Introducción
En esta entrada revisaremos la derivada de dos funciones populares dentro de las matemáticas: las funciones exponencial y logarítmica. Para ello, será de gran utilidad tener presente lo que se revisó previamente respecto a estas funciones debido a que usaremos varias de sus propiedades.
Función logarítmica
Iniciaremos probando dos teoremas que nos serán útiles para estudiar la derivada de la función logarítmica. Básicamente los teoremas nos indican que es posible realizar cambios de variable al momento de calcular el límite de una función siempre que ésta sea continua en el punto donde se calcula el límite.
Teorema. Sean $f: A \to \mathbb{R}$ y $g: B \to \mathbb{R}$ tales que $g(B) \subset A$. Si $f$ es continua en $L$, y $\lim\limits_{x \to x_0} g(x) = L$, entonces $$\lim_{x \to x_0} f(g(x)) = \lim_{t \to L} f(t).$$
Demostración.
Sea $\varepsilon > 0$. Como $f$ es continua en $L$, existe $\delta_1 > 0$ tal que si $0 < |t-L| < \delta_1$, se tiene que
$$|f(t)-f(L)| < \varepsilon.$$
Como $\lim\limits_{x \to x_0} g(x) = L$, entonces para todo $\varepsilon’ > 0$, existe $\delta > 0$ tal que si $0 < |x-x_0| < \delta$ se tiene que
$$|g(x) – L| < \varepsilon’.$$
En particular, consideremos $\varepsilon’ = \delta_1$. Entonces $f(g(x))$ está definido y si $0 < |x-x_0| < \delta$, se tiene que
$$|f(g(x)) – f(L)| < \varepsilon.$$
$$\therefore \lim_{x \to x_0}f(g(x)) = f(L) .$$
Como $f$ es continua en $L$, se concluye que
$$\lim_{x \to x_0} f(g(x)) = \lim_{t \to L} f(t).$$
$\square$
Teorema. Sean $f: A \to \mathbb{R}$ y $g: B \to \mathbb{R}$ tales que $g(B) \subset A$. Si $f$ es continua en $L$, y $\lim\limits_{x \to \infty} g(x) = L$, entonces $$\lim_{x \to \infty} f(g(x)) = \lim_{t \to L} f(t).$$
La demostración del teorema anterior sigue la misma lógica que el primero.
Ahora probaremos que la función logaritmo es continua en todo su dominio, una vez que lo hayamos probado, demostraremos que también es derivable en todo su dominio.
Proposición. Sea $f: (0, \infty) \to \RR$ definida como $f(x) = ln(x)$. La función $f$ es continua en $x_0 = 1$.
Demostración.
Para demostrar $f$ es continua en $x_0 = 1$, debemos probar que $\lim\limits_{x \to 1} ln(x) = ln(1) = 0$.
Procederemos a calcular los límites laterales.
Primero veremos el límite por la derecha. Sean $\varepsilon > 0$ y $x>1.$
Notemos que
\begin{align*}
|f(x)-f(x_0)| & = |ln(x)-ln(1)| \\
& = |ln(x)| \\
& = ln(x).
\end{align*}
$$\therefore |f(x)-f(x_0)| = ln(x). \tag{1}$$
Consideremos $\delta = e^{\varepsilon}-1$.
Si $ 0<x-1 < e^{\varepsilon}-1$, entonces $x < e^{\varepsilon}$, es decir, $ln(x) < \varepsilon$. Por $(1)$ se concluye que $|f(x)-f(x_0)| < \varepsilon$.
$$\therefore \lim_{x\to 1^+} ln(x) = ln(1).$$
Ahora revisemos el límite por la izquierda. Sean $\varepsilon > 0$ y $x < 1.$
Notemos que
\begin{align*}
|f(x)-f(x_0)| & = |ln(x)-ln(1)| \\
& = |ln(x)| \\
& = -ln(x).
\end{align*}
$$\therefore |f(x)-f(x_0)| = – ln(x). \tag{2}$$
Consideremos $\delta = 1-e^{- \varepsilon}$.
Si $ 0<1-x < 1-e^{-\varepsilon}$, entonces $x > e^{-\varepsilon}$, es decir, $ln(x) > -\varepsilon$. Por $(2)$ se concluye que $|f(x)-f(x_0)| < \varepsilon$.
$$\therefore \lim_{x\to 1^-} ln(x) = ln(1).$$
Como ambos límites laterales coinciden, se concluye que la función $f(x) = ln(x)$ es continua en $x_0 = 1$.
$\square$
Teorema. Sea $f: (0, \infty) \to \RR$ definida como $f(x) = ln(x)$. La función $f$ es continua en todo su dominio.
Demostración.
