Archivo de la categoría: Sin clasificar

Nota 12. Teoremas de la composición de funciones inyectivas, suprayectivas y biyectivas.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la nota anterior definimos cuándo una función es inyectiva, suprayectiva y biyectiva. En esta nota daremos cinco resultados referentes a la composición de funciones inyectivas, suprayectivas y biyectivas, de forma que es conveniente que se tengan muy claras las definiciones de estos conceptos.

Teorema

La composición de funciones inyectivas es inyectiva.

Demostración

Consideraremos cualesquiera dos funciones inyectivas y vamos a mostrar que su composición es inyectiva.

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$ funciones inyectivas.

Por demostrar que $g\circ f$ es inyectiva.

Para mostrar que la composición es inyectiva se tiene que ver que si $g\circ f(x_1)= g\circ f(x_2)$, entonces $x_1=x_2$.

Sean $x_1,x_2\in A$ tales que $g\circ f(x_1)= g\circ f(x_2)$

por definición de composición se tiene que

$g(f(x_1))= g(f(x_2)),$

al ser $g$ inyectiva esto implica que $f(x_1)=f(x_2)$

y como $f$ también es inyectiva concluimos que $x_1=x_2$.

Por lo tanto $g\circ f$ es inyectiva, así la composición de funciones inyectivas es inyectiva.

$\square$

Teorema

La composición de funciones suprayectivas es suprayectiva

Demostración

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$ funciones suprayectivas.

Por demostrar que $g\circ f$ es suprayectiva.

Para probar que $g\circ f:A\to C$ es suprayectiva , dado $c\in C$, tenemos que exhibir $a\in A$ tal que $g\circ f(a)=c$.

Sea $c\in C$.

Como $g$ es suprayectiva, existe $b\in B$ tal que $g(b)=c$.

Como $f$ es suprayectiva, existe $a\ A$ tal que $f(a)=b$.

Entonces

$g\circ f(a)=g(f(a))=g(b)=c.$

Así, para para cada $c\in A$ existe $a\in A$ tal que $g\circ f(a)=c$. Por lo tanto, $g\circ f$ es suprayectiva.

$\square$

Corolario

La composición de funciones biyectivas es biyectiva.

Demostración

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$ funciones biyectivas.

Como $f$ y $g$ son biyectivas, en particular son inyectivas y por lo demostrado anteriormente $g\circ f$ es inyectiva.

Como $f$ y $g$ son biyectivas, en particular son suprayectivas y por lo demostrado anteriormente $g\circ f$ es suprayectiva.

Así, $g\circ f$ es inyectiva y suprayectiva y por lo tanto biyectiva, que es lo que queríamos probar.

$\square$

Teorema

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:A\to B$, $h:B\to C$ funciones, con $h$ inyectiva. Si $h\circ f=h\circ g$, entonces $f=g$.

Demostración

Consideremos $A$, $B$, $C$ conjuntos $f:A\to B$, $g:A\to B$, $h:B\to C$ funciones. Tomemos como hipótesis que $h$ es inyectiva y que $h\circ f=h\circ g$. Debemos probar que $f=g$.

Notemos que $f$ y $g$ tienen el mismo dominio y el mismo codominio. Veamos ahora que $f$ y $g$ tienen la misma regla de correspondencia. Sea $a\in A$, como $h\circ f=h\circ g$ tenemos que $h\circ f(a)=h\circ g(a).$

Por definición de composición lo anterior implica que:

$h(f(a))=h(g(a)),$

y al ser $h$ inyectiva:

$f(a)=g(a).$

Por lo tanto $f$ y $g$ tienen la misma regla de correspondencia.

Concluimos que $f=g$, que es lo que queríamos demostrar.

$\square$

Teorema

Sean $A$, $B$, $C$ conjuntos $f:A\to B$, $g:B\to C$, $h:B\to C$ funciones, con $f$ suprayectiva. Si $g\circ f=h\circ f$, entonces $g=h$.

Demostración

Consideremos $A$, $B$, $C$ conjuntos, $f:A\to B$, $g:B\to C$, $h:B\to C$ funciones. Supongamos que $f$ es suprayectiva y que $g\circ f=h\circ f$. Tenemos que demostrar que $g=h.$

Veamos que $g$ y $h$ tienen la misma regla de correspondencia. Para ello consideremos un elemento cualquiera de su dominio, es decir, un $b\in B.$ Como $f$ es suprayectiva sabemos que existe $a\in A$ tal que $f(a)=b$.

