Archivo de la categoría: Sin clasificar

Nota 26. Propiedades de $\mathbb R^n$

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la siguiente nota veremos algunas propiedades del $\mathbb R$-espacio vectorial $\mathbb R^n$. Probaremos la unicidad del neutro aditivo, así como la unicidad de los inversos aditivos, veremos que las propiedades de cancelación de la suma también se cumplen, se demostrará que la multiplicación del neutro aditivo de $\mathbb R$ por cualquier vector de $\mathbb R^n$ nos da el neutro aditivo, y que la multiplicación de cualquier escalar por el neutro aditivo, es el neutro aditivo. Finalizaremos viendo que el inverso aditivo de un vector $v$, que hemos denotado por $\tilde{v}$, es de hecho $(-1)v$.

Aunque denotamos las operaciones de suma y producto por escalar en $\mathbb R^n$ como $\oplus$ y $\odot$ para distinguirlas de la suma y el producto en $\mathbb R$, en general es claro por el contexto si se trata de unas u otras, así que a partir de aquí simplificaremos la notación y denotaremos a la suma de $u,v\in\mathbb R^n$ como $u+v$, y al producto de $\lambda\in\mathbb R $ por $v\in\mathbb R^n$ como $\lambda v$.

Proposición 1

En $\mathbb R^n$ el neutro aditivo es único.

Demostración

Supongamos que $\bar{0}$ y $\bar{0}’$ son dos neutros aditivos en $\mathbb R^n$.

Por demostrar que $\bar{0}=\bar{0}’$

Explicación
$\bar{0}=$Consideramos uno de los neutros.
$=\bar{0}+\bar{0}’$Gracias a que $\bar{0}’$ es un neutro.
$=\bar{0}’$Pues $\bar{0}$ es un neutro.

$\square$

Proposición 2

En $\mathbb R^n$ los inversos aditivos son únicos.

Demostración

Sea $v\in \mathbb R^n$, supongamos que $\tilde{v}$ y $\hat{v}$, son inversos aditivos de $v$.

Por demostrar que $\tilde{v}=\hat{v}$.

Explicación
$\tilde{v}=\tilde{v}+\bar{0}=$Gracias a que $\bar{0}$ es el neutro.
$=\tilde{v}+(v+\hat{v})=$Como $\hat{v}$ es un inverso de $v$
$v+\hat{v}=\bar{0}$.
$=(\tilde{v}+v)+\hat{v}=$Gracias a la asociatividad.
=$\bar{0}+\hat{v}$$\tilde{v}$ también es un inverso de $v$ y entonces
$\tilde{v}+v=\bar{0}$.
$=\hat{v}$Pues $\bar{0}$ es el neutro.

$\square$

Propiedades de cancelación

Sean $u,v,w\in \mathbb R^n.$

i) Si $u+v=w+v$, entonces $u=w.$

ii) Si $v+u=v+w$, entonces $u=w.$

Demostración

Sean $u,v,w\in \mathbb R^n$.

Demostración de i)

Supongamos que $u+v=w+v$, si le sumamos el inverso de $v$, $\tilde{v}$, de ambos lados de la igualdad tenemos que:

$(u+v)+\tilde{v}=(w+v)+\tilde{v}.$

En virtud de la asociatividad tenemos que:

$u+(v+\tilde{v})=w+(v+\tilde{v})$

y como $\tilde{v}$ es el inverso de $v$ obtenemos

$u+\bar{0}=w+\bar{0}.$

Así, $u=w.$

Demostración de ii)

Observa que se obtiene de la demostración del inciso anterior y de la conmutatividad de la suma, ya que si $v+u=v+w$, por la conmutatividad de la suma tenemos que $u+v=w+v$ y debido al inciso anterior concluimos que $u=w.$

$\square$

Proposición 3

En $\mathbb R^n$ se cumple que:

1. $0v=\bar{0}\,\,\,\,\forall v\in \mathbb R^n.$

2. $\lambda \bar{0}\,\,\,\,\forall \lambda\in \mathbb R.$

Demostración

Demostración de 1

Explicación
$\bar{0}+0v=0v=$Gracias a que $\bar{0}$ es el neutro en $\mathbb R^n$.
$=(0+0)v$$0=0+0$, gracias a que $0$ es neutro en $\mathbb R.$
$=0v+0v$Gracias a la distributividad en $\mathbb R$.

