Archivo del Autor: Pedro Rivera Herrera

Variable Compleja I: Funciones trigonométricas e hiperbólicas complejas

Por Pedro Rivera Herrera

Introducción

En las dos entradas anteriores hemos definido y obtenido una serie de resultados de las funciones exponencial compleja y logaritmo complejo, mediante las cuales hemos extendido sobre $\mathbb{C}$ a las funciones reales exponencial y logaritmo, respectivamente.

En esta entrada definiremos a las funciones trigonométricas complejas así como a las funciones hiperbólicas complejas y obtendremos para ambas algunas de sus propiedades más elementales, extendiendo sobre $\mathbb{C}$ a sus correspondientes versiones reales.

Notemos que mediante la identidad de Euler podemos relacionar a las funciones trigonométricas reales con la función exponencial compleja. Tenemos que: \begin{equation*} e^{i\theta} = \operatorname{cos}(\theta) + i \operatorname{sen}(\theta), \tag{22.1} \end{equation*} donde $\theta$ es un número real. Sustituyendo $\theta$ por $-\theta$ tenemos que: \begin{align*} e^{-i\theta} & = \operatorname{cos}(-\theta) + i \operatorname{sen}(-\theta)\\ & = \operatorname{cos}(\theta) – i \operatorname{sen}(\theta). \tag{22.2} \end{align*}

Sumando (22.1) y (22.2) tenemos que: \begin{equation*} \operatorname{cos}(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}. \tag{22.3} \end{equation*}

Por otra parte, restando a (22.1) la ecuación (22.2) tenemos que: \begin{equation*} \operatorname{sen}(\theta) = \frac{e^{i\theta} – e^{-i\theta}}{2i}. \tag{22.4} \end{equation*}

Las expresiones obtenidas en (22.3) y (22.4) nos motivan a extender las funciones trigonométricas reales a $\mathbb{C}$ mediante la siguiente:

Definición 22.1. (Funciones seno y coseno complejas.)
Sea $z\in\mathbb{C}$. Definimos a las funciones complejas seno y coseno, respectivamente, como: \begin{equation*} \operatorname{sen}(z) := \frac{e^{iz} – e^{-iz}}{2i}, \quad \operatorname{cos}(z) := \frac{e^{iz} + e^{-iz}}{2}. \end{equation*}

Ejemplo 22.1.
Sea $z\in\mathbb{C}$. Determinemos los ceros de las funciones complejas seno y coseno y veamos que son todos reales.

Solución. Tenemos que: \begin{align*} \operatorname{sen}(z) = \frac{e^{iz} – e^{-iz}}{2i} = 0 \quad & \Longleftrightarrow \quad e^{iz} – e^{-iz} = 0,\\ & \Longleftrightarrow \quad e^{iz} = e^{-iz},\\ & \Longleftrightarrow \quad e^{2iz} = 1 = e^{2k\pi i}, \quad k \in \mathbb{Z}, \end{align*} de donde $2iz = 2\pi i(k+n)$ para $k\in\mathbb{Z}$ y para alguna $n\in\mathbb{Z}$ (corolario 20.2), es decir $z = k’\pi$ con $k’=k+n \in \mathbb{Z}$, por lo que los ceros de la función seno son $z=0, \pm\pi, \pm2\pi, \pm 3\pi, \ldots$.

Procedemos de manera análoga para la función coseno, es decir: \begin{align*} \operatorname{cos}(z) = \frac{e^{iz} + e^{-iz}}{2} = 0 \quad & \Longleftrightarrow \quad e^{iz} + e^{-iz} = 0,\\ & \Longleftrightarrow \quad e^{iz} = -e^{-iz},\\ & \Longleftrightarrow \quad e^{2iz} = -1 = e^{(2k+1)\pi i}, \quad k \in \mathbb{Z}, \end{align*}

entonces $2iz = (2(k+n)+1)\pi i$ para $k\in\mathbb{Z}$ y para alguna $n\in\mathbb{Z}$ (corolario 20.2), es decir $z = \left(k’ + \frac{1}{2}\right)\pi$ con $k’=k+n \in \mathbb{Z}$, por lo que los ceros de la función coseno son $z=\pm\pi/2, \pm3\pi/2, \pm 5\pi/2, \ldots$.

En ambos casos es claro que los ceros de las funciones seno y coseno son todos reales.

Observación 22.1.
De nuestros cursos de Cálculo sabemos que las funciones reales hipérbolicas seno y coseno se definen, para $x\in\mathbb{R}$, respectivamente como: \begin{equation*} \operatorname{senh}(x) = \frac{e^x – e^{-x}}{2}, \quad \operatorname{cosh}(x) = \frac{e^x + e^{-x}}{2}. \end{equation*}

Al igual que en el caso real, las funciones trigonométricas complejas satisfacen algunas identidades con las que ya estamos familiarizados y que suelen ser de utilidad en la resolución de ciertos problemas.