Además $g\circ f=h\circ f$ por hipótesis, así que $g\circ f(a)=h\circ f(a).$ Entonces por la definición de composición de funciones se tiene que:

$g(f(a))=h(f(a)).$

Pero $a$ es tal que $f(a)=b$, así que podemos reescribir lo anterior de la siguiente forma:

$g(b)=h(b).$

De este modo para cualquier $b\in B$ se tiene que $g(b)=h(b)$ y entonces $g$ y $h$ tienen la misma regla de correspondencia.

Como además $g$ y $h$ tienen el mismo dominio y el mismo codominio concluimos que $g=h$, que es lo que queríamos demostrar.

$\square$

Tarea Moral

1. En cada inciso determina si existen, y en su caso encuentra, conjuntos $A,B$ y $C$, y funciones $f$ y $g$ con las siguientes características:

i) $f:A\to B$, $g:B\to C$ tales que $f$ es inyectiva, $g$ suprayectiva pero $g\circ f$ no es inyectiva, ni suprayectiva.

ii) $f:A\to B$, $g:B\to C$ tales que $f$ es no es suprayectiva, $g$ no es inyectiva pero $g\circ f$ es biyectiva.

Más adelante

En la siguiente entrada, estudiaremos un tipo especial de relaciones: las relaciones de equivalencia. Este concepto es ampliamente utilizado en distintas áreas de las matemáticas.

Enlaces relacionados

Página principal del curso.

Enlace a la entrada anterior. Nota 11. Funciones inyectivas, suprayectivas y biyectivas.

Enlace a la entrada siguiente. Nota 13. Relación de equivalencia.

Nota 11. Funciones inyectivas, suprayectivas y biyectivas.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota analizaremos las definiciones de lo que es una función inyectiva o uno a uno, suprayectiva, cuando el codominio y la imagen coincide, y las biyectivas, aquellas funciones que son inyectivas y suprayectivas al mismo tiempo. Terminaremos mostrando que el hecho de tener una función invertible es equivalente a tener una función biyectiva.

Definición

Sean $A$, $B$ conjuntos, $f:A\to B$ una función. Decimos que $f$ es una función inyectiva si para cada $x_1$, $x_2$ $\in A$ se tiene que:

$x_1\neq x_2$ implica que $f(x_1)\neq f(x_2)$

o de modo equivalente

$f(x_1)=f(x_2)$ implica que $x_1=x_2.$

Ejemplo 1

En este ejemplo veremos cómo aplicar la definición de inyectividad para mostrar cuándo una función es inyectiva.

Sea $f:\mathbb R\setminus \set{1}\to \mathbb R$ dada por $f(x)=\frac{x}{x-1}$

Sean $x_1,x_2\in \mathbb R\setminus \set{1}$ tales que $f(x_1)=f(x_2)$

$f(x_1)=f(x_2)$ $\Longrightarrow$

$\frac{x_1}{x_1-1}= \frac{x_2}{x_2-1}$ $\Longrightarrow$

$x_1(x_2-1)=x_2(x_1-1)$ $\Longrightarrow$

$x_1x_2-x_1=x_2x_1-x_2$ $\Longrightarrow$

$-x_1=-x_2$ $\Longrightarrow$

$x_1=x_2.$

Por lo tanto $f$ es inyectiva.

Ejemplo 2

En este ejemplo veremos cómo aplicar la definición de inyectividad para mostrar cuándo una función no es inyectiva.

Sea $f:\mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$. Sean $-2$ y $2$. Se tiene que $f(-2) = (-2)^2 = 4 = 2^2 = f(2)$. Si $f$ fuera inyectiva, para cada $x_1, x_2 \in \mathbb{R}$ se tendría que $f(x_1) = f(x_2)$ implicaría que $x_1 = x_2$. Sin embargo, $f(-2) = f(2)$ con $-2 \neq 2$. Concluimos entonces que $f$ no es inyectiva.

Notemos que para comprobar que una función $f$ no es inyectiva, basta con mostrar $x_1, x_2$ elementos distintos en el dominio de $f$ tales que $f(x_1)=f(x_2).$

Definición

Sean $A$, $B$ conjuntos, $f:A\to B$ una función. Decimos que $f$ es una función suprayectiva si para toda $y\in B$ existe $x\in A$ tal que $f(x)=y$, o de modo equivalente $Im\,f=B$.