Obtenemos de las igualdades en la tabla que $\bar{0}+0v=0v+0v$, por la propiedad de la cancelación mostrada anteriormente tenemos que $\bar{0}=0v$.

Demostración de 2

Explicación
$\bar{0}+\lambda\bar{0}=\lambda\bar{0}=$Gracias a que $\bar{0}$ es neutro en $\mathbb R^n$.
$\lambda(\bar{0}+\bar{0})$$\bar{0}=\bar{0}+\bar{0}$, gracias a que $\bar{0}$ es neutro en $\mathbb R^n$.
$\lambda\bar{0}+\lambda\bar{0}$Gracias a la distributividad en $\mathbb R^n$.

Obtenemos de las igualdades en la tabla que $\bar{0}+\lambda\bar{0}=\lambda\bar{0}+\lambda\bar{0}$, por la propiedad de la cancelación mostrada anteriormente tenemos que $\bar{0}=\lambda\bar{0}$.

$\square$

Proposición 4

Para todo $v\in \mathbb R^n,\,\,\,\,(-1)v$ es el inverso aditivo de $v$.

Demostración

Sea $v\in \mathbb R^n$. Veamos que $(-1)v$ es su inverso aditivo.

Explicación
$v+(-1)v=1v+(-1)v=$Pues $v=1v$.
$=(1+(-1))v$Por distributividad.
$=0v$Pues en $\mathbb R$ se tiene que $1+(-1)=0$.
$=\bar{0}$Por la proposición 3.

Hemos probado que $v+(-1)v=\bar{0}$ y por la conmutatividad de la suma también $(-1)v+v=\bar{0}$. En virtud de la unicidad de los inversos concluimos que $(-1)v$ es el inverso aditivo de $v$.

$\square$

Notación

Dado $v\in \mathbb R^n$ denotaremos por $-v$ a su inverso aditivo.

Corolario

En $\mathbb R^n$e cumple que:

$(-\lambda) v=-(\lambda v)=\lambda (-v),\,\,\,\,\forall \lambda\in \mathbb R\,\,\,\,\forall v\in \mathbb R^n$.

Explicación
$\lambda (-v)=\lambda((-1)v)$$-v=(-1)v$ por la proposición 4.
$=(\lambda(-1))v$Propiedades del producto escalar en $\mathbb R^n$.
$=(-\lambda)v$Gracias a que en $\mathbb R$ $\lambda(-1)=-\lambda$.
$=((-1)\lambda)v$Gracias a que en $\mathbb R$ $\lambda(-1)=-\lambda$.
$=(-1)(\lambda v)$Propiedades del producto escalar en $\mathbb R^n$.
$=-(\lambda v)$Por la proposición 4.

$\square$

Tarea Moral

Determina si dados $v\in \mathbb R^n$, $\lambda\in \mathbb R$, el hecho de que $\lambda v=\bar{0}$ implica necesariamente que $v=\bar{0}$ o que $\lambda =0$.

Más adelante

En la siguiente nota veremos el importante concepto de subespacio vectorial.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 25. Espacios vectoriales.

Enlace a la nota siguiente. Nota 27. Subespacios vectoriales.

Nota 25. Espacios vectoriales

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Con esta nota empezamos la unidad 3, en la que estudiaremos un tipo particular de estructura algebraica llamada espacio vectorial. El plano y el espacio cartesiano tienen esta estructura de espacio vectorial, seguramente en este momento de tu educación ya los has utilizado; ahí los vectores son representados con flechas dirigidas a un punto. Podemos sumar esos vectores o flechas, y multiplicarlos por números reales para cambiarles su tamaño o sentido.

