Introducción
Previamente se revisó el concepto de límite de una función, así como el de límites laterales. En la revisión de estos temas nos habíamos enfocado en revisar el límite de una función $f$ en un punto $x_0$. Ahora ampliaremos el concepto estudiando $f$ para el caso cuando $x$ tiende a infinito.
Límite en el infinito
La intuición detrás de la definición de límite en el infinito es que $f$ tiene límite $L$ cuando $x$ tiende a infinito si para valores lo suficientemente grandes de $x$ nos acercamos arbitrariamente a $L.$
Definición. Sea $f: A \rightarrow \mathbb{R}$. Decimos que $f$ tiende al límite $L \in \mathbb{R}$ cuando $x$ tiende a infinito si para cualquier $\varepsilon > 0$ existe $M \in \mathbb{R}$, tal que para cualquier $x>M$, se tiene que $|f(x)-L|<\varepsilon$ y lo denotamos $$\lim_{x \to \infty} f(x) = L.$$
Ejemplo 1. Prueba que $$\lim_{x \to \infty} \frac{1}{x} = 0.$$
Demostración.
Sea $\varepsilon > 0$ y tomemos $M = \frac{1}{\varepsilon}$. De esta forma, para todo $x > M$ se tiene que $x > \frac{1}{\varepsilon}$, y por lo tanto $-\varepsilon < 0 <\frac{1}{x} < \varepsilon$, es decir, $|\frac{1}{x}-0|< \varepsilon.$
$$\therefore \lim_{x \to \infty} \frac{1}{x} = 0.$$
$\square$
Podemos observar que la definición es bastante natural una vez hemos entendido el concepto de límite, por lo cual procederemos directamente a revisar algunas de sus propiedades.
Propiedades de los límites en el infinito
Al igual que la definición revisada para el límite de una función en un punto, el límite de una función cuando $x$ tiende a infinito también es único.
Proposición. El límite de una función cuando $x$ tiende a infinito es único, es decir, si $f$ tiende a $L$ cuando $x \rightarrow \infty$ y $f$ tiende a $L’$ cuando $x \rightarrow \infty$, entonces $L = L’.$
La demostración es muy similar a la realizada en la entrada de definición formal del límite, por lo cual se omitirá, pero de ser necesario puedes realizarla para repasar los conceptos.
Análogamente a las entradas anteriores, tenemos una relación entre el límite al infinito de una función y el límite de una sucesión.
Teorema. Sea $f: A \rightarrow \mathbb{R}$. Los siguientes enunciados son equivalentes.
- $$\lim_{x \to \infty} f(x) = L.$$
- Para cualquier sucesión $\{a_n\}$ en $A$ que diverge a infinito se tiene que la sucesión $\{f(a_n)\}$ converge a $L.$
Notemos que para que el límite en el infinito tenga sentido, se debe cumplir que $(a, \infty) \subset A$ para algún $a \in \mathbb{R}.$
Demostración.
$1) \Rightarrow 2)]$ Sea $\varepsilon >0$. Supongamos que $$\lim_{x \to \infty} f(x) = L.$$
Y sea $\{ a_n \}$ en $A$ que diverge a infinito.
Por hipótesis $f$ tiende a $L$ cuando $x$ tiende a infinito, entonces existe $M \in \mathbb{R}$ tal que si $x > M$ se tiene que $|f(x)-L| < \varepsilon.$
Además, como $\{a_n\}$ diverge a infinito, entonces para $M$ existe $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$ se tiene que $a_n > M.$ Por lo tanto, $|f(a_n)-L| < \varepsilon.$
$$\therefore \lim_{n \to \infty} f(a_n) = L.$$
$1) \Leftarrow 2)]$ Realizaremos esta demostración por contrapositiva, es decir, probaremos que si $$\lim\limits_{x \to \infty} f(x) \neq L,$$
entonces existe $\{a_n\}$ en $A$ tal que $$\lim\limits_{n \to \infty} a_n = \infty \qquad \text{ y } \qquad \lim\limits_{n \to \infty} f(a_n) \neq L.$$
Supongamos que $\lim\limits_{x \to \infty} f(x) \neq L$. Entonces existe $\varepsilon > 0$ tal que para todo $M_n > a$ existe $x’_n > M_n$ tal que $|f(x’_n) -L| \geq \varepsilon.$
De esta forma, es posible generar la sucesión $\{ x’_n \}$ en $A.$ Primero veremos que esta sucesión diverge a infinito.
Sea $\alpha \in \mathbb{R}$. Entonces existe $M_{n_0} \in \mathbb{R}$ tal que $M_{n_0} > \alpha$. Además, $x’_{n_0} > M_{n_0} > \alpha$, y por lo tanto para todo $n \geq n_0$ se sigue que $x’_n > M_n \geq M_{n_0} > \alpha$. Es decir, $x’_n > \alpha$ para todo $n \geq n_0$.
$$\therefore \lim_{n \to \infty} x’_n = \infty.$$
Además, se tiene que $|f(x’_n)-L| \geq \varepsilon$ para todo $n \in \mathbb{N}$.