Ejemplo 3

En este ejemplo veremos cómo aplicar la definición de suprayectividad para mostrar cuándo una función es suprayectiva.

Sea $f:\mathbb{R}\setminus\{2\} \to \mathbb{R}\setminus\{0\}$ dada por $f(x) = \frac{1}{x-2}$.

¿La función es suprayectiva?, ¿para toda $y\in\mathbb{R}\setminus\{0\} $, ¿existe $x\in \mathbb R\setminus \set{2}$ tal que $f(x)=y$?

Consideremos entonces $y\in \mathbb{R}\setminus\{0\} $ y veamos si podemos hallar $x\in \mathbb R\setminus \set{2}$ tal que $f(x)=y$, pero de acuerdo a la regla de correspondencia de $f$ esto equivale a que $\frac{1}{x-2}=y.$ Analizando

$\frac{1}{x-2}=y\Leftrightarrow 1=y(x-2)\Leftrightarrow \frac{1}{y}=x-2\Leftrightarrow \frac{1}{y}+2=x.$

Notemos que la segunda equivalencia es posible gracias a que $y\in \mathbb{R}\setminus\{0\}$ y por lo tanto $y\neq 0$. Además, $\frac{1}{y}+2\neq 2$ pues si $\frac{1}{y}+2= 2$ tendríamos que $\frac{1}{y}=0$ y en consecuencia que $1=y(0)=0$ lo cual es una contradicción.

Por lo tanto, para cada $y\in \mathbb{R}\setminus\{0\} $ hemos hallado $x=\frac{1}{y}+2\in \mathbb R\setminus \set{2}$ tal que $f(x)=y$, probando con ello que $f$ es suprayectiva.

Ejemplo 4

En este ejemplo veremos cómo aplicar la definición de suprayectividad para mostrar cuándo una función no es suprayectiva.

$f:\mathbb R\setminus \set{-5}\to \mathbb R$ dada por $f(x)=\frac{2}{x+5}+1$

¿La función es suprayectiva?, Para toda $y\in \mathbb R$, ¿existe $x\in \mathbb R\setminus \set{-5}$ tal que $f(x)=y$?

Supongamos que sí es suprayectiva, entonces para toda $y\in \mathbb R$, existe $x\in \mathbb R\setminus \set{-5}$ tal que $f(x)=1=y$. Analizando

$y=\frac{2}{x+5}+1\Leftrightarrow y-1=\frac{2}{x+5}.$

En este punto notamos que hay dos opciones, $y=1$ o $y\neq 1$. Notemos que para $y=1$ completando las equivalencias anteriores tendríamos

$1=\frac{2}{x+5}+1\Leftrightarrow 0=\frac{2}{x+5}\Leftrightarrow 0(x+5)=2\Leftrightarrow0=2$

pero $0\neq 2$ así que concluimos que no existe $x\in \mathbb R\setminus \set{-5}$ tal que $f(x)=1$ y por lo tanto $f$ no es suprayectiva.

Notemos que para mostrar que una función no es supreyectiva basta exhibir algún $y$ en el condominio de $f$ tal que no exista $x$ en el dominio de $f$ con $f(x)=y$.

Definición

Sean $A,B$ conjuntos $f:A\to B$ una función. Decimos que $f$ es biyectiva si $f$ es inyectiva y suprayectiva.

Teorema

Una función es invertible si y sólo si es biyectiva.

Demostración

$\Longrightarrow$ Demostración de la implicación de ida

Supongamos que $f$ es invertible.

Por demostrar que es biyectiva.

Si $f$ es invertible entonces existe $f^{-1}:B\to A$ la inversa de $f$.

Veamos que $f$ es inyectiva.

Sean $x_1,x_2\in A$ tales que $f(x_1)=f(x_2)$

Como $f(x_1)=f(x_2)$ y $f^{-1}$ es una función sabemos que $f^{-1}(f(x_1))= f^{-1}(f(x_2))$, lo que por la definición de composición de funciones es equivalente a que $f^{-1}\circ f(x_1)= f^{-1}\circ f(x_2).$ Pero debido a que $f^{-1}$ es la función inversa de $f$ tenemos que $id_A(x_1)=id_B(x_2)$ y por la regla de correspondencia de las funciones identidad esto equivale a que $x_1=x_2.$

Por lo tanto $f$ es inyectiva.

Para ver que $f$ es suprayectiva, sea $y\in B$ y veamos que hay un elemento $x$ en $A$ tal que $f(x)=y$. Consideremos $f^{-1}(y)\in A$, al aplicarle $f$ tenemos que:

$f(f^{-1}(y))=f\circ f^{-1}(y) = id_B(y)=y$.

