Cálculo Diferencial e Integral II: Criterio de la razón y el criterio de la raíz

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos dos criterios de convergencia: el criterio de comparación y el criterio de comparación del límite, en esta sección veremos el criterio de la prueba del cociente o de la razón, y el criterio de la raíz, comencemos enunciando el teorema del criterio de la razón.

Criterio de la razón

Teorema. (Prueba de la razón o del cociente)

Sea {an} una sucesión positiva y supón que:

limnan+1an=r

Entonces n=1an converge si r<1, diverge si r>1 y si r=1 no es concluyente.

Demostración:

Observemos que:

an>0   n ϵ Nan+1an>0  n ϵ Nlimnan+1an=r0

Para demostrar este teorema, dividamos por los casos siguientes:

  • Caso 1): Si 0r<1, entonces:

limnan+1an=r

Podemos escoger un número S tal que r<S<1  k ϵ N

Tal que:

 n k |an+1an|<S an+1<San

En particular:

ak+1<Sak  y  ak+2<Sak+1<S(Sak)=S2ak

Por tanto:

ak+2<S2akak+3<Sak+2<S3ak

Continuando de esta manera hasta n, se tiene que:

an=ak+m<Smak

Por otro lado, como S<1, entonces la siguiente serie:

m=1Sm  con m1

Es una serie geométrica, por tanto:

m=1Sm converge m=1Smak converge

m=1ak+m converge.

Por el criterio de comparación, así n=k+1an converge,

nan converge

  • Caso 2): Si r>1

Vemos que:

limnan+1an=r

Podemos escoger un número S tal que r>S>1  k ϵ N

Tal que:

nk  |an+1an|>S nk an+1>San

Se tiene que para:

ak+1>Sak

ak+2>Sak+1>S(Sak)=S2ak

ak+3>Sak+2>S(S2ak)=S3ak

Continuando de esta manera,  nk, entonces:

ak+n>Snak

n=1Sn es una serie geométrica con |S|>1

n=1Sn diverge n=1Snak diverge n=1ak+n diverge

n=k+1an diverge

n=1an diverge

◻

  • Caso 3): Para este caso solo hay que dar un ejemplo, veamos:

Tomemos siguientes las series:

i=11n2  y  i=11

Es fácil ver que la segunda serie diverge cuando n, para la primera serie, tenemos que:

limnan+1an=limn1(n+1)21n2=limnn2(n+1)2=limx1(1+1n2)2=1

Lo cual sabemos que esta serie converge.

Por lo que para r=1 no hay conclusión de la convergencia de la serie.

◻

Veamos un ejemplo.

Ejemplo

Diga si la siguiente serie converge o diverge.

n=11n!

Usamos el criterio de la razón, tomamos el límite de la sucesión como:

limnan+1an=limn1(n+1)!1n!=limnn!(n+1)!=limnn!(n+1)n!=limn1n+1=0<1

Por tanto, por el criterio de la razón:

n=11n! converge

Ahora veamos el criterio de la raíz.

Criterio de la raíz

Teorema. (Criterio de la raíz)

Sea {an} una sucesión con an0   n ϵ N tal que:

limnann=L

Entonces n=1an converge si L<1 y diverge si L>1.

Demostración:

Divimos esta demostración por casos:

  • 1):L<1

Supongamos que L<1, observamos que L0, tomamos r tal que L<r<1, por definición del limite:

 k ϵ N

Tal que:

 nk ann<r

an<rn

Pero:

n=krn converge ya que r<1 y es una serie geométrica, por el criterio de comparación.

n=kan converge

n=1an converge

  • 2):L>1

Ahora, supongamos que L>1, toma r tal que 1<r<L, por definición del límite:

 k ϵ N

Tal que:

 nk ann>r

an>rn

Pero 1<r, por consiguiente por el criterio de las series geométricas:

n=krn diverge n=ran diverge

Por el criterio de comparación:

n=1an diverge

◻

Veamos un ejemplo.

Ejemplo

Diga si la siguiente serie converge o diverge.

  • n=1(1+1n)2nen

Apliquemos el criterio de la raíz, tomamos el límite de la sucesión como:

limnann=limn(1+1n)2nenn=limn(1+1n)2ne=1e<1

Por tanto, por el criterio de la raíz:

n=1(1+1n)2nen converge

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Diga si la siguientes series convergen o divergen.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. n=19n2n+1n
  2. n=1(1n21n10)n
  3. n=1(2n)!n!n!
  4. n=1(11+n)n
  5. n=1(2n+33n+2)n

Más adelante…

En esta sección vimos otros dos criterios más de convergencia que son el criterio de la razón en el cual el valor del límite de la división entre la sucesión an+1 y an nos dice si la serie es convergente o divergente, y el criterio de la raíz que dependiente del valor se toma del límite de la raíz n-esima de la sucesión nos dice si la sucesión es convergente o divergente. En la siguiente sección veremos otro criterio de convergencia, que es el criterio de la integral.

Entradas relacionadas

4 comentarios en “Cálculo Diferencial e Integral II: Criterio de la razón y el criterio de la raíz

  1. Miguel

    Hola profesor, buen día.

    Sólo quería aclarar una duda, en el caso 1 de la demostración del Teorema Prueba de la razón o del cociente dice a_(k+m) < (S^(m+1)) * a_k, pero ¿No debía ser a_(k+m) < (S^m) * a_k?

    Responder
    1. Miguel Ángel Rodríguez García Autor

      Hola.
      Sí, estás en lo correcto, hay un error de dedo con ese +1, lo corrijo enseguida.
      Muchas gracias 😀

      Responder
      1. Adner Decena martinez

        hola gracias por la explicacion me sirvio pero note un errorcito luego de realizar las operaciones el exponente de ((1 + 1\n) ^2n )\ e^n no son esos sino ((1 + 1\n) ^2 )\ e para que lo corrijas le pueda servir a otro.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.