Consideremos $\{a_n\} = \{x’_n\}$, entonces
$$\lim\limits_{n \to \infty} a_n = \infty \qquad \text{ y } \qquad \lim\limits_{n \to \infty} f(a_n) \neq L.$$
Por lo tanto, concluimos que $2) \Rightarrow 1)$
$\square$
Después de este teorema, nuevamente logramos obtener las mismas propiedades que conocemos del límite de una sucesión.
Proposición. Sean $f: A \rightarrow \mathbb{R}$, $g: A \rightarrow \mathbb{R}$ con $A \subset \mathbb{R}$ tal que $(a, \infty) \subset A$ para algún $a \in \mathbb{R}$. Si además
$$\lim_{x \to \infty} f(x) = L \quad \text{ y } \quad \lim_{x \to \infty} g(x) = T$$
entonces
- $$\lim_{x \to \infty} c \cdot f(x) = cL.$$
- $$\lim_{x \to \infty} (f+g)(x) = L+T.$$
- $$\lim_{x \to \infty} (f-g)(x) = L-T.$$
- $$\lim_{x \to \infty} (f \cdot g)(x) = LT.$$
- Si $T \neq 0$ y $g(x) \neq 0$ para $x > a$, entonces $$\lim_{x \to \infty} \frac{f}{g}(x) = \frac{L}{T}.$$
Ahora veremos una proposición que nos será útil para el cálculo de límites.
Proposición. Para todo $k \in \mathbb{N}$ se tiene que $$\lim_{x \to \infty} \frac{1}{x^k} = 0.$$
Demostración.
Procederemos a realizar esta demostración mediante inducción.
Caso base: $k = 1$.
En el ejemplo anterior se probó mediante la definición que $$\lim_{x \to \infty} \frac{1}{x^1} = \lim_{x \to \infty} \frac{1}{x} = 0.$$
Hipótesis de inducción: $$\lim_{x \to \infty} \frac{1}{x^k} = 0.$$
Ahora veamos que también se cumple para $k+1$.
\begin{align*}
\lim_{x \to \infty} \frac{1}{x^{k+1}} = & \lim_{x \to \infty} \frac{1}{x^k} \cdot \frac{1}{x^1} \\ \\
= & \lim_{x \to \infty} \frac{1}{x^k} \lim_{x \to \infty} \frac{1}{x^1} \\ \\
= & 0 \cdot 0 = 0.
\end{align*}
\begin{gather*}
\therefore \lim_{x \to \infty} \frac{1}{x^{k+1}} = 0. \\ \\
\therefore \lim_{x \to \infty} \frac{1}{x^k} = 0 \text{, } \forall k \in \mathbb{N}.
\end{gather*}
$\square$
Revisaremos un par de ejemplos donde aplicaremos las propiedades enunciadas.
Ejemplo 2. Determina $$\lim_{x \to \infty} \frac{8x+5}{x^3+10}.$$
Notemos que
\begin{align*}
\lim_{x \to \infty} \frac{8x+5}{x^3+10} = & \lim_{x \to \infty} \frac{8x+5}{x^3+10} \cdot \frac{\frac{1}{x^3}}{\frac{1}{x^3}} \\ \\
= & \lim_{x \to \infty} \frac{\frac{8x}{x^3} + \frac{5}{x^3}}{\frac{x^3}{x^3}+\frac{10}{x^3}} \\ \\
= & \lim_{x \to \infty} \frac{\frac{8}{x^2} + \frac{5}{x^3}}{1+\frac{10}{x^3}} \\ \\
= & \frac{\lim\limits_{x \to \infty} \frac{8}{x^2} + \frac{5}{x^3}}{\lim\limits_{x \to \infty} 1+\frac{10}{x^3}} \\ \\
= & \frac{0 + 0}{1+0} \\ \\
= & \frac{0}{1} \\ \\
= & 0.