Así, $f$ es suprayectiva.

$\Longleftarrow$ Demostración de la implicación de regreso

Supongamos que $f$ es biyectiva

Por demostrar que es invertible.

Dado $y\in B$ por ser $f$ suprayectiva existe $x\in A$ tal que $f(x)=y$, además como $f$ es inyectiva dicha $x$ es única, llamémosle $x_y$.

Definimos $g:B\to A$ con $g(y)=x_y$, donde $x_y$ es el único elemento de $A$ tal que $f(x_y)=y$.

Como $g$ asigna a cada $y\in B$ un único elemento de $A$, entonces $g$ es una función.

Veamos ahora que $g$ es una inversa de $f$.

Dado $y\in B$ se tiene que

$f\circ g(y)=f(g(y))=f(x_y)=y$, y así $f\circ g=id_B.$

Dado $x\in A$ se tiene que

$g\circ f(x)=g(f(x))=x_{f(x)}$, el único elemento en $A$ que bajo $f$ nos da $f(x)$, pero $x\in A$ es tal que bajo $f$ da $f(x)$. Así $x_{f(x)}=x$ y entonces $g\circ f(x)=x$, por lo tanto $g\circ f=id_A$.

Así, $g$ es una inversa de $f$ y concluimos que $f$ es invertible.

$\square$

Tarea Moral

1. Prueba o da un contraejemplo:

i) Sean $f:A\to B$, $g:B\to C$ tales que $g\circ f$ es inyectiva, ¿Es $f$ necesariamente inyectiva?

ii) Sean $f:A\to B$, $g:B\to C$ tales que $g\circ f$ es inyectiva, ¿Es $g$ necesariamente inyectiva?

2. Prueba o da un contraejemplo:

i) Sean $f:A\to B$, $g:B\to C$ tales que $g\circ f$ es suprayectiva, ¿Es $f$ necesariamente suprayectiva ?

ii) Sean $f:A\to B$, $g:B\to C$ tales que $g\circ f$ es suprayectiva, ¿Es $g$ necesariamente suprayectiva ?

3. Determina si las siguientes funciones son inyectivas, suprayectivas o biyectivas.

i) $f:\mathbb R\to (-\infty,3]$ con $f(x)=x^2+3$

ii) $f:[1,\infty)\to [0,\infty)$ con $f(x)=4(x-1)^2$

iii) $f:\set{x\in \mathbb R\mid x\neq -\frac{5}{3}}\to \mathbb R$ con $f(x)=\frac{1}{3x+5}$.

iv) $f:\set{x\in \mathbb R\mid x\neq 7}\to \set{x\in \mathbb R\mid x\neq 1}$ con $f(x)=\frac{1}{x-7}+1$.

Más adelante

En la siguiente nota daremos algunos teoremas referentes a la composición de funciones inyectivas con inyectivas y suprayectivas con suprayectivas.

Enlaces relacionados

Página principal del curso.

Nota 10. Función inversa

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota centraremos nuestros esfuerzos en comprender el concepto de función inversa, primero veremos la definición de lo que es una función inversa derecha o izquierda de una función, para después definir con ello lo que es una función invertible.

Definición

Sean $A$, $B$ conjuntos, $f:A\to B$, $g:B\to A$ funciones.

Si $g\circ f=id_A$, decimos que $f$ es una inversa derecha de $g$ y que $g$ es una inversa izquierda de $f$.

Decimos que $f$ es invertible si existe una función $g$ que sea inversa izquierda y derecha de $f$; en este caso se dice que $g$ es una inversa de $f$.

Ejemplos

El siguiente ejemplo aparece en el libro de Avella y Campero mencionado en la bibliografía, Ejemplo 4.56, página 193:

1. Sean $f:\set{1,2,3}\to \set{4,5,6,7}$ con:

$f(1)=4$, $f(2)=5$, $f(3)=6$

y $g:\set{ 4,5,6,7 }\to \set{1,2,3}$ con:

$g(4)=1$, $g(5)=2$, $g(6)=3$, $g(7)=3.$

Si se hace la composición $g\circ f$:

$g\circ f(1)=g(f(1))=g(4)=1$

$g\circ f(2)=g(f(2))=g(5)=2$

$g\circ f(3)=g(f(3))=g(4)=3.$

Así, $g\circ f=id_{\set{1,2,3}}$, de forma que $g$ es una inversa izquierda de $f$ y $f$ es una inversa derecha de $g$.