Proposición 22.1. (Identidades trigonométricas seno y coseno.)
Sean $z, z_1, z_2 \in \mathbb{C}$, con $z=x+iy$, entonces las funciones trigonométricas complejas seno y coseno satisfacen:

  1. $\operatorname{sen}(-z) = -\operatorname{sen}(z)$ y $\operatorname{cos}(z) = \operatorname{cos}(-z)$.
  2. $\operatorname{sen}(z_1 \pm z_2) = \operatorname{sen}(z_1) \operatorname{cos}(z_2) \pm \operatorname{sen}(z_2) \operatorname{cos}(z_1)$.
  3. $\operatorname{cos}(z_1 \pm z_2) = \operatorname{cos}(z_1) \operatorname{cos}(z_2) \mp \operatorname{sen}(z_1) \operatorname{sen}(z_2)$.
  4. Son $2\pi$-periódicas.
  5. $\operatorname{sen}\left(z+\frac{\pi}{2}\right) = \operatorname{cos}(z)$ y $\operatorname{cos}\left(z+\frac{\pi}{2}\right) = -\operatorname{sen}(z)$.
  6. Fórmula de Euler para argumentos complejos: \begin{equation*} e^{iz} = \operatorname{cos}(z) + i \operatorname{sen}(z). \end{equation*}
  7. $\operatorname{cos}^2(z) + \operatorname{sen}^2(z) = 1$.
  8. $\operatorname{sen}^2(z) = \dfrac{1-\operatorname{cos}(2z)}{2}$.
  9. $\operatorname{cos}^2(z) = \dfrac{1+\operatorname{cos}(2z)}{2}$.
  10. $\operatorname{sen}(z) = \operatorname{sen}(x) \operatorname{cosh}(y) + i\operatorname{cos}(x) \operatorname{senh}(y)$.
  11. $\cos(z) = \cos(x) \cosh(y) – i\operatorname{sen}(x) \operatorname{senh}(y)$.

Demostración. Sea $z=x+iy\in\mathbb{C}$, entonces:

  1. De acuerdo con la definición 22.1 tenemos que: \begin{equation*} \operatorname{sen}{(-z)} = \frac{e^{i(-z)} – e^{-i(-z)}}{2i} = \frac{e^{-iz} – e^{iz}}{2i} = – \left(\frac{e^{iz} – e^{-iz}}{2i}\right) =\operatorname{sen}{(z)}, \end{equation*} \begin{equation*} \operatorname{cos}{(-z)} = \frac{e^{i(-z)} + e^{-i(-z)}}{2} = \frac{e^{-iz} + e^{iz}}{2} = \operatorname{cos}{(z)}. \end{equation*}
  2. Se deja como ejercicio al lector.
  3. Se deja como ejercicio al lector.
  4. De acuerdo con la definición 22.1 y la proposición 20.2 tenemos que: \begin{equation*} \operatorname{sen}{(z+2\pi)} = \frac{e^{i(z+2\pi)} – e^{-i(z+2\pi)}}{2i} = \frac{e^{iz}e^{i 2\pi} – e^{-iz}e^{-i2\pi}}{2i} = \frac{e^{iz} – e^{-iz}}{2i} = \operatorname{sen}{(z)}, \end{equation*} \begin{equation*} \cos{(z+2\pi)} = \frac{e^{i(z+2\pi)} + e^{-i(z+2\pi)}}{2} = \frac{e^{iz}e^{i 2\pi} + e^{-iz}e^{-i2\pi}}{2} = \frac{e^{iz} + e^{-iz}}{2} = \cos{(z)}. \end{equation*}
  5. Se deja como ejercicio al lector.
  6. De acuerdo con la definición 22.1 tenemos que: \begin{equation*} \cos{(z)} + i\operatorname{sen}{(z)} = \frac{e^{iz} + e^{-iz}}{2} + i\left(\frac{e^{iz} – e^{-iz}}{2i}\right) = \frac{e^{iz} + e^{-iz} + e^{iz} – e^{-iz}}{2} = e^{iz}. \end{equation*}
  7. Considerando los resultados (1) y (6), tenemos que: \begin{align*} 1 = e^{iz} e^{-iz} & = \left[ \cos{(z)} + i\operatorname{sen}{(z)}\right]\left[\cos{(-z)} + i\operatorname{sen}{(-z)}\right]\\ & = \left[ \cos{(z)} + i\operatorname{sen}{(z)}\right]\left[\cos{(z)} – i\operatorname{sen}{(z)}\right]\\ & = \left[\cos{(z)}\right]^2 – \left[i\operatorname{sen}{(z)}\right]^2\\ & = \cos^2{(z)} + \operatorname{sen}^2{(z)}. \end{align*}
  8. De acuerdo con (3), para $z=z_1=z_2$ tenemos que: \begin{equation*} \operatorname{cos}{(2z)} = \operatorname{cos}^2{(z)} – \operatorname{sen}^2{(z)}. \end{equation*} Por otra parte, de (7) tenemos que: \begin{equation*} \operatorname{cos}^2{(z)} = 1 – \operatorname{sen}^2{(z)}. \end{equation*} Por lo que: \begin{equation*} \operatorname{cos}{(2z)} = 1 – \operatorname{sen}^2{(z)} – \operatorname{sen}^2{(z)} = 1 – 2\operatorname{sen}^2{(z)}, \end{equation*} de donde se sigue el resultado.
  9. Se deja como ejercicio al lector.
  10. De acuerdo con la proposición 20.2 y la observación 22.1 tenemos que: \begin{align*} \operatorname{sen}(z) = \operatorname{sen}{(x+iy)} & = \frac{e^{i(x+iy)} – e^{-i(x+iy)}}{2i}\\ & = \frac{e^{-y+ix} – e^{y-ix}}{2i}\\ & = \frac{e^{-y}e^{ix} – e^{y}e^{-ix}}{2i}\\ & = \frac{e^{-y}\left[\operatorname{cos}(x)+i\operatorname{sen}(x)\right] – e^{y}\left[\operatorname{cos}(-x)+i\operatorname{sen}(-x)\right]}{2i}\\ & = \frac{-\operatorname{cos}(x)\left[ e^{y} – e^{-y} \right] + i\operatorname{sen}(x)\left[ e^{-y} + e^{y} \right]}{2i}\\ & = \operatorname{sen}(x) \left( \frac{e^{y}+e^{-y}}{2}\right) + i \operatorname{cos}(x) \left( \frac{e^{y} – e^{-y}}{2}\right)\\ & = \operatorname{sen}(x) \operatorname{cosh}(y) + i\operatorname{cos}(x) \operatorname{senh}(y). \end{align*}
  11. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 22.2.
Determina todas las soluciones de la ecuación $\cos{(z)} = 2$.