\end{align*}
$$\therefore \lim_{x \to \infty} \frac{8x+5}{x^3+10} = 0.$$
Ejemplo 3. Calcula el siguiente límite $$\lim_{x \to \infty} \frac{1}{\sqrt{x^2-2x}-x}.$$
Como consideraremos que $x \rightarrow \infty$, podemos suponer, particularmente, que $x>0$, entonces
\begin{align*}
\frac{1}{\sqrt{x^2-2x}-x} = & \frac{1}{\sqrt{x^2-2x}-x} \cdot \frac{\sqrt{x^2-2x}+x}{\sqrt{x^2-2x}+x} \\ \\
= & \frac{\sqrt{x^2-2x}+x}{\left( \sqrt{x^2-2x} \right)^2 – x^2}\\ \\
= & \frac{\sqrt{x^2-2x}+x}{x^2-2x – x^2} \\ \\
= & \frac{\sqrt{x^2-2x}+x}{-2x} \\ \\
= & -\frac{\sqrt{x^2-2x}}{2x} – \frac{x}{2x} \\ \\
= & -\frac{\sqrt{x^2-2x}}{\sqrt{4x^2}} – \frac{1}{2} \text{, como $x$ es positivo, $\sqrt{4x^2} = |2x| = 2x$ } \\ \\
= & -\sqrt{\frac{x^2-2x}{4x^2}} – \frac{1}{2} \\ \\
= & -\sqrt{\frac{x^2}{4x^2} – \frac{2x}{4x^2}} – \frac{1}{2} \\ \\
= & -\sqrt{\frac{1}{4} – \frac{1}{2x}} – \frac{1}{2}.
\end{align*}
$$\Rightarrow \frac{1}{\sqrt{x^2-2x}-x} = -\sqrt{\frac{1}{4} – \frac{1}{2x}} – \frac{1}{2}.$$
Entonces tenemos que
\begin{align*}
\lim_{x \to \infty} \frac{1}{\sqrt{x^2-2x}-x} = & \lim_{x \to \infty} \left( -\sqrt{\frac{1}{4} – \frac{1}{2x}} – \frac{1}{2} \right) \\
= & -\sqrt{\frac{1}{4} – 0} – \frac{1}{2} \\
= & -\frac{1}{2} -\frac{1}{2} \\
= & -1.
\end{align*}
$$\therefore \lim_{x \to \infty} \frac{1}{\sqrt{x^2-2x}-x} = -1.$$
A continuación enunciaremos el teorema del sándwich para este tipo de límites.
Proposición. Sean $f$, $g$, $h: A \rightarrow \mathbb{R}$ con $A \subset \mathbb{R}$ tal que $(a, \infty) \subset A$ para algún $a \in \mathbb{R}$. Si existe $M_1 \in \mathbb{R}$ tal que para todo $x >M_1$ se tiene que $$f(x) \leq g(x) \leq h(x) \quad \text{ y } \quad \lim_{x \to \infty} f(x) = L = \lim_{x \to \infty} h(x).$$
Entonces $$ \lim_{x \to \infty} g(x) = L.$$
Nuevamente, omitiremos la demostración pues es análoga a la revisada en una entrada anterior.
Extensión del límite en el infinito
Así como tenemos el límite en el infinito, existe una definición análoga que considera el límite de una función cuando $x$ tiende a $- \infty$.
Definición. Sean $A \subseteq \mathbb{R}$ y $f: A \rightarrow \mathbb{R}$. Decimos que $f$ tiende al límite $L \in \mathbb{R}$ cuando $x$ tiende a $- \infty$ si para cualquier $\varepsilon > 0$ existe $m \in \mathbb{R}$, tal que para cualquier $x<m$, se tiene que $|f(x)-L|<\varepsilon$ y lo denotamos $$\lim_{x \to -\infty} f(x) = L.$$
La definición nos indica que $f$ tiene límite $L$ cuando $x$ tiende a $-\infty$ si para valores lo suficientemente pequeños de $x$ nos acercamos arbitrariamente a $L$.
Esta extensión de límite tiene propiedades análogas revisadas en esta entrada.
Más adelante…
En la siguiente entrada revisaremos una nueva variante del límite de una función: los límites infinitos. Es decir, veremos el caso donde el límite de una función es infinito.
Tarea moral
A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.
- Demostrar que si $f: A \rightarrow \mathbb{R}$ es tal que $$\lim_{x \to \infty} x f(x) = L$$ con $L \in \mathbb{R}$, entonces $$\lim_{x \to \infty} f(x) = 0.$$
- Sean $f$ y $g$ dos funciones definidas en $(a, \infty)$ tales que $$\lim_{x \to \infty} f(x) = L \quad \text{ y } \quad \lim_{x \to \infty} g(x) = \infty.$$
Entonces se tiene que $$\lim_{x \to \infty} f(g(x)) = L.$$ - Prueba que $$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(-x).$$
- Prueba que $$\lim_{x \to 0^-} f(\frac{1}{x}) = \lim_{x \to -\infty} f(x).$$
- Calcula los siguientes límites
$i$) $$\lim_{x \to \infty} \frac{\sqrt{x+1}}{x} \text{, definido para } x >0.$$
$ii$) $$\lim_{x \to \infty} \frac{\sqrt{x}-x}{\sqrt{x}+x} \text{, definido para } x >0.$$
Entradas relacionadas
- Ir a Cálculo Diferencial e Integral I
- Entrada anterior del curso: Límites laterales
- Siguiente entrada del curso: Límites infinitos
- Resto de cursos: Cursos
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»