Veremos que no sólo $\mathbb R^2$ y $\mathbb R^3$ son espacios vectoriales, si no que para todo $n$ un natural positivo se cumple que $\mathbb R^n$ es un espacio vectorial. Primero estableceremos dos operaciones llamadas suma y producto por escalar, luego veremos que estas operaciones cumplen ciertas propiedades.

La construcción y las propiedades de los números reales no serán objeto de estudio de este curso, pero es importante aclarar que el conjunto $\mathbb R$ también tiene una estructura particular denominada campo. Mencionemos, sin profundizar más en ello, las propiedades que cumplen los números reales con las operaciones de suma y producto (debido a las cuales se le llama un campo) ya que las necesitaremos para poder estudiar los espacios vectoriales sobre los reales.

Nota

$\mathbb R$ es un conjunto con dos operaciones binarias, $+$ y $\cdot$, en el que se cumplen las siguientes propiedades:

Propiedades de la suma $+$Propiedades del producto $\cdot$
Es asociativa.Es asociativa.
Es conmutativa.Es conmutativa.
Existe $0\in \mathbb R$ neutro aditivo.Existe $1\in \mathbb R$ neutro multiplicativo.
$\forall \alpha\in \mathbb R$ existe su inverso aditivo $-\alpha\in \mathbb R$.$\forall \alpha\in \mathbb R\;\;\alpha \neq 0$ tiene inverso multiplicativo $\alpha^{-1}\in \mathbb R$.
Además el producto $\cdot$ distribuye a la suma.

Con estas propiedades satisfechas decimos que $\mathbb R$ es un campo y a sus elementos les llamamos escalares.

Ahora definiremos una suma y un producto por escalar en $\mathbb R^n$.

Definición

Sea $n\in\mathbb R$ con $n>0$. En el conjunto $\mathbb R^n$ definimos la suma $\oplus$ del siguiente modo:

$(x_1,\dotsc,x_n)\oplus (y_1,\dotsc,y_n)=(x_1+y_1,\dotsc,x_n+y_n),\forall (x_1,\dotsc,x_n), (y_1,\dotsc,y_n)\in \mathbb R^n$.

Notemos que esta operación se realiza sumando coordenada a coordenada.

Definimos ahora un producto por escalar $\odot$ como:

$\lambda \odot (x_1,\dotsc,x_n)=(\lambda x_1,\dotsc,\lambda x_n),\forall (x_1,\dotsc,x_n),(y_1,\dotsc,y_n)\in \mathbb R^n\,\;y\,\;\forall \lambda \in \mathbb R.$

Notemos que en el producto por escalar se multiplica un escalar real por una $n$-ada de reales, para obtener de nuevo una $n$-ada de reales, multiplicando cada una de las entradas por el escalar.

Así se ve geométricamente la suma en $\mathbb R^2$

En el siguiente recurso de geogebra puedes jugar moviendo $u,v\in \mathbb R^2$, y obteniendo su suma geométricamente en $\mathbb R^2$.

Así se ve geométricamente el producto por escalar en $\mathbb R^2$.

Veamos ahora que $\mathbb R^n$ con las operaciones anteriores, satisface ocho propiedades básicas gracias a las cuales se le llamará un espacio vectorial sobre el campo $\mathbb R$.

Teorema

Sea $n\in\mathbb R$ con $n>0$. El conjunto $\mathbb R^n$ con las operaciones antes definidas cumple la siguiente lista de propiedades:

1. $(u\oplus v)\oplus w=u\oplus (v\oplus w)\,\,\,\,\forall u,v,w\in \mathbb R^n$, es decir la suma es asociativa.

2. $u\oplus v=v\oplus u\,\,\,\forall u,v\in \mathbb R^n$, es decir la suma es conmutativa.

3. Existe $ \bar{0}\in \mathbb R^n$ tal que $u\oplus \bar{0}=\bar{0}\oplus u=u\,\,\,\forall u\in \mathbb R^n$, a $\bar{0}$ se le llama un neutro aditivo de $\mathbb R^n$.