Solución. Sea $z=x+iy\in\mathbb{C}$, entonces por el resultado anterior tenemos que la ecuación dada se puede reescribir como: \begin{equation*} \cos(z) = \cos(x) \cosh(y) – i\operatorname{sen}(x) \operatorname{senh}(y) = 2. \end{equation*}

Tomando las partes real e imaginaria de esta última igualdad tenemos: \begin{equation*} \left\{ \begin{array}{l} \cos(x) \cosh(y) = 2, \tag{22.5}\\ \operatorname{sen}(x) \operatorname{senh}(y) = 0. \end{array} \right. \end{equation*}

Procedemos a resolver este sistema de ecuaciones para las variables $x$ e $y$.

Notemos que si $y=0$, entonces $\cosh(0)=1$, por lo que de la primera ecuación de (22.5) se tiene que: \begin{equation*} \cos(x) = 2, \end{equation*} lo cual claramente no es posible para ningún valor de $x\in\mathbb{R}$, por tanto concluimos que $y\neq 0$.

Como $y\neq 0$, entonces $\operatorname{senh}(y)\neq 0$, por lo que de la segunda ecuación de (22.5) se tiene que: \begin{equation*} \operatorname{sen}(x) = 0, \end{equation*} de donde $x = n\pi$, con $n\in\mathbb{Z}$.

Sustituyendo lo anterior en la primera ecuación, para $n\in\mathbb{Z}$ tenemos que: \begin{equation*} \cos\left( n\pi\right) \cosh(y) = 2 \quad \Longleftrightarrow \quad \left( -1\right)^n \cosh(y) = 2, \end{equation*} pero como $\cosh(y)>0$ para toda $y\in\mathbb{R}$, entonces $n$ debe ser par, es decir: \begin{equation*} x = 2k\pi, \end{equation*} para $k\in\mathbb{Z}$. Por lo que: \begin{align*} \cosh{(y)} = 2 \quad &\Longleftrightarrow \quad \frac{e^{y} + e^{-y}}{2} = 2,\\ &\Longleftrightarrow \quad e^{y} + e^{-y} = 4,\\ &\Longleftrightarrow \quad e^{y}e^{y} + e^{-y}e^{y} – 4e^{y} = 0,\\ &\Longleftrightarrow \quad \left(e^{y}\right)^2 – 4e^{y} + 1 = 0. \end{align*}

Resolviendo la ecuación cuadrática para $e^y$, tenemos: \begin{equation*} e^y = \frac{-(-4) \pm \sqrt{(-4)^2 – 4(1)(1)}}{2(1)} = \frac{4\pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3}, \end{equation*} de donde $y = \ln{\left(2 \pm \sqrt{3}\right)}$.

Notemos que: \begin{equation*} \ln{\left(2 – \sqrt{3}\right)} = \ln{\left(\frac{\left[2 – \sqrt{3} \, \right] \left[2 + \sqrt{3} \, \right] }{2 + \sqrt{3}}\right)} = \ln{\left(\frac{1}{2 + \sqrt{3}}\right)} = – \ln{\left(2 + \sqrt{3}\right)}, \end{equation*} por lo que: \begin{equation*} y = \pm \ln{\left(2 + \sqrt{3}\right)}. \end{equation*}

Entonces, las soluciones de la ecuación $\cos{(z)} = 2$ son: \begin{equation*} z = 2k\pi \pm i \ln{\left(2 + \sqrt{3}\right)}, \quad k\in\mathbb{Z}. \end{equation*}

Considerando la definición 22.1 y el hecho de que las funciones complejas seno y coseno son una extensión de las funciones trigonométircas reales, resulta natural definir el resto de las funciones trigonométricas complejas mediante estas dos funciones.

Definición 22.2. (Funciones trigonométricas complejas.)
Sea $z\in\mathbb{C}$. Definimos a las funciones {\bf trigonométricas complejas} como: \begin{equation*} \operatorname{tan}(z) := \frac{\operatorname{sen}(z)}{\operatorname{cos}(z)} = -i \left( \frac{e^{iz} – e^{-iz}}{e^{iz} + e^{-iz}} \right), \quad \operatorname{cos}(z)\neq 0, \end{equation*} \begin{equation*} \operatorname{cot}(z) := \frac{\operatorname{cos}(z)}{\operatorname{sen}(z)} = i \left( \frac{e^{iz} + e^{-iz}}{e^{iz} – e^{-iz}}\right), \quad \operatorname{sen}(z)\neq 0, \end{equation*} \begin{equation*} \operatorname{sec}(z) := \frac{1}{\operatorname{cos}(z)} = \frac{2}{e^{iz} + e^{-iz}}, \quad \operatorname{cos}(z)\neq 0, \end{equation*} \begin{equation*} \operatorname{csc}(z) := \frac{1}{\operatorname{sen}(z)} = \frac{2i}{e^{iz} – e^{-iz}}, \quad \operatorname{sen}(z)\neq 0. \end{equation*}

Observación 22.2.
Notemos que las funciones trigonométricas dadas en la definición anterior son funciones racionales, por lo que tanto su dominio natural como su dominio de analicidad dependen de los ceros de las funciones complejas seno y coseno.