Pero $f\circ g\neq id_{\set{4,5,6,7}}$, pues $f\circ g(7)=f(g(7))=f(3)=6$, y por lo tanto $g$ no es una inversa derecha de $f$ y $f$ no es una inversa izquierda de $g$.

2. Sean $h:\set{1,2,3}\to \set{4,5}$ con:

$h(1)=2$, $h(2)=4$, $h(3)=5$

y $j:\set{4,5}\to \set{1,2,3}$ con:

$j(4)=1$, $j(5)=3.$

Como:

$h\circ j(4)=h(j(4))=h(1)=4$,

$h\circ j(5)=h(j(5))=h(3)=5$,

Notamos que $h\circ j=id_{\set{4,5}}$, pero $j\circ h\neq id_{\set{1,2,3}}$ pues $j\circ h(2)=1$.

Así, $h$ es una inversa izquierda de $j$, $j$ es una inversa derecha de $h$, pero $h$ no es una inversa derecha de $j$ y $j$ no es una inversa izquierda de $h$.

Teorema

Sean $A$, $B$ conjuntos, $f:A\to B$ una función. Si $f$ tiene un inverso derecho $g$ y un inverso izquierdo $h$, entonces $g=h$.

Demostración

Sean $A$ y $B$ conjuntos y $f:A\to B$ una función. Supongamos que existen $g$ un inverso derecho de $f$ y $h$ un inverso izquierdo de $f$.

Como $g$ es un inverso derecho de $f$, por definición $g$ es una función $g:B\to A$ tal que $f\circ g=id_B$.

Como $h$ es un inverso izquierdo de $f$, por definición $h$ es una función $h:B\to A$ tal que $h\circ f=id_A$.

Queremos demostrar que $h=g.$

$h=$empezamos tomando la función $h$
$h\circ id_B=$la reescribimos de esta forma, expresándola como la identidad en $B$
compuesta con $h$
$h\circ (f\circ g)=$por hipotesis $id_B=f\circ g$
$(h\circ f)\circ g=$por asociatividad de la composición de
funciones
$id_A\circ g=$ por hipotesis $id_A=h\circ f$
$g$la composición con la identidad nos
da $g$

$\square$

Corolario

Si una función $f$ es invertible, entonces su inverso es único. En este caso su inverso se denota por $f^{-1}$.

Demostración

Sea $f$ una función invertible. Supongamos que $g$ y $h$ son inversos de $f$. En particular $g$ es un inverso derecho de $f$ y $h$ es un inverso izquierdo de $f$. Así, por el teorema anterior $g=h$.

$\square$

Tarea Moral

En cada inciso determina si existe una inversa derecha de $f$, o bien una inversa izquierda de $f$.

En caso de que exista constrúyela.

1. $f:\set{3,4,7,8}\to \set{1,2,7,8,9}$ con

$f(3)=9$, $f(4)=8$, $f(7)=7$, $f(8)=2$.

2. $f:\set{-2,-1,0,1,2}\to \set{3,6,9}$ con

$f(-2)=f(2)=3$, $f(1)=f(-1)=6$, $f(0)=9$.

3. $f:\set{0,2,4,6}\to \set{1,3,5,7}$ con

$f(x)=x+1$.

4. $f:\set{1,2,3}\to \set{5,6,7}$ con

$f(1)=f(2)=5$, $f(3)=7$.

5. Utiliza el siguiente recurso de geogebra para obtener la función inversa de algunas funciones.

Más adelante

En la siguiente nota analizaremos las definiciones de funciones inyectivas, suprayectivas y biyectivas.

Enlaces relacionados

Página principal del curso.

Nota 9. Composición de funciones.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Bajo ciertas condiciones, dadas dos funciones podemos evaluar el resultado de una en otra, es decir aplicar una función seguida de la otra, para formar una nueva función. A esta operación entre funciones se le llama la composición y la estudiaremos en esta entrada. Esta operación nos dará una amplia gama de funciones muy útiles como lo son la composición de las funciones trigonométricas con las funciones lineales. Para motivar el tema trata de obtener la siguiente familia de funciones con geogebra, $sen(kx+t)$, con $k,t\in \mathbb R$, en la que primero mandamos a $x$ a $kx+t$ y luego le aplicamos la función seno; éstas te darán una serie de curvas con las que se pueden describir distintos tipos de ondas. Te invitamos a revisar el recurso de geogebra donde se usa la función seno y se compone con funciones lineales para modelar ondas sonoras, y a darle un vistazo al siguiente video donde se habla de música y matemáticas.