4. Para todo $u\in \mathbb R^n$ existe $\tilde{u}\in \mathbb R^n$, tal que $u\oplus \tilde{u}=\tilde{u}\oplus u=\bar{0}$, a $\tilde{u}$ se le llama un inverso aditivo de $u$.

Estas primeras cuatro propiedades se refieren únicamente a la suma $\oplus$, tendremos otras dos que se refieren sólo al producto por escalar:

5. $1\odot v=v\,\,\,\, \forall v\in \mathbb R^n$.

6. $\lambda\odot (\mu\odot v)=(\lambda\mu)\odot v \,\,\,\, \forall v\in \mathbb R^n\,\;\forall \lambda,\mu\in \mathbb R$.

Por último se cumplen dos propiedades que son la distributividad del producto sobre la suma, tanto de escalares como de $n-$adas:

7. $(\lambda+\mu)\odot v=\lambda\odot v\oplus \mu\odot v\,\;\forall \lambda,\mu\in \mathbb R\,\;\forall v\in \mathbb R^n$.

8. $\lambda\odot(v\oplus u)=\lambda\odot v\oplus\lambda\odot u\,\;\forall \lambda\in \mathbb R\,\;\forall v,u\in \mathbb R^n$.

Se dice entonces que $\mathbb R^n$, con las operaciones $\oplus,\odot$ es un espacio vectorial sobre el campo$\mathbb R$, o un $\mathbb R$-espacio vectorial y a los elementos de $\mathbb R^n$ les llamaremos vectores.

Demostración

Veamos que $\mathbb R^n$ con las operaciones $\oplus$ y $\odot$, cumple las ocho propiedades dadas anteriormente. Mostraremos las propiedades 2,3,4,6,7 y las propiedades 1,5 y 8 se dejan como tarea moral.

Demostración de 2

Sean $u=(x_1,\dotsc, x_n),v=(y_1,\dotsc, y_n)\in \mathbb R^n,\,\,\,\,\lambda,\mu\in \mathbb R$.

Por demostrar que $u\oplus v=v\oplus u.$

Por definición de la suma tenemos que:

$u\oplus v=(x_1,\dotsc, x_n)\oplus(y_1,\dotsc, y_n)=(x_1+y_1,\dotsc,x_n+y_n).$

Las sumas que aparecen en cada entrada son sumas en $\mathbb R$, y dado que la suma en $\mathbb R$ es conmutativa se tiene que $x_i+y_i=y_i+x_i$ para todo $1\leq i\leq n$, de forma que:

$(x_1+y_1,\dotsc,x_n+y_n)=(y_1+x_1,\dotsc,y_n+x_n).$

De nuevo por la definición de suma en $\mathbb R^n$ tenemos que:

$(y_1+x_1,\dotsc,y_n+x_n)=(y_1,\dotsc, y_n)\oplus(x_1,\dotsc, x_n)=v\oplus u.$

Por lo tanto concluimos que:

$u\oplus v=v\oplus u$.

Demostración de 3

Por demostrar que $\exists \bar{0}\in \mathbb R^n$ tal que $u\oplus \bar{0}=\bar{0}\oplus u=u\,\,\,\forall u\in \mathbb R^n.$

Propongamos como $\bar{0}$ a la $n$-ada con sus $n$ entradas iguales al cero de los reales, es decir, consideremos $\bar{0}=(0,\dotsc,0)\in \mathbb R^n$.

Dado $u=(x_1,\dotsc, x_n)\in \mathbb R^n$ tenemos que:

$u\oplus\bar{0}=(x_1,\dotsc, x_n)\oplus(0,\dotsc, 0)$

y por la definición de suma en $\mathbb R^n$

$u\oplus\bar{0}=(x_1,\dotsc, x_n)\oplus(0,\dotsc, 0)=(x_1+0,\dotsc, x_n+0).$

Como $0$ es el neutro de $\mathbb R$ tenemos que $x_i+0=x_i$ para todo $1\leq i\leq n$, por lo tanto:

$u\oplus\bar{0}=(x_1,\dotsc, x_n)\oplus(0,\dotsc, 0)=(x_1+0,\dotsc, x_n+0)=(x_1,\dotsc, x_n)=u.$

Finalmente usando la conmutatividad que se probó en $2$ tenemos que $\bar{0}\oplus u=u\oplus \bar{0}=u$.