Ejemplo 22.3. La función tangente compleja es $\pi$-periódica. Veamos que $\operatorname{tan}(z_1) = \operatorname{tan}(z_2)$ si y solo si $z_1 = z_2 + k\pi$, con $k\in\mathbb{Z}$.

Solución. De acuerdo con el ejemplo 22.1 tenemos que la función tangente compleja no está definida para los valores de $z = \left(k + \frac{1}{2}\right)\pi$, con $k \in \mathbb{Z}$, entonces consideremos a $z_1, z_2 \in \mathbb{C}$ tales que $z_1, z_2 \neq \left(k + \frac{1}{2}\right)\pi$. Por la proposición 22.1(2) tenemos que: \begin{align*} \operatorname{tan}(z_1) = \operatorname{tan}(z_2) \quad & \Longleftrightarrow \quad \frac{\operatorname{sen}(z_1)}{\operatorname{cos}(z_1)} = \frac{\operatorname{sen}(z_2)}{\operatorname{cos}(z_2)}\\ & \Longleftrightarrow \quad \operatorname{sen}(z_1) \operatorname{cos}(z_2) – \operatorname{sen}(z_2) \operatorname{cos}(z_1) = 0\\ & \Longleftrightarrow \quad \operatorname{sen}(z_1 – z_2) = 0\\ & \Longleftrightarrow \quad z_1 – z_2 = k\pi, \quad k\in\mathbb{Z},\\ & \Longleftrightarrow \quad z_1 = z_2 + k\pi, \quad k\in\mathbb{Z}. \end{align*}

Es posible deducir una serie de identidades para las funciones trigonométricas complejas con las que ya estamos familiarizados.

Proposición 22.2. (Identidades funciones trigonométricas.)
Sean $z,z_1,z_2\in\mathbb{C}$. Considerando el dominio de definición de cada una de las funciones trigonométricas complejas, tenemos que:

  1. $\tan(-z) = -\tan(z)$.
  2. $\cot(-z) = -\cot(z)$.
  3. $\sec(-z) = \sec(z)$.
  4. $\csc(-z) = -\csc(z)$.
  5. $1+\tan^2(z) = \sec^2(z)$.
  6. $1+\cot^2(z) = \csc^2(z)$.
  7. $\tan(z_1\pm z_2) = \dfrac{\tan(z_1)\pm \tan(z_2)}{1\mp \tan(z_1)\tan(z_2)}$.
  8. $\cot(z_1\pm z_2) = \dfrac{\cot(z_1)\cot(z_2)\mp 1}{\cot(z_1)\pm \cot(z_2)}$.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 22.4.
Determinemos el valor de las siguientes funciones trigonométricas en su forma $a+ib$.
a) $\operatorname{sen}(i)$.
b) $\operatorname{cos}(1+i)$.
c) $\operatorname{tan}(2i – \pi)$.

Solución.
a) Por definición de la función seno complejo y considerando a la función real seno hiperbólico tenemos que: \begin{align*} \operatorname{sen}(i) & = \frac{e^{i^2} – e^{-i^2}}{2i}\\ & = -i \left(\frac{e^{-1} – e^{1}}{2}\right)\\ & = i \left(\frac{e^{1} – e^{-1}}{2}\right)\\ & = i \operatorname{senh}(1). \end{align*} b) Por la definición de la función coseno complejo, de acuerdo con la proposición 20.2, de la entrada 20, y considerando a las funciones reales seno y coseno hiperbólicos tenemos que: \begin{align*} \operatorname{cos}(1+i) & = \frac{e^{i(1+i)} + e^{-i(1+i)}}{2}\\ & = \frac{e^{i+i^2} + e^{-i-i^2}}{2}\\ & = \frac{e^{i-1} + e^{1-i}}{2}\\ & = \frac{e^{i}e^{-1} + e^{1}e^{-i}}{2}\\ & = \frac{e^{-1}\left[\operatorname{cos}(1) + i \operatorname{sen}(1)\right] + e\left[\operatorname{cos}(-1) + i \operatorname{sen}(-1)\right]}{2}\\ & = \frac{\operatorname{cos}(1)\left[e^1 + e^{-1} \right]}{2} – i \left( \frac{\operatorname{sen}(1) \left[e^1 – e^{-1}\right]}{2}\right)\\ & = \operatorname{cos}(1)\operatorname{cosh}(1) – i \operatorname{sen}(1)\operatorname{senh}(1). \end{align*} c) De acuerdo con la proposición 22.2(1) sabemos que para $z \neq \left(k + \frac{1}{2}\right)\pi$, con $k\in\mathbb{Z}$, se cumple que $\operatorname{tan}(-z) = – \operatorname{tan}(z)$, es decir que $\tan(z)$ es una función impar, por lo que considerando la definición de la función tangente compleja, la proposición 20.1, de la entrada 20, y la observación 22.1 tenemos que: \begin{align*} \operatorname{tan}(2i-\pi) = – \operatorname{tan}(\pi – 2i) &= -(-i)\left( \frac{e^{i\pi -2i^2} – e^{-i\pi + 2i^2}}{e^{i\pi -2i^2} + e^{-i\pi + 2i^2}}\right)\\ &= i\left( \frac{e^{i\pi}e^{2} – e^{-i\pi} e^{-2}}{e^{i\pi}e^{2} – e^{-i\pi} e^{-2}}\right)\\ &= i\left( \frac{e^{2}\left(-1\right) – e^{-2}\left(-1\right)}{e^{2}\left(-1\right) + e^{-2}\left(-1\right)}\right)\\ &= i\left( \frac{e^{2} – e^{-2}}{e^{2} + e^{-2}}\right)\\ & = i \tanh{(2)}. \end{align*}