Definición

Sean $A,B,C,D$ conjuntos, $f:A\rightarrow B$, $g:C\rightarrow D$ funciones, con $Im\,f\subseteq C$. Definimos la composición de $f$ seguida de $g$ como:

$$g\circ f:A\to D$$

con regla de correspondencia $g\circ f(x)=g(f(x))$, para todo $ x\in A.$ Observa que escribiremos la composición de derecha a izquierda, aunque existen autores que la escriben de izquierda a derecha.

Ejemplos

1. Sean $f:\mathbb R\to \mathbb R $ y $g:\mathbb R\to \mathbb R $ con

$f(x)=3x^2+1$, $g(x)=2x-1$ para toda $x\in \mathbb R$.

La composición $g\circ f:\mathbb R\to \mathbb R$ manda a cada $x\in \mathbb R$ en

$g\circ f(x)=g(f(x))=g(3x^2+1)=2(3x^2+1)-1=6x^2+1,$

mientras que la composición $f\circ g:\mathbb R\to \mathbb R$ manda a cada $x\in \mathbb R$ en

$f\circ g(x)=f(g(x))=f(2x-1)=3(2x-1)^2+1=12x^2-12x+4.$

2. Sean $\alpha:\set{1,2,3}\to \set{1,2,3}$, $\beta:\set{1,2,3}\to \set{1,2,3}$ con

$\alpha=\begin{pmatrix}1 & 2 & 3\\
2 & 3 & 1\end{pmatrix} $

$\beta =\begin{pmatrix}1 & 2 & 3\\
2 & 1 & 3\end{pmatrix} $

Las composiciones $\beta\circ \alpha:\set{1,2,3}\to \set{1,2,3}$ y $\alpha\circ \beta:\set{1,2,3}\to \set{1,2,3}$ son

$\beta\circ \alpha=\begin{pmatrix}1 & 2 & 3\\
1 & 3 & 2\end{pmatrix} $

$\alpha\circ \beta=\begin{pmatrix}1 & 2 & 3\\
3 & 2 & 1\end{pmatrix} $

3. Sean $a,k,t\in \mathbb R.$ Considera las funciones $f:\mathbb R\to \mathbb R $, $g:\mathbb R\to \mathbb R $ con $f(x)=a \, sen(x)$, $g(x)=kx+t$ para toda $x\in \mathbb R.$ Tenemos que $f\circ g:\mathbb R\to \mathbb R $ con $f\circ g(x)=f(g(x))=f(kx+t)=a \, sen(kx+t)$ para toda $x\in \mathbb R.$

En el siguiente recurso de geogebra mueve los deslizadores $a$, $k$ y $t$ para obtener la gráfica de $a \, sen(kx+t)$.

Teorema

Sean $A,B,C,D$ conjuntos, $f:A\to B$, $g:B\to C$ y $h:C\to D$, entonces $h\circ (g\circ f)=(h\circ g)\circ f$, es decir la composición es asociativa.

Demostración

Para esta prueba usaremos el hecho de que dos funciones son iguales si tienen el mismo dominio, el mismo codominio, y la misma regla de correspondencia. Empecemos probando que $h\circ (g\circ f) $ y $(h\circ g)\circ f$ tienen el mismo dominio y el mismo codominio.

Como $g\circ f: A\to C$ y $h: C\to D$ entonces $h\circ (g\circ f): A\to D..$

Como $f: A\to B$ y $h\circ g: B\to D$ entonces $(h\circ g)\circ f: A\to D.$

Así, $h\circ (g\circ f ) $ y $(h\circ g)\circ f$ tienen el mismo dominio y el mismo codominio.

Para ver que tienen la misma regla de correspondencia hagamos lo siguiente:

Sea $x\in A$.

Sabemos que $h\circ (g\circ f )(x)=h( g\circ f(x) )=h(g(f(x))).$

Por otro lado, $(h\circ g)\circ f(x)= h\circ g (f(x))=h(g(f(x))).$

Entonces $h\circ (g\circ f )(x)=(h\circ g)\circ f(x)$ para toda $x\in A$.

Así, $h\circ (g\circ f)=(h\circ g)\circ f$ .