Demostración de 4

Sea $u=(x_1,\dotsc,x_n).$

Por demostrar que existe $\tilde{u}\in \mathbb R^n$, tal que $u\oplus \tilde{u}=\tilde{u}\oplus u=\bar{0}.$

Proponemos $\tilde{u}$ la $n$-ada formada por los inversos aditivos de las entradas de $u$, es decir, $\tilde{u}=(-x_1,\dotsc,-x_n).$ Tenemos que

$u\oplus \tilde{u}=(x_1,\dotsc,x_n)\oplus \left(-x_1,\dotsc,-x_n)=(x_1+(-x_1),\dotsc,x_n+(-x_n)\right).$

Como $-x_i$ es el inverso aditivo de $x_i$ en $\mathbb R$ para todo $1\leq i\leq n$, tenenemos que $x_i+(-x_i)=0$ para todo $1\leq i\leq n$. Concluimos que:

$u\oplus \tilde{u}=(x_1,\dotsc,x_n)\oplus \left(-x_1,\dotsc,-x_n)=(x_1+(-x_1),\dotsc,x_n+(-x_n)\right)=(0,\dotsc,0).$

Finalmente usando la conmutatividad que se probó en $2$ tenemos que $\tilde{u}\oplus u=u\oplus \tilde{u}=\bar{0}$.

Por lo tanto cada $u\in \mathbb R^n$ tiene un inverso aditivo.

Demostración de 6

Por demostrar que $\lambda\odot (\mu\odot v)=(\lambda\mu)\odot v \,\,\,\, \forall v\in \mathbb R^n\,\;\forall \lambda,\mu\in \mathbb R$.

Sean $ v=(y_1,\dotsc,y_n)\in \mathbb R^n$, $\lambda,\mu\in \mathbb R$. Como $\lambda\odot (\mu\odot v)=\lambda\odot (\mu\odot(y_1,\dotsc,y_n))$, por definición del producto en $\mathbb R^n$ tenemos que

$\lambda\odot (\mu\odot v)=\lambda\odot (\mu\odot(y_1,\dotsc,y_n))=\lambda\odot (\mu y_1,\dotsc,\mu y_n).$

Aplicando de nuevo la definición de producto en $\mathbb R^n$ tenemos que:

$\lambda\odot (\mu y_1,\dotsc,\mu y_n)=(\lambda(\mu y_1),\dotsc,\lambda(\mu y_1))$.

En virtud de la asociatividad del producto en $\mathbb R$ tenemos que $\lambda(\mu y_i)=(\lambda\mu) y_i$ para todo $1\leq i\leq n$, así:

$(\lambda(\mu y_1),\dotsc,\lambda(\mu y_1))=((\lambda\mu )y_1),\dotsc,(\lambda\mu) y_n),$

y por la definición del producto en $\mathbb R^n$ tenemos que:

$((\lambda\mu )y_1,\dotsc,(\lambda\mu) y_n)=(\lambda\mu)\odot(y_1,\dotsc,y_n)=(\lambda\mu)\odot v$.

Siguiendo la cadena de igualdades concluimos que:

$\lambda\odot (\mu\odot v)=(\lambda\mu)\odot v$.

Demostración de 7

Por demostrar que $(\lambda+\mu)\odot v=\lambda\odot v\oplus \mu\odot v\,\;\forall \lambda,\mu\in \mathbb R\,\;\forall v\in \mathbb R^n$.

