Criterio de Cauchy, Conjuntos Compactos y compacidad por sucesiones

Por Angélica Amellali Mercado Aguilar

Introducción

El criterio de Cauchy es una herramienta bastante útil para demostrar convergencia en conjuntos compactos porque en estos conjuntos toda sucesión de Cauchy converge necesariamente.

Definición. Sea ${\overline{x_{k}}}$ una sucesión de puntos de $\mathbb{R}^{n}$. Se dice que ${\overline{x_{k}}}$ es una sucesión de Cauchy si dado $\epsilon>0$ $\exists N_{0}\in \mathbb{N}$ tal que $|\overline{x_{k}}-\overline{x_{l}}|<\epsilon$ $\forall k,l\geq N_{0}$

Teorema 1. Una sucesión $\overline{x_{k}}\in \mathbb{R}^{n}$ es convergente si y solo si cumple el criterio de Cauchy

Demostración. $\Rightarrow$ Suponemos que ${\overline{x_{k}}}\rightarrow \overline{x}$ $\therefore$ $|\overline{x_{k}}-\overline{x}|<\epsilon$ $\forall k>N_{0}$. Se tiene entonces que $$|\overline{x_{k}}-\overline{x_{l}}|=|\overline{x_{k}}-\overline{x}+\overline{x}-\overline{x_{l}}|\leq |\overline{x_{k}}-\overline{x}|+|\overline{x}-\overline{x_{l}}|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$ $\forall k,l>N_{0}$ $\therefore$ ${\overline{x_{k}}}$

$\Leftarrow$ Supongamos que ${\overline{x_{k}}}$ cumple la condición de Cauchy por tanto se tiene que: $$|\overline{x_{k}}-\overline{x_{l}}|<\epsilon\Rightarrow |x_{i,k}-x_{i,l}|<\epsilon\quad \forall i\Rightarrow {x_{i,k}}\quad cumple\quad Cauchy$$ $\therefore$ $x_{i,k}$ es convergente $\forall i$ $\therefore$ ${\overline{x_{k}}}$ es convergente. $\square$

Teorema 2. (Bolzano-Wierstrass) Toda sucesión $\overline{x_{k}}$ en $\mathbb{R}^{n}$ acotada tiene un punto limite. Dicho de otro modo, toda sucesión en $\mathbb{R}^{n}$ tiene una subsucesión convergente

Demostración. Sea $\overline{x_{k}}$ en $\mathbb{R}^{n}$ suponiendo $\overline{x_{k}}$ es acotada, entonces cada $x_{i,k}$ es acotada $\therefore$ según el teorema de Bolzano-Wierstrass para sucesiones en $\mathbb{R}$, ${x_{i,k}}$ tiene una subsucesión convergente $\alpha_{i,k}$ la cual es una sucesión convergente, $\therefore$ podemos formar la sucesiòn $\overline{x_{\alpha,k}}={x_{\alpha,1,k},x_{\alpha,2,k},…,x_{\alpha,n,k}}$ la cual es una sucesión convergente, pero $\overline{x_{\alpha,k}}$ es subsucesión de $\overline{x_{k}}$ $\therefore$ $\overline{x_{k}}$ tiene una subsucesión convergente. $\square$

Criterio de Convergencia de Cauchy

Una colección $g$ de conjuntos abiertos cuya unión contiene a $K$ con frecuencia se llama cubierta de $K$. De modo que el requisito para que $K$ sea compacto es que toda cubierta $g$ de $K$ se pueda sustituir por una cubierta finita $g$ de $K$.

Ejemplo. Sea $k={x_{1},x_{2},…,x_{m}}$ un subconjunto finito de $\mathbb{R}^{n}$ si $G={G_{\alpha}}$ es una colección de abiertos tal que $k\subset{G_{\alpha}}$ y si todo punto de k pertenece a algún subconjunto de ${G_{\alpha}}$ entonces cuando más m subconjuntos de ${G_{\alpha}}\supset k$ $\therefore$ k es un subconjunto compacto de $\mathbb{R}^{n}$.

Ejemplo. Considere al subconjunto $H=\left\{x\in \mathbb{R}| x\geq0\right\}$. Sea $G_{n}=(-1,n)$ $n\in \mathbb{N}$ de tal manera que ${G_{n}| n\in \mathbb{N}}$ sea una colección de subconjuntos abiertos de $\mathbb{R}$ cuya union contenga a $H$. Si ${G_{n_{1}}, G_{n_{2}},…,G_{n_{k}}}$ es una subcolección finita de ${G_{n}|n\in\mathbb{N}}$. Sea $M=sup\left\{n_{1},n_{2},…,n_{k}\right\}$ de tal manera que $G_{n_{j}} \subset G_{n_{k}}$ de aquí deducimos que $G_{M}$ es la unión de
${G_{n_{1}}, G_{n_{2}},…,G_{n_{k}}}$. Sin embargo el número real $M$ no pertenece a $G_{M}$ y por lo tanto no pertenece a $\bigcup_{j=1}^{k}G_{n_{j}}$. En consecuencia, ninguna unión finita de ${G_{n}|n\in\mathbb{N}}$ puede contener a $H$.$\therefore$ $H$ no es compacto.