Proposición 22.3. (Derivadas de las funciones trigonométricas.)
Sea $z\in\mathbb{C}$. Considerando el dominio de definición de cada una de las funciones trigonométricas complejas, tenemos que:

  1. $\operatorname{sen}(z)$ y $\operatorname{cos}(z)$ son funciones enteras y sus derivadas son, respectivamente: \begin{equation*} \frac{d}{dz} \operatorname{sen}(z) = \operatorname{cos}(z), \quad \frac{d}{dz} \operatorname{cos}(z) = -\operatorname{sen}(z). \end{equation*}
  2. Para $z \neq \left(k + \frac{1}{2}\right)\pi$, con $k \in \mathbb{Z}$, las funciones $\operatorname{tan}(z)$ y $\operatorname{sec}(z)$ son analíticas y se tiene que: \begin{equation*} \frac{d}{dz} \operatorname{tan}(z) = \operatorname{sec}^2(z), \quad \frac{d}{dz} \operatorname{sec}(z) = \operatorname{sec}(z)\operatorname{tan}(z). \end{equation*}
  3. Para $z \neq k\pi$, con $k \in \mathbb{Z}$, las funciones $\operatorname{cot}(z)$ y $\operatorname{csc}(z)$ son analíticas y se tiene que: \begin{equation*} \frac{d}{dz} \operatorname{cot}(z) = – \operatorname{csc}^2(z), \quad \frac{d}{dz} \operatorname{csc}(z) = -\operatorname{csc}(z)\operatorname{cot}(z). \end{equation*}

Demostración.

  1. De acuerdo con la definición 22.1, como las funciones $\operatorname{sen}(z)$ y $\operatorname{cos}(z)$ están definidas en términos de las funciones $e^{iz}$ y $e^{-iz}$, las cuales son funciones enteras, entonces ambas funciones trigonométricas son enteras. Más aún, utilizando la regla de la cadena para cada una de las funciones tenemos que: \begin{align*} \frac{d}{dz} \operatorname{sen}(z) & = \frac{d}{dz} \left( \frac{e^{iz} – e^{-iz}}{2i} \right)\\ & = \frac{\frac{d}{dz} e^{iz} – \frac{d}{dz} e^{-iz}}{2i}\\ & = \frac{i e^{iz} + i e^{-iz}}{2i}\\ & = \frac{e^{iz} + e^{-iz}}{2}\\ & = \cos{(z)}. \end{align*} \begin{align*} \frac{d}{dz} \operatorname{cos}(z) & = \frac{d}{dz} \left( \frac{e^{iz} + e^{-iz}}{2} \right)\\ & = \frac{\frac{d}{dz} e^{iz} + \frac{d}{dz} e^{-iz}}{2i}\\ & = \frac{ i e^{iz} – i e^{-iz}}{2}\\ & =i \left( \frac{e^{iz} – e^{-iz}}{2}\right)\\ & =- \left(\frac{e^{iz} – e^{-iz}}{2i}\right)\\ & = -\operatorname{sen}(z). \end{align*}
  2. Se deja como ejercicio al lector.
  3. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 22.5.
Veamos que al igual que en el caso real, para las funciones complejas seno y coseno se cumple que: \begin{equation*} \lim_{z\to 0} \frac{\operatorname{sen}(z)}{z} = 1, \quad \lim_{z\to 0} \frac{\operatorname{cos}(z) – 1}{z} = 0. \end{equation*}

Solución. De acuerdo con la proposición 22.3 sabemos que las funciones $f(z) = \operatorname{sen(z)}$ y $g(z) = \operatorname{cos(z)}$ son enteras. En particular notemos que: \begin{equation*} 1 = \operatorname{cos}(0) = f'(0) = \lim_{z \to 0}\frac{f(z) – f(0)}{z-0} = \lim_{z \to 0}\frac{\operatorname{sen}(z)}{z}, \end{equation*} \begin{equation*} 0 = -\operatorname{sen}(0) = g'(0) = \lim_{z \to 0}\frac{g(z) – g(0)}{z-0} = \lim_{z \to 0}\frac{\operatorname{cos}(z) – 1}{z}. \end{equation*}

Ejemplo 22.6.
Determinemos el dominio de analicidad $U$ de la función $f(z) = \tan\left(\dfrac{\pi z^2}{2}\right)$ y obtengamos $f'(z)$ para $z\in U$.

Solución. Notemos que podemos ver a $f$ como la composición de las funciones $g(z) = \tan(z)$ y $h(z) = \dfrac{\pi z^2}{2}$, es decir $f = g \circ h$.