Sean $ v=(y_1,\dotsc,y_n)\in \mathbb R^n$, $\lambda,\mu\in \mathbb R$. Por definición del producto por escalar en $\mathbb R^n$ tenemos que:

$(\lambda+\mu)\odot v=(\lambda+\mu)\odot (y_1,\dotsc,y_n)=((\lambda+\mu)y_1,\dotsc,(\lambda+\mu)y_n).$

Gracias a la distributividad en el campo $\mathbb R$ tenemos que $(\lambda+\mu)y_i=\lambda y_i+\mu y_i$ para todo $1\leq i\leq n$ y así:

$((\lambda+\mu)y_1,\dotsc,(\lambda+\mu)y_n)=(\lambda y_1+\mu y_1,\dotsc,\lambda y_n+\mu y_n).$

Por la definición de la suma en $\mathbb R^n$ tenemos que:

$(\lambda y_1+\mu y_1,\dotsc,\lambda y_n+\mu y_n)=(\lambda y_1,\dotsc,\lambda y_n)\oplus (\mu y_1,\dotsc,\mu y_n).$

Usando la definición del producto en $\mathbb R^n$:

$\begin{align*}(\lambda y_1+\mu y_1,\dotsc,\lambda y_n+\mu y_n)&=(\lambda y_1,\dotsc,\lambda y_n)\oplus (\mu y_1,\dotsc,\mu y_n)\\ &=\lambda\odot (y_1,\dotsc, y_n)\oplus\mu\odot (y_1,\dotsc, y_n)=\lambda\odot v\oplus \lambda\odot v .\end{align*}$

Podemos concluir entonces que:

$(\lambda+\mu)\odot v=\lambda\odot v\oplus \mu\odot v$

$\square$

Tarea Moral

1. Demostrar los incisos $1,5,8$ del teorema.

2. Consideremos$\mathbb R^2$, con la operación suma $\boxplus$ y producto por escalar $\boxdot$ definidos como sigue:

i) $(x,y)\boxplus (z,w)= (x+z,y+w)$ y $\lambda\boxdot (x,y)=(\lambda x,y)$, $\forall (x,y),(z,w)\in \mathbb R^2, \forall \lambda\in \mathbb R$.

ii) $(x,y)\boxplus (z,w)= (x-z,y-w)$ y $\lambda\boxdot (x,y)=(-\lambda x,\lambda y)$, $\forall (x,y),(z,w)\in \mathbb R^2, \forall \lambda\in \mathbb R$.

iii) $(x,y)\boxplus (z,w)= (x+z,0)$ y $\lambda\boxdot (x,y)=(\lambda x,0)$, $\forall (x,y),(z,w)\in \mathbb R^2, \forall \lambda\in \mathbb R$.

En cada caso analiza cuáles de las ocho propiedades mencionadas en el teorema, se cumplen para $\mathbb R^2$ con estas nuevas operaciones.

3. Ve el siguiente vídeo para ampliar tu idea de lo que es un vector.

Más adelante

En la siguiente nota veremos algunas propiedades de estos $\mathbb R$-espacios vectoriales $\mathbb R^n$.

Enlaces relacionados.

Página principal del curso.

Nota anterior. Nota 24. El triángulo de Pascal y el binomio de Newton.

Nota siguiente. Nota 26. Propiedades de $\mathbb R^n$.

Notas del curso de Álgebra Superior 1

Por Julio César Soria Ramírez

Introducción

Las siguientes notas de la Dr. Diana Avella Alaminos son las correspondientes al curso de Álgebra Superior 1, que se imparte en el primer semestre de la carrera de matemáticas de la Facultad de Ciencias de la UNAM.

Están divididas en 4 unidades, la primera correspondiente a conjuntos y funciones, la segunda está dedicada a la construcción y propiedades de los números naturales, la tercera es una introducción al estudio del espacio vectorial $\mathbb R^n$ , la cuarta y última unidad al estudio de matrices y determinantes.

A continuación se deja el el enlace a cada una de las notas según el orden y la unidad.

Unidad 1. Conjuntos y funciones.