Procederemos a calcular el límite directamente.
\begin{align*}
\lim_{x \to x_0} f(x) & = \lim_{x \to x_0} ln(x) \\ \\
& = \lim_{h \to 0} ln(x_0+h) \\ \\
& = \lim_{h \to 0} ln \left( x_0 \left( 1+\frac{h}{x_0} \right) \right) \\ \\
& = \lim_{h \to 0} \left[ ln(x_0) + ln \left( 1+\frac{h}{x_0} \right) \right] \\ \\
& = \lim_{h \to 0} ln(x_0) + \lim_{h \to 0} ln \left(1+\frac{h}{x_0} \right) \\ \\
& = ln(x_0) + 0 \text{, pues $ln(x)$ es continua en $1$}\\ \\
& = ln(x_0).
\end{align*}
$$\therefore \lim_{x \to x_0} ln(x) = ln(x_0).$$
Se concluye que $f$ es continua en todo su dominio.
$\square$
Teorema. Sea $f: (0, \infty) \to \RR$ definida como $f(x) = ln(x)$. Para todo $x > 0$ se tiene que $f'(x) = \frac{1}{x}.$
Demostración.
Veamos el siguiente límite
\begin{align*}
\lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h} & = \lim_{h \to 0} \frac{ln(x_0+h)-ln(x_0)}{h} \\ \\
& = \lim_{h \to 0} \frac{ln \left( \frac{x_0+h}{x_0} \right) }{h} \\ \\
& = \lim_{h \to 0} \frac{1}{h} \cdot ln \left( 1+\frac{h}{x_0} \right) \\ \\
& = \lim_{h \to 0} ln \left( 1+\frac{h}{x_0} \right)^{\frac{1}{h}}.
\end{align*}
Consideremos $t = \frac{h}{x_0}$. Notemos que cuando $h \to 0,$ se tiene que $t \to 0$. Además, se sigue que $\frac{1}{h} = \frac{1}{x_0} \cdot \frac{1}{t}$. Como $f(x) = ln(x)$ es continua en todo su dominio y por el primer teorema de esta entrada, se sigue que
\begin{align*}
\lim_{h \to 0} ln \left( 1+\frac{h}{x_0} \right)^{\frac{1}{h}} & = \lim_{t \to 0} ln \left( 1+t \right)^{\frac{1}{x_0} \cdot \frac{1}{t}} \\ \\
& = \lim_{t \to 0} ln \left( \left( 1+t \right)^{\frac{1}{t}} \right)^{\frac{1}{x_0}} \\ \\
& = \lim_{t \to 0} \frac{1}{x_0} \cdot ln \left( 1+t \right)^{\frac{1}{t}}. \\ \\
\end{align*}
Tomemos $n = \frac{1}{t}$. Cuando $t \to 0$, se tiene que $n \to \infty$. Además, $t = \frac{1}{n}$. Como $f(x) = ln(x)$ es continua en todo su dominio y por el segundo teorema de esta entrada, se sigue que
\begin{align*}
\lim_{t \to 0} \frac{1}{x_0} \cdot ln \left( 1+t \right)^{\frac{1}{t}} & = \lim_{n \to \infty} \frac{1}{x_0} \cdot ln \left( 1+\frac{1}{n} \right)^{n} \\ \\
& = \frac{1}{x_0} \cdot \lim_{n \to \infty} ln \left( 1+\frac{1}{n} \right)^{n} \\ \\
& = \frac{1}{x_0} \cdot ln(e) \text{, pues $ln(x)$ es continua en todo su dominio} \\ \\
& = \frac{1}{x_0}.
\end{align*}
$$\therefore ln'(x_0) = \frac{1}{x_0}.$$
$\square$
Función exponencial
Ahora probaremos que la función exponencial es derivable en todo su dominio y, por la relación entre derivabilidad y continuidad, también es continua.
Teorema. La función $f: \RR \to \RR$ definida como $f(x) = e^x$ es derivable para todo $x \in \RR$, y su derivada es $f'(x) = e^{x}.$
Demostración.
Veamos el siguiente límite
\begin{align*}
\lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h} & = \lim_{h \to 0} \frac{e^{x_0+h}-e^{x_0}}{h} \\ \\
& = \lim_{h \to 0} \frac{e^{x_0}e^{h}-e^{x_0}}{h} \\ \\
& = \lim_{h \to 0} e^{x_0} \cdot \frac{e^{h}-1}{h}. \\ \\
\end{align*}
Consideremos $t = e^{h}-1$, se sigue que $h = ln(t+1)$, además cuando $h \to 0$, se tiene que $t \to 0$. Así, de la expresión anterior tenemos
\begin{align*}
\lim_{h \to 0} e^{x_0} \cdot \frac{e^{h}-1}{h} & = \lim_{t \to 0} e^{x_0} \cdot \frac{t}{ln(t+1)} \\ \\
& = e^{x_0} \cdot \lim_{t \to 0} \frac{\frac{1}{t}}{\frac{1}{t}} \cdot \frac{t}{ln(t+1)} \\ \\
& = e^{x_0} \cdot \lim_{t \to 0} \frac{1}{\frac{1}{t} ln(t+1)} \\ \\
& = e^{x_0} \cdot \lim_{t \to 0} \frac{1}{ln(t+1)^{\frac{1}{t}}} \\ \\
& = e^{x_0} \cdot \lim_{n \to \infty} \frac{1}{ln(1+\frac{1}{n})^n}, \text{ considerando } n =\frac{1}{t} \\ \\
& = e^{x_0} \cdot \frac{1}{ln(e)} \\ \\
& = e^{x_0}.