$\square$

Definición

Sea $A$ un conjunto. La función identidad en $A$ es:

$id_A:A\to A$

con regla de correspondencia $id_A(x)=x$ para toda $ x\in A$.

Proposición

Sean $A,B$ conjuntos, $f:A\to B$ una función. Se cumple que:

  1. $f\circ id_A=f,$
  2. $id_B\circ f=f.$

Demostración

Demostración de 1

Por demostrar que $f\circ id_A=f$.

$f\circ id_A$ y $f$ tienen dominio $A$ y codominio $B$.

Vamos a ver que tienen la misma regla de correspondencia.

Sea $x\in A$. De acuerdo a la definición de composición $f\circ id_A(x)=f(id_A(x))$ y por definición de identidad tenemos que $f(id_A(x))=f(x)$. Concluimos que $f\circ id_A(x)=f(x)$.

Así, $f\circ id_A$ y $f$ tienen el mismo dominio, el mismo condominio y la misma regla de correspondencia, por lo tanto $f\circ id_A=f$.

Demostración de 2

$id_B\circ f$ y $f$ tienen dominio $A$ y codominio $B$.

Sea $x\in A$. De acuerdo a la definición de composición $id_B\circ f(x)=id_B(f(x))$ y por definición de la función identidad tenemos que $id_B(f(x))=f(x)$. Concluimos que $id_B\circ f(x)=f(x)$.

Así, $id_B\circ f$ y $f$ tienen el mismo dominio, el mismo condominio y la misma regla de correspondencia, por lo tanto $id_B\circ f=f$.

$\square$

El siguiente ejemplo aparece en el libro de Avella y Campero, mencionado en la bibliografía, Ejemplo 4.54.

Ejemplo

$f:\mathbb R\to [0,\infty)$, $x\longmapsto x^2$

$g:[0,\infty)\to \mathbb R$, $x\longmapsto +\sqrt{x}$

$f\circ g:[0,\infty)\to [0,\infty)$

$f\circ g(x)=f(g(x))=f(+\sqrt{x} )=( +\sqrt{x} )^2=x$

$g\circ f:\mathbb R\to \mathbb R $

$g\circ f(x)=g(f(x))=g(x^2)=+\sqrt{x^2} =|x|$

Observa el siguiente clip

Aquí $f\circ g=id_{[0,\infty)}$, pero $g\circ f\neq id_{\mathbb R}$.

En el siguiente recurso de geogebra cambia los valores de $f$ y $g$, observa cómo son $f\circ g$ y $g\circ f$.

Tarea Moral

1. Considera las funciones

$f:\mathbb R\to \mathbb R$ con $f(x)=x^2+5$

$g:\mathbb R^+\to \mathbb R$ con $g(x)=\frac{3}{x}-1.$

Calcula, si es posible, las composiciones $g\circ f$ y $f\circ g$:

2. ¿Existirán dos funciones $f$ y $g$ de $\mathbb R$ a $\mathbb R$ tales que $f\neq g$ pero $g\circ f=f\circ g$?

3. $f:\set{5,6,7}\to \set{0,2,4,6}$, $f(5)=0$, $f(6)=4$, $f(7)=6$,

$g:\set{ 0,2,4,6 }\to \set{5,6,7}$, $g(0)=g(2)=5$, $g(4)=6$, $g(6)=7$.

Calcula las composiciones $g\circ f$ y $f\circ g$ . ¿Qué puedes decir del comportamiento de las composiciones? ¿Y si ahora $g(2)=7$?

Más adelante

En la siguiente nota hablaremos del concepto de función inversa y daremos condiciones para que una función sea invertible.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 8. Imagen directa e inversa de una función.

Enlace a la nota siguiente. Nota 10. Función inversa.

Nota 8. Imagen directa e inversa de una función.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota analizaremos a las funciones observando las imágenes de subconjuntos del dominio y los elementos del dominio que bajo la función son asignados a ciertos elementos tomados del codominio.

Definición

Sean $A$ y $B$ conjuntos, $f: A\to B$ una función. Dado $A’\subseteq A$, la imagen directa de $A’$ bajo $f$ es:

$f[A’]=\set{f(x)\mid x\in A’}.$

Dado $B’\subseteq B$ la imagen inversa de $B’$ bajo $f$ es:

$f^{-1}[B’]=\set{x\in A\mid f(x)\in B’}.$

Observa que:

$f[A’]\subseteq B$ y que $f^{-1}[B’]\subseteq A$, además $f[A]=Imf$.