Nota 1. Noción de Conjunto.

Nota 2. Subconjuntos.

Nota 3. El complemento de un conjunto.

Nota 4. Unión e intersección de Conjuntos.

Nota 5. Leyes de De Morgan y la diferencia simétrica.

Nota 6. Conjunto potencia y el producto cartesiano.

Nota 7. Relaciones y funciones.

Nota 8. Imagen directa e inversa de una función.

Nota 9. Composición de funciones.

Nota 10. Función inversa.

Nota 11. Funciones inyectivas, suprayectivas y biyectivas.

Nota 12. Teoremas de la composición de funciones inyectivas, suprayectivas y biyectivas.

Nota 13. Relación de equivalencia.

Nota 14. Familia de Conjuntos y particiones.

Nota 15. Relaciones de equivalencia y particiones.

Unidad 2. Los números naturales.

Nota 16. Los números naturales.

Nota 17. El orden en los números naturales.

Nota 18. El principio de inducción matemática.

Nota 19. Conjuntos equipotentes y cardinalidad.

Nota 20. Principio del producto, funciones entre conjuntos finitos.

Nota 21. Conteo, ordenaciones con repetición.

Nota 22. Conteo. Ordenaciones.

Nota 23. Combinaciones.

Nota 24. El triángulo de Pascal y el binomio de Newton.

Unidad 3. Espacios vectoriales.

Nota 25. Espacios vectoriales.

Nota 26. Propiedades de $\mathbb R^n$.

Nota 27. Subespacios vectoriales.

Nota 28. Combinaciones lineales.

Nota 29. Subespacio generado.

Nota 30. Dependencia e independencia lineal.

Nota 31. Bases de $\mathbb R^n$

Nota 32. Dimensión de un $\mathbb R-$ espacio vectorial

Unidad 4. Matrices y determinantes.

Nota 33. Matrices.

Nota 34. Multiplicación de matrices, identidad, inversas y transpuesta.

Nota 35. Operaciones elementales, matrices equivalentes y matrices elementales.

Nota 36. Matriz escalonada reducida por renglones.

Nota 37. El rango de una matriz.

Nota 38. Sistemas de ecuaciones.

Nota 39. Ejemplos de sistemas de ecuaciones

Nota 40. Determinantes.

Nota 41. Propiedades de los determinantes.

Nota 42. Formula para obtener el determinante.

Nota 43. Propiedad multiplicativa del determinante y teorema de invertibilidad de matrices.

Geometría Moderna II: Ejercicios unidad 1

Por Armando Arzola Pérez

Introducción

Una vez estudiado los temas de esta primera unidad, se dejarán a continuación Ejercicios para reforzar, investigar y pensar distintos problemas relacionados con lo ya visto en esta unidad.

Potencia de un Punto Ejercicios

1.- Dados dos círculos A y A’. Encontrar el lugar de los puntos cuya suma de Potencias respecto a A y A’ es constante.

2.- El lugar geométrico de un punto, cuya diferencia de potencias con respecto a dos circunferencias no concéntricas es constante, es una línea recta paralela a su eje radical.

Eje radical de dos circunferencias Ejercicios

3.- Construir el eje radical de dos circunferencias sin hacer uso de los centros o la línea de los centros de las circunferencias.

4.- Encontrar el eje radical del circuncirculo y el círculo de los nueve puntos de un triángulo dado.

Circunferencias Ortogonales Ejercicios

5.- Determinar cuando es posible para el centro de una de dos circunferencias ortogonales estar en la otra circunferencia.

6.- Dadas dos circunferencias y un punto, trace una circunferencia que sea ortogonal a las dos y que contenga al punto.

Familias Coaxiales Ejercicios

7.- Dos circunferencias distintas dadas, son miembro de uno y solo un conjunto de circunferencias coaxiales.

8.- Demuestra que si cada uno de dos puntos fijos tiene potencias iguales con respecto a tres o más circunferencias, estas son coaxiales.

