2ar+b)\frac{du}{dt}+(ar^{2}+br+c)u=\sum_{k=0}^{n} a_{k}t^{k}$$ (revisa el segundo video para mayor detalle). Posteriormente recuerda cómo son las soluciones a la ecuación homogénea asociada (te sugiero revisar la siguiente entrada en caso necesario) y concluye la forma de $y_{P}$.
- Encuentra una solución particular a la ecuación $$\frac{d^{2}y}{dt^{2}}-y=t^{2}e^{t}.$$
- Encuentra la solución general a la ecuación diferencial $$4\frac{d^{2}y}{dt^{2}}+16y=10\cos{2t}.$$
Más adelante
Hemos concluido el estudio a las ecuaciones lineales con coeficientes constantes, tanto homogéneas como no homogéneas. Es momento de revisar el caso cuando las funciones $a_{0}$, $a_{1}$ y $a_{2}$ de la ecuación $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=g(t)$$ son no constantes. A este tipo de ecuaciones les llamaremos ecuaciones lineales de segundo orden con coeficientes variables.
Entradas relacionadas
- Ir a Ecuaciones Diferenciales I
- Entrada anterior del curso: Ecuaciones lineales no homogéneas de segundo orden. Solución por variación de parámetros
- Siguiente entrada del curso: Ecuaciones lineales de segundo orden con coeficientes variables. Soluciones por series de potencias cerca de un punto ordinario
- Notas escritas relacionadas con el tema: Ecuaciones lineales no homogéneas de segundo orden. Método de coeficientes indeterminados
- Notas escritas relacionadas con el tema: Oscilaciones mecánicas
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»