\end{align*}
$$\therefore f'(x_0) = e^{x_0}.$$
$\square$
Corolario. La función $f(x) = e^x$ es continua.
Algunos ejemplos
Para los siguientes ejemplos haremos uso de las reglas de la derivada que conocemos hasta ahora, incluyendo la derivada de las funciones revisadas en esta entrada.
Ejemplo 1. Encuentra la derivada de $f(x) = ln \left( x+\sqrt{x^2+1} \right)$.
\begin{align*}
f'(x) & = \left( ln \left( x+\sqrt{x^2+1} \right) \right)’ \\ \\
& = ln’\left( x+\sqrt{x^2+1} \right) \cdot \left( x+\sqrt{x^2+1} \right)’ \text{, por la regla de la cadena} \\ \\
& = \frac{1}{x+\sqrt{x^2+1}} \cdot \left( (x)’+(\sqrt{x^2+1})’ \right) \\ \\
& = \frac{1}{x+\sqrt{x^2+1}} \cdot \left( 1+ \frac{1}{2\sqrt{x^2+1}} \cdot (x^2+1)’ \right) \\ \\
& = \frac{1}{x+\sqrt{x^2+1}} \cdot \left( 1+ \frac{1}{2\sqrt{x^2+1}} \cdot 2x \right) \\ \\
& = \frac{1}{x+\sqrt{x^2+1}} \cdot \left( 1+ \frac{x}{\sqrt{x^2+1}} \right) \\ \\
& = \frac{1}{x+\sqrt{x^2+1}} \cdot \left( \frac{\sqrt{x^2+1}+x}{\sqrt{x^2+1}} \right) \\ \\
& = \frac{1}{\sqrt{x^2+1}}.
\end{align*}
$$\therefore f'(x) = \frac{1}{\sqrt{x^2+1}}.$$
Ejemplo 2. Encuentra la derivada de la función $f(x) = x^6e^{\sqrt{x}}.$
\begin{align*}
f'(x) & = x^6 (e^{\sqrt{x}})’+e^{\sqrt{x}} (x^6)’ \\
& = x^6 ( e^{\sqrt{x}} \cdot (\sqrt{x})’)+6x^5e^{\sqrt{x}} \\
& = x^6 (e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}})+6x^5e^{\sqrt{x}} \\
& = \frac{x^6e^{\sqrt{x}}}{2\sqrt{x}}+6x^5e^{\sqrt{x}}.
\end{align*}
$$\therefore f'(x) = \frac{x^6e^{\sqrt{x}}}{2\sqrt{x}}+6x^5e^{\sqrt{x}}.$$
Más adelante…
Antes de continuar con el estudio de la derivada de funciones trigonométricas, deberemos desarrollar otra herramienta que nos será muy útil: la derivada de las funciones inversas. En la siguiente entrada veremos cómo derivar la inversa de una función, así como las restricciones existentes para que esto sea posible.
Tarea moral
A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.
- Prueba que la derivada de $f(x)=a^x$ con $a>0$, es $f'(x) = ln(a) a^x$. Sugerencia: Considera que $f(x) = a^x =e^{xln(a)}$ y emplea la regla de la cadena.
- Sea $c \in \RR$ un real fijo y consideremos $f: A \subset (0, \infty) \to \RR$, tal que $f(x) = x^c$. Prueba que $f$ es derivable en todo su dominio y su derivada es $f'(x) = cx^{c-1}$. Sugerencia: Considera que $f(x) = x^c = e^{cln(x)}$ y emplea la regla de la cadena.
- Encuentra la derivada de la función $f(x) = e^{x^2}+ln(x^2)$.
- Encuentra la derivada de la función $f(x) = ln(x+\sqrt{x^2+x})$.
- Encuentra la derivada de la función $f(x) = \frac{1}{\sqrt{x}}e^{x^2}$.
Entradas relacionadas
- Ir a Cálculo Diferencial e Integral I
- Entrada anterior del curso: Reglas de derivación
- Siguiente entrada del curso: La derivada de la función inversa
- Resto de cursos: Cursos
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»