9.- Demuestra que los ejes radicales de un círculo y cada una de las circunferencias de un conjunto coaxial son concurrentes.

10.- Demuestra que todas las circunferencias cuyos centros son colineales y tales que son ortogonales a una circunferencia dada, son coaxiales.

Circunferencia de Similitud Ejercicios

11.- Demuestra que dos circunferencias y su circunferencia de similitud son coaxiales.

Aplicaciones al Cuadrilátero Completo Ejercicios

12.- Demuestra que las circunferencias cuyos diámetros son las diagonales de un cuadrilátero completo son coaxiales.

Más Adelante…

Se abordará el tema de Inversión respecto a su teoría con distintos temas relacionados.

Entradas relacionadas

Geometría Moderna II: Aplicación al cuadrilátero completo

Por Armando Arzola Pérez

Introducción

Una vez analizado las circunferencias coaxiales es necesario ver la Aplicación al Cuadrilátero Completo.

Cuadriláteros completos

Recordemos que un cuadrilátero completo se define:

Definición. Un cuadrilátero completo es una figura que consiste de 4 líneas, tres de las cuales no pasan por el mismo punto y los seis puntos determinados por la intersección de estas líneas.

Cuadrilátero Completo Definición

Observaciones.

  • Las cuatro líneas son sus lados y los seis puntos son sus vértices. En este caso a, b, c y d son los lados y los puntos $a \cap c, b \cap c, c \cap d, d \cap b, a \cap d$ y $a \cap b$ son los vértices.
  • Se dice que dos vertices son vertices opuestos si ellos no estan en el mismo lado. En un cuadrilatero completo hay 3 pares de vertices opuestos. Son [$c \cap d $y$ a \cap b$], [$b \cap c$ y $a \cap d$] y [$a \cap c$ y $d \cap b$].
  • Las 3 líneas determinadas por los pares de vértices opuestos de un cuadrilátero completo, son sus diagonales, y el triángulo determinado por estas 3 líneas, es un triángulo diagonal. Las rectas son p, q y r son las rectas diagonales y pqr es el triángulo diagonal.

Una aplicación de la teoría de circunferencias coaxiales, es el siguiente teorema:

Teorema. Las circunferencias, cuyos diámetros son las diagonales de un cuadrilátero completo, son coaxiales.

Cuadrilátero Completo Aplicación Teorema 1

Demostración. Se tiene el cuadrilátero completo con lados p, q, r y s, donde se puede sacar el ortocentro $H_1$ del $\triangle ABC$ y $A’, B’ $y$ C’$ los pies de las alturas $A, B $y$ C$.

Puesto que $A, C, C’, A’$ y $ B, C, C’, B’$ son conjuntos de puntos conciclicos. Entonces $H_1A \cdot H_1A’=H_1B \cdot H_1B’=H_1C \cdot H_1C’$.

Ahora $AA’, BB’, CC’$ cuerdas de las circunferencias que tiene como diámetros a $AF, BE$ y $CD$ respectivamente. Y por las ecuaciones anteriores $H_1$ tiene la misma potencia respecto a cada una de estas circunferencias.

Y al saber que $H_1$ tiene las mismas potencias, entonces se concluye que las circunferencias son coaxiales. $\square$

Corolario. Los ortocentros de los cuatro triángulos determinados por los cuatro lados del cuadrilátero tomados tres a un tiempo son colineales.

Demostración. Por la demostración anterior, se puede demostrar que los ortocentros de los triángulos $ADE, BDF, CEF$ tiene cada uno iguales potencias con respecto a estas tres circunferencias. Por lo cual las tres circunferencias son coaxiales, los cuatro ortocentros están en el eje radical y los centros o puntos medios de las diagonales, están en una línea recta.

Además, la línea en la que están los cuatro ortocentros, es perpendicular a la línea que pasa por los puntos medios de las diagonales. $\square$

Más adelante…

Una vez visto y estudiado esta primera unidad se pondrán ejercicios para practicar en la siguiente entrada.

Entradas relacionadas