Dado que $h$ es una función polinómica es claro que es una función entera, mientras que $g$ es analítica en: \begin{equation*} V = \mathbb{C} \setminus \left\{\left(k + \frac{1}{2}\right)\pi : k \in\mathbb{Z} \right\}. \end{equation*}

Entonces, el dominio de analicidad de $f$ es el conjunto abierto: \begin{equation*} U =\left\{z\in\mathbb{C} : \frac{\pi z^2}{2} \in V \right\}. \end{equation*}

Tenemos que para $z\in\mathbb{C}$ se cumple que: \begin{equation*} \frac{\pi z^2}{2} = \left(k + \frac{1}{2}\right)\pi \quad \Longleftrightarrow \quad z^2 = 2k + 1 \quad \Longleftrightarrow \quad z^2 \, \, \text{es un entero impar}, \end{equation*} por lo que $z\in V$ siempre que $z^2$ no sea un entero impar, entonces: \begin{equation*} U =\mathbb{C} \setminus \left( \left\{\pm\sqrt{2k+1} : k \in \mathbb{N} \right\} \bigcup \left\{\pm i \sqrt{2k+1} : k \in \mathbb{N}\right\} \right). \end{equation*}

Sea $z\in U$, entonces por la regla de la cadena tenemos que \begin{equation*} f'(z) = g’\left(h(z)\right) h’\left(z\right) = \sec^2\left( \frac{\pi z^2}{2}\right) \pi z. \end{equation*}

Considerando la definición de las funciones hiperbólicas reales, observación 22.1, podemos también extender estas funciones a $\mathbb{C}$ mediante la función exponencial compleja como sigue:

Definición 22.3. (Funciones hiperbólicas complejas.)
Sea $z\in\mathbb{C}$. Definimos al seno hiperbólico complejo y al coseno hiperbólico complejo, respectivamente, como: \begin{equation*} \operatorname{senh}(z) := \frac{e^{z} – e^{-z}}{2}, \quad \operatorname{cosh}(z) := \frac{e^{z} + e^{-z}}{2}. \end{equation*}

De manera natural definimos el resto de las funciones hiperbólicas complejas en términos de estas dos funciones. \begin{equation*} \operatorname{tanh}(z) := \frac{\operatorname{senh}(z)}{\operatorname{cosh}(z)}, \quad \operatorname{cosh}(z)\neq 0, \end{equation*} \begin{equation*} \operatorname{coth}(z) := \frac{\operatorname{cosh}(z)}{\operatorname{senh}(z)}, \quad \operatorname{senh}(z)\neq 0, \end{equation*} \begin{equation*} \operatorname{sech}(z) := \frac{1}{\operatorname{cosh}(z)}, \quad \operatorname{cosh}(z)\neq 0, \end{equation*} \begin{equation*} \operatorname{csch}(z) := \frac{1}{\operatorname{senh}(z)}, \quad \operatorname{sen}(z)\neq 0. \end{equation*}

Observación 22.4.
En el ejercicio 4 de esta entrada se determinan los ceros de las funciones complejas seno y coseno hiperbólicas, es decir $\operatorname{senh}(z) = 0$ si y solo si $z = ik\pi$, para $ k\in\mathbb{Z}$. Mientras que $ \operatorname{cosh}(z) = 0$ si y solo si $ z = i\left(k+\frac{1}{2}\right)\pi$, con $k\in\mathbb{Z}$. Por tanto, el dominio natural y el dominio de analicidad de las funciones hiperbólicas, definidas como funciones racionales en términos de las funciones seno y coseno hiperbólicos, dependerán de los ceros de dichas funciones.

Es interesante notar que las funciones complejas trigonométricas e hiperbólicas están relacionadas mediante las siguientes identidades.

Proposición 22.4.
Sea $z = x+iy \in\mathbb{C}$, entonces, considerando el dominio de definición de cada una de las funciones trigonométricas e hiperbólicas, se cumple que:

  1. $\operatorname{senh}(iz) = i \operatorname{sen}(z)$ y $\operatorname{sen}(iz) = i\operatorname{senh}(z)$.
  2. $\operatorname{cosh}(iz) = \operatorname{cos}(z)$ y $\operatorname{cos}(iz) = \operatorname{cosh}(z)$.
  3. $\operatorname{tanh}(iz) = i \operatorname{tan}(z)$ y $\operatorname{tan}(iz) = i\operatorname{tanh}(z)$.
  4. $\operatorname{coth}(iz) = -i\operatorname{cot}(z)$ y $\operatorname{cot}(iz) = – i \operatorname{coth}(z)$.
  5. $\operatorname{senh}(z) = \operatorname{senh}(x) \operatorname{cos}(y) + i\operatorname{cosh}(x)\operatorname{sen}(y)$.
  6. $\operatorname{cosh}(z) = \operatorname{cosh}(x) \operatorname{cos}(y) + i\operatorname{senh}(x)\operatorname{sen}(y)$.

