Ecuaciones Diferenciales I – Videos: Ecuaciones de Bessel y Legendre

Por Eduardo Vera Rosales

Introducción

En la entrada anterior comenzamos el estudio a algunas ecuaciones especiales de segundo orden que aparecen con frecuencia en otras áreas de estudio, principalmente en la física. En particular, encontramos soluciones por series a las ecuaciones de Hermite y Laguerre, y mencionamos cómo los polinomios de orden n que llevan los mismos nombres son soluciones particulares a las ecuaciones diferenciales para λ=n, respectivamente.

Ahora es turno de revisar las ecuaciones de Bessel y Legendre, debidas a los matemáticos Friedrich Wilhelm Bessel y Adrien-Marie Legendre. Resolveremos la ecuación de Bessel alrededor del punto singular regular t0=0 para algunos casos del valor λ. Por otra parte resolveremos la ecuación de Legendre alrededor del punto ordinario t0=0, y mencionamos la relación de la ecuación de Legendre con los polinomios que llevan el mismo nombre.

Ecuación de Bessel

En el primer video hallamos la ecuación indicial para la ecuación de Bessel de orden λ alrededor del punto singular regular t0=0 t2d2ydt2+tdydt+(t2λ2)y=0,t>0. Posteriormente encontramos una solución a la misma ecuación cuando λ=0.

En el segundo video resolvemos la ecuación de Bessel de orden λ=1 bajo las mismas hipótesis del caso anterior.

Ecuación de Legendre

En el último video de la entrada resolvemos la ecuación de Legendre de forma general alrededor del punto ordinario t0=0 y hacemos una importante observación acerca de las soluciones a dicha ecuación.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra una segunda solución a la ecuación de Bessel de orden cero t2d2ydt2+tdydt+t2y=0 cerca del punto singular regular t0=0, t>0.
  • Encuentra una segunda solución a la ecuación de Bessel de orden uno t2d2ydt2+tdydt+(t21)y=0 cerca del punto singular regular t0=0, t>0.
  • Halla una solución a la ecuación de Bessel de orden 12 t2d2ydt2+tdydt+(t212)y=0 cerca del punto singular regular t0=0, t>0.
  • Investiga los primeros cuatro polinomios de Legendre. Prueba que son solución particular a la ecuación de Legendre (1t2)d2ydt22tdydt+λ(λ+1)y=0 alrededor del punto ordinario t0=0 para los valores λ=0,1,2,3, respectivamente.
  • Mediante el método de soluciones por series de potencias, halla una solución a la ecuación de Legendre con λ=4 (1t2)d2ydt22tdydt+20y=0. En general, el n-ésimo polinomio de Legendre es solución a la ecuación de Legendre con λ=n.
  • Verifica que t0=1 es un punto singular regular para la ecuación de Legendre y encuentra una solución cerca de t0=1, t>0.

Más adelante

Hasta el momento hemos revisado cuatro de las seis ecuaciones especiales de segundo orden que vamos a estudiar. Finalizaremos esta serie de entradas revisando la ecuación de Chebyshev y la ecuación hipergeométrica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.