Ejemplos

1. $f:\set{1,2,3,4,5}\rightarrow\ \set{-2,-1,0,1}$.

$f(1)= f(2)=-1$, $ f(3)= f(4)=0$, $ f(5)=1$.

Si $A’=\set{1,2,5}$ entonces $f[A’]=\set{-1,1}$.

Mientas que si $B’=\set{-2,0,1}$ entonces $f^{-1}[B’]=\set{3,4,5}$.

2. $g:\mathbb R\to \mathbb R$, $g(x)=x^2$

$A’=[-1,2]$

$g[A’]=\set{x\in \mathbb R\mid 0\leq x\leq 4}$

Observa el siguiente clip donde se asignan los elementos de $A’$ que se muestran en verde, a los elementos de su imagen directa $f[A]$ que se muestran en rojo.

Ahora considera $A^{\prime\prime}=[0,2]$

$g[A^{\prime\prime}]=\set{x\in \mathbb R\mid 0\leq x\leq 4}$

Observa el siguiente clip

Observa que aunque $A’\neq A^{\prime\prime}$ tienen la misma imagen directa $g[A’]= g[A^{\prime\prime}]$

Ahora analicemos la definición de imagen inversa con el mismo ejemplo.

Si $B’=[0,1]$, la imagen inversa de $B’$ bajo $f$ es:

$f^{-1}[B’ ]=\set {x\in \mathbb R\mid g(x)\in [0,1]}$

$f^{-1}[B’ ] = \set{x\in \mathbb R\mid -1\leq x\leq 1}$

En el siguiente clip se muestran en rojo los elementos de $B’$ y en verde los elementos de $f^{-1}[B’]$.

Observa que si $B^{\prime\prime}=[-1,1]$, la imagen inversa de $B^{\prime\prime}$ bajo $f$ es la misma que $B’$, $f^{-1}[B^{\prime\prime}] = \set{x\in \mathbb R\mid -1\leq x\leq 1}$, pues no hay números reales elevados al cuadrado que vayan a dar números negativos. Observa el siguiente clip:

Si $C=[-2,-1]$ entonces $f^{-1}[C]=\emptyset$, por que para todo $x\in \mathbb R$, $f(x)=x^2\notin [-2,-1]$.

Proposición

Sean $A$ y $B$ conjuntos, $f: A\to B$ una función, $A’\subseteq A$, $B’\subseteq B$. Se cumple que:

  1. $A’\subseteq f^{-1}[f[A’]]$
  2. $f[f^{-1}[B’]]\subseteq B’$

Demostración

Demostración de 1

Por demostrar que $A’\subseteq f^{-1}[f[A’]]$

Sea $a\in A’\subseteq A$, entonces $f(a)\in f[A’]=\set{f(x)\in B\mid x\in A’}$, así $a$ cumple con la propiedad del siguiente conjunto $\set{x\in A\mid f(x)\in f[A’]}$, es decir $ a\in \set{x\in A\mid f(x)\in f[A’]}$ que es por definición $f^{-1}[f[A’]]$, entonces $a\in f^{-1}[f[A’]]$.

Por lo tanto $A’\subseteq f^{-1}[f[A’]]$.

Demostración de 2

Por demostrar que $f[f^{-1}[B’]]\subseteq B’$.

Sea $b\in f[f^{-1}[B’]]=\set{f(x)\mid x\in f^{-1}[B’] }$, eso nos indica que existe $a\in f^{-1}[B’]=\set{x\in A\mid f(x)\in B’}$ tal que $f(a)=b$ y como $a$ cumple las características que definen a los elementos del conjunto $\set{x\in A\mid f(x)\in B’}$ tenemos que $f(a)\in B’$. Así, $b=f(a)\in B’$.

Por lo tanto $f[f^{-1}[B’]]\subseteq B’$.

$\square$

Tarea moral

Considera la siguiente función:

$f:\mathbb R\to \mathbb R$ dada por $f(x)=-3x^2 $

  • Para $A=[-3,4]$ calcula $f^{-1}[f[A]]$. ¿Qué relación tiene con $A$?
  • Para $B=[-12,1]$ calcula $f[f^{-1}[B]]$. ¿Qué relación tiene con $B$?

Más adelante

En la siguiente nota hablaremos de la composición de funciones y sus propiedades.

Enlaces relacionados

Página principal del curso

Enlace a la nota anterior. Nota 7 Relaciones y funciones.

Enlace a la nota siguiente. Nota 9. Composición de funciones.