Demostración. Sea $z=x+iy\in\mathbb{C}$, tenemos que:

  1. De acuerdo con la definición 22.3 tenemos que: \begin{equation*} \operatorname{senh}{(iz)} = \frac{e^{iz} – e^{-iz}}{2} = i\left(\frac{e^{iz} – e^{-iz}}{2i}\right) = i \operatorname{sen}{(z)}, \end{equation*} \begin{equation*} \operatorname{sen}{(iz)} = \frac{e^{i^2z} – e^{-i^2z}}{2i} = -(-i)\left(\frac{e^{z} – e^{-z}}{2}\right) = i\operatorname{senh}{(z)}. \end{equation*}
  2. De acuerdo con la definición 22.3 tenemos que: \begin{equation*} \cosh{(iz)} = \frac{e^{iz} + e^{-iz}}{2} = \cos{(z)}, \end{equation*} \begin{equation*} \cos{(iz)} = \frac{e^{i^2z} + e^{-i^2z}}{2} = \frac{e^{z} + e^{-z}}{2} = \cosh{(z)}. \end{equation*}
  3. Se deja como ejercicio al lector.
  4. Se deja como ejercicio al lector.
  5. De acuerdo con la definición 22.3 y la proposición 20.2 tenemos que: \begin{align*} \operatorname{senh}(z) = \operatorname{senh}{(x+iy)} & = \frac{e^{x+iy} – e^{-x-iy}}{2}\\ & = \frac{e^{x}e^{iy} – e^{-x}e^{-iy}}{2}\\ & = \frac{e^{x}\left[\cos{(y)} + i\operatorname{sen}{(y)}\right] – e^{-x}\left[\cos{(-y)} + i\operatorname{sen}{(-y)}\right]}{2}\\ & = \frac{e^{x}\left[\cos{(y)} + i\operatorname{sen}{(y)}\right] – e^{-x}\left[\cos{(y)} – i\operatorname{sen}{(y)}\right]}{2}\\ & = \frac{\cos{(y)}\left[ e^{x} – e^{-x}\right] + i\operatorname{sen}{(y)}\left[e^{x}+e^{-x}\right]}{2}\\ & = \cos{(y)} \left( \frac{e^{x} – e^{-x}}{2}\right) + i \operatorname{sen}{(y)} \left( \frac{e^{x} + e^{-x}}{2}\right)\\ & =\operatorname{senh}(x) \operatorname{cos}(y) + i\operatorname{cosh}(x)\operatorname{sen}(y). \end{align*}
  6. Se deja como ejercicio al lector.

$\blacksquare$

Al igual que con las funciones trigonométricas complejas, para las funciones hiperbólicas complejas es posible deducir algunas identidades que resultan útiles al resolver algún problema. Podemos mencionar algunas en la siguiente:

Proposición 22.5. (Identidades funciones hiperbólicas.)
Sean $z, z_1, z_2\in\mathbb{C}$. Considerando el dominio de definición de cada una de las funciones trigonométricas, se cumple que:

  1. $\operatorname{senh}{(-z)} = -\operatorname{senh}{(z)}$.
  2. $\cosh{(-z)} = \cosh{(z)}$.
  3. $\tanh{(-z)} = -\tanh{(z)}$.
  4. Las funciones seno y coseno hiperbólicas son $2\pi i$-periódicas, mientras que la función tangente hiperbólica es $\pi i$-periódica.
  5. $\operatorname{senh}(z_1 \pm z_2) = \operatorname{senh}(z_1) \operatorname{cosh}(z_2) \pm \operatorname{senh}(z_2) \operatorname{cosh}(z_1)$.
  6. $\operatorname{cosh}(z_1 \pm z_2) = \operatorname{cosh}(z_1) \operatorname{cosh}(z_2) \pm \operatorname{senh}(z_1) \operatorname{senh}(z_2)$.
  7. $\tanh{(z_1 \pm z_2)} = \dfrac{\tanh(z_1)\pm \tanh(z_2)}{1\pm \tanh(z_1)\tanh(z_2)}$.
  8. $\operatorname{cosh}^2(z) – \operatorname{senh}^2(z) = 1$.
  9. $1-\operatorname{tanh}^2(z)= \operatorname{sech}^2(z)$.
  10. $\operatorname{coth}^2(z) – 1= \operatorname{csch}^2(z)$.

Demostración. Sean $z, z_1, z_2\in\mathbb{C}$, entonces:

  1. Por la definición 22.3 tenemos que: \begin{equation*} \operatorname{senh}(-z) = \frac{e^{-z} – e^{-(-z)}}{2} = -\left(\frac{e^{z} – e^{-z}}{2}\right) = -\operatorname{senh}{(z)}. \end{equation*}
  2. Por la definición 22.3 tenemos que: \begin{equation*} \cosh{(-z)} = \frac{e^{-z} + e^{-(-z)}}{2} = \frac{e^{-z} + e^{z}}{2} = \cosh{(z)}. \end{equation*}
  3. Se deja como ejercicio al lector.
  4. Considerando la definición 22.3 y la proposición 20.2, de la entrada 20, tenemos que: \begin{equation*} \operatorname{senh}{(z+2\pi i)} = \frac{e^{z+2\pi i} – e^{-(z+2\pi i)}}{2} = \frac{e^{z}e^{2\pi i} – e^{-z}e^{-2\pi i}}{2} = \frac{e^{z} – e^{-z}}{2} = \operatorname{senh}{(z)}, \end{equation*} \begin{equation*} \cosh{(z+2\pi i)} = \frac{e^{z+2\pi i} + e^{-(z+2\pi i)}}{2} = \frac{e^{z}e^{2\pi i} + e^{-z}e^{-2\pi i}}{2} = \frac{e^{z} + e^{-z}}{2} = \cosh{(z)}. \end{equation*} Si $z \neq i\left(k+\frac{1}{2}\right)\pi$, con $k\in\mathbb{Z}$, entonces: \begin{equation*} \tanh{(z+\pi i)} = \frac{\operatorname{senh}{(z+ \pi i)}}{\cosh{(z+\pi i)}} = \frac{e^z e^{\pi i} – e^{-z} e^{-\pi i}}{e^{z} e^{\pi i} + e^{-z} e^{-\pi i}} = \frac{e^z – e^{-z}}{e^{z} + e^{-z}} = \tanh{(z)}. \end{equation*}
  5. Se deja como ejercicio al lector.
  6. De acuerdo con la proposición 22.4 y la proposición 22.1(3), tenemos que: \begin{align*} \cosh{(z_1\pm z_2)} & = \cos{(iz_1 \pm i z_2)}\\ & = \operatorname{cos}(iz_1) \operatorname{cos}(iz_2) \mp \operatorname{sen}(iz_1) \operatorname{sen}(iz_2)\\ & = \operatorname{cos}(iz_1) \operatorname{cos}(iz_2) \pm \left[-i\operatorname{sen}(iz_1)\right] \left[-i\operatorname{sen}(iz_2)\right]\\ & = \operatorname{cosh}(z_1) \operatorname{cosh}(z_2) \pm \operatorname{senh}(z_1) \operatorname{senh}(z_2). \end{align*}
  7. Se deja como ejercicio al lector.
  8. De acuerdo con la definición 22.3 tenemos que: \begin{align*} \operatorname{cosh}^2(z) – \operatorname{senh}^2(z) & = \left( \frac{e^{z} + e^{-z}}{2} \right)^2 – \left( \frac{e^{z} – e^{-z}}{2} \right)^2\\ & = \frac{e^{2z} + 2e^{z}e^{-z} + e^{-2z} – e^{2z} + 2 e^{z} e^{-z} – e^{-2z}}{4}\\ & = \frac{4e^{z-z}}{4}\\ & = \frac{4}{4}\\ & = 1. \end{align*}
  9. Se deja como ejercicio al lector.
  10. Se deja como ejercicio al lector.

$\blacksquare$

Observación 22.5.
Recordemos que las funciones reales seno y coseno cumplen que: \begin{equation*} |\,\operatorname{sen}(x)\,| \leq 1, \quad |\,\cos(x)\,| \leq 1, \quad \forall x\in\mathbb{R}, \end{equation*} es decir son funciones acotadas.

Es interesante notar que en el caso complejo las funciones seno y coseno no son acotadas. De acuerdo con la proposición 22.1 y la proposición 22.5 tenemos que: \begin{align*} |\,\operatorname{sen}(z)\,| & = \sqrt{\operatorname{sen}^2(x) \cosh^2(y) + \cos^2(x) \operatorname{senh}^2(y)}\\ & = \sqrt{\operatorname{sen}^2(x) \left[1 + \operatorname{senh}^2(y)\right] + \cos^2(x) \operatorname{senh}^2(y)}\\ & = \sqrt{\operatorname{sen}^2(x) + \left[\cos^2(x) + \operatorname{sen}^2(x)\right] \operatorname{senh}^2(y)}\\ & = \sqrt{\operatorname{sen}^2(x) + \operatorname{senh}^2(y)}. \end{align*}

Análogamente tenemos que: \begin{equation*} |\,\cos(z)\,| = \sqrt{\cos^2(x) + \operatorname{senh}^2(y)}. \end{equation*}

Como la función real seno hiperbólico no es acotada, se tiene que si $y \to \infty$, entonces $\operatorname{senh}(y) \to \infty$, por lo que no existe constante real $M>0$ tal que $|\,\operatorname{sen}(z)\,| < M$ ó $|\,\cos(z)\,| < M$ para todo $z\in\mathbb{C}$.

Ejemplo 22.7.
Muestra que para todo $z=x+iy\in\mathbb{C}$ se cumple que: \begin{equation*} |\,\operatorname{senh}(y)\,| \leq |\,\operatorname{sen}(z)\,| \leq \cosh(y),\quad |\,\operatorname{senh}(y)\,| \leq |\,\cos(z)\,| \leq \cosh(y). \end{equation*}

Solución. Sea $z=x+iy\in\mathbb{C}$. Por la observación anterior tenemos que: \begin{equation*} |\,\operatorname{sen}(z)\,|^2 = \operatorname{sen}^2(x) + \operatorname{senh}^2(y), \quad |\,\cos(z)\,|^2 = \cos^2(x) + \operatorname{senh}^2(y), \end{equation*} de donde: \begin{equation*} \operatorname{senh}^2(y) = |\,\operatorname{sen}(z)\,|^2 – \operatorname{sen}^2(x) \leq |\,\operatorname{sen}(z)\,|^2. \end{equation*}

Por otra parte, de la proposición 22.4 se sigue que: \begin{align*} |\,\operatorname{sen}(z)\,|^2 & = \operatorname{sen}^2(x) + \operatorname{senh}^2(y)\\ & = \operatorname{sen}^2(x) + \left(\cosh^2(y) -1\right)\\ & = \cosh^2(y) – \left(1 – \operatorname{sen}^2(x)\right)\\ & = \cosh^2(y) – \cos^2(x)\\ & \leq \cosh^2(y). \end{align*}

Considerando lo anterior es claro que: \begin{equation*} \operatorname{senh}^2(y) \leq |\,\operatorname{sen}(z)\,|^2 \leq \cosh^2(y). \end{equation*}

Dado que para todo $x\in\mathbb{R}$ se cumple que $\cosh(x)>0$, entonces tomando raíz cuadrada en la desigualdad anterior tenemos que: \begin{equation*} |\,\operatorname{sen}(y)\,| \leq |\,\operatorname{sen}(z)\,| \leq \cosh(