Ejemplo. Demuestrese que todo intervalo cerrado $[a, b]$ de $\mathbb{R}$ es compacto.
Demostración. Supongamos un recubrimiento abierto $[a, b]$ tal que no admite subrecubrimiento finito. Entonces tampoco existe un subrecubrimiento finito para

$[a, c]$ $[c; b]$ con $c$ punto medio. Sea $[a_1, b_1] = [a, c]$ el intervalo para el cual no existe el subrecubrimiento finito.

Sea $[a_1, b_1] = [a, c]$ el intervalo para el cual no existe el subrecubrimiento finito.

Sea $p$ el punto de intersección y sea $U$ el recubrimiento que contiene a $p$ y sea $[p-\varepsilon,p+\varepsilon]\subset U$. Entonces existe $r \in \mathbb{N}$ tal que $\forall n > r$,$\frac{b-a}{2^n} < \varepsilon$ y $\forall \, n\geq r$ $[a_n,b_n]\subset U \underset{\circ}{\bigtriangledown}$ ya que ningun $[a_k, b_k]$ admitía un subrecubrimiento finito.

Ejemplo. Sea $H=(0,1)$ en $\mathbb{R}$. Si $G_{n}={\frac{1}{n},1-\frac{1}{n}}$ para $n>0$ entonces la colección${G_{n_{1}},G_{n_{2}},…,G_{n_{k}}}$ es una subcolección finita de ${G_{n}| n>2}$. Sea $M=sup{n_{1},…,n_{k}}$ de tal manera que $G_{n_{j}} \subset G_{M}$ se ifiere que $G_{M}$ es la unión de ${G_{n_{1}},G_{n_{2}},…,G_{n_{k}}}$ sin embargo el número real $\frac{1}{m}$ pertenece a $H$ pero no pertenece a $G_{M}$ $\therefore$ ninguna subcolecciónfinita de $\left\{G_{n}~|~ n>2\right\}$ puede formar una subcolección finita para $H$ $\therefore$ $H$ no es compacto.

Compactos por Sucesiones

Teorema 3. Sea $A\subset \mathbb{R}^{n}$ tal que para todo recubrimiento abierto $\left\{A_{i}\right\}_{i\in I}$ admite un subrecubrimiento finito es decir $\displaystyle{A\subset \bigcup_{i}^{n}A_{i}}$ entonces toda sucesión de puntos de $A$ tiene una subsucesión convergente hacia un punto que pertenece a $A$

Demostración. Supongamos que exite una sucesión $\overline{x}{n}\in A$ que no tuviera una subsucesión convergente (en este caso $\overline{x}_{n}$ tiene infinitos elementos). Sea $\overline{x}\in A$ como $\lim_{n\rightarrow\infty}\overline{x}{n}\neq \overline{x}$, existe $\delta{x}>0$ tal que en la bola abierta $B(\overline{x},\delta_{x})$ solo hay a lo más un número finito de elementos de $\overline{x}_{n}$. Entonces la familia de abiertos ${B(\overline{x},\delta{x})}$ es un recubrimiento abierto de A; por hipótesis este recubrimiento admite un subrecubrimiento finito $A_{x_{1}},A_{x_{2}},…,A_{x_{n}}$ de estos abiertos. Por lo tanto los infinitos elementos de $\overline{x}_{n}$ que estan en $A$ pueden ser cubiertos por un número finito de conjuntos abiertos $\underset{\circ}{\bigtriangledown}$ pues cada $A{x_{i}}$ cubre a lo mas un número finito de elementos de $A$.

Teorema 4. Si toda sucesión de puntos de $A$ tiene una subsucesión convergente hacia un punto que pertenece a $A$ entonces $A$ es cerrado y acotado.

Demostración. A es cerrado. Sea $\overline{a}\in\mathbb{R}^{n}$ tal que $\overline{a}\in \partial A$ vamos a ver que $\overline{a}\in A$. Como $\overline{a}\in \partial A$ entonces $\forall~r>0$ $B(\overline{a},r)\bigcap A\neq \emptyset$ consideremos ahora $r=\frac{1}{n}$ y en cada bola abierta $\displaystyle{(\overline{a},\frac{1}{n}}$ hay algún punto de $A$ al que podemos llamar $\overline{x}{n}$ de esta manera construimos una sucesión de puntos de $A$ que convergen a $\overline{a}$ por lo tanto por hipótesis $\overline{a}\in A$ por tanto $A$ es cerrado.

A es acotado. Si $A$ no fuera acotado, existiria una sucesión $\overline{x}_{n}$ de puntos de $A$ tal que $\lim_{n\rightarrow\infty}\overline{x}_{n}=\infty$ y este límite no estaría en $A$ $\underset{\circ}{\bigtriangledown}$ por tanto $A$ es acotado.

Teorema. Heine-Borel. Todo subconjunto cerrado y acotado es compacto.

$1.-$ $K$ compacto implica que $K$ es cerrado.

Demostración. Sea $\bar{x} \in K^c$ y sea $G_m =\left\{y \in \mathbb{R}^n | |y-x | > \frac{1}{m}, m \in \mathbb{N}\right\}$ entonces $y \in Ext B(\bar{x}, \frac{1}{m})$ cada $G_m$ es abierta, la unión de todas las $G_m$ consta de todos los puntos de $\mathbb{R}^n$ excepto $x$. Dado que $x \in K$ cada punto de $K$ pertenece a algún $G_m$. Debido a la compacidad de $K$, se infiere que existe $M \in \mathbb{N}$ tal que $K \subset \bigcup_1^m G_i$. Dado que los conjuntos $G_m$ incrementan con $m$, $K \subset G_m$ de donde la vecindad ${z \in \mathbb{R}^n | |z-x| < \frac{1}{m}}$ no intercepta a $K$ demostrando que $K^c$ es abierto $\therefore$ $K$ es cerrado.

$2.-$ $K$ compacto implica que $K$ es acotado.

Demostración. Sea $H_m = \left\{ x \in \mathbb{R}^n | \left\| x\right\| < m\right\}$ todo el espacio $\mathbb{R}^n$ y por tanto $K$ está contenido en la unión de los conjuntos crecientes, $H_m$ $m\in \mathbb{N}$. Dado que $K$ es compacto existe $M \in \mathbb{N}$ tal que $K \subset H_m$ por lo que $K$ esta acotado.

Para completar la demostración de este teorema se necesita probar que si $K$ es un subconjunto cerrado y acotado contenido en la unión de una colección $g {G_{\alpha}}$
de conjuntos abiertos en $\mathbb{R}^n$, entonces está contenido en la unión de
algún número finito de conjuntos de $g$.

Dado que $K$ esta acotado, encontramos un punto de acumulación de $K$, como $K$ es cerrado $y \in K$ y esta en alguna celda abierta, por lo tanto existe $\varepsilon > 0$ tal que para cada $w$ con $|y -w| < \varepsilon $ en la celda abierta y si suponemos que $g ={G_{\alpha}}$ no admite un subrecubrimiento finito llegamos a una contradicción.

Teorema 6. Si $S$ es un conjunto cerrado y acotado en $\mathbb{R}^{n}$ entonces $S$ es compacto por sucesiones

Demostración. Suponga que $S$ es cerrado y acotado, sea ${x_{k}}$ una sucesión de puntos de $S$, se tiene entonces que $S$ es acotada y por el teorema de Bolzano- Weierstrass ${x_{k}}$ tiene una subsucesión convergente ${x_{k_{\alpha}}}$ tal que $x_{k_{\alpha}}\rightarrow x$ y como $S$ es cerrado $x\in S$. $\square$

Más adelante

Tarea Moral

1.-Sea $\left\{ \widehat{x}_{k} =( x^{(1)}_k, …, x{^(n)}_k) \right\}$ una sucesión en $\mathbb{R}^n$. Pruebe que $\left\{\widehat{x}_{k}\right\}$ está acotada si y sólo si $\left\{x^{(i)}_k\right\}$ está acotada para cada $i \in {1,…,n}$.

2.- Pruebe que si $\left\{ \widehat{x}_{k} \right\}$ es una sucesión de Cauchy en $\mathbb{R}^n$, entonces cualquier subsucesión también lo es.

3.- Sea $\left\{ \widehat{x}_{k} \right\}$ una sucesión de Cauchy en $\mathbb{R}^n$, prueba directamente de la definición la sucesión $\left\{ \widehat{x}_{k} \right\}$ está acotada.

4.- Sea $k \subset \mathbb{R}^n$. Prueba que el conjunto $K$ es compacto si y sólo si toda sucesión $\left\{ \widehat{x}_{k} \right\} \subset K$ tiene una subsucesión que converge a un punto $\widehat{x}_{0} \in K$ .

5.- Prueba que $\mathbb{R}^n$ no es compacto.

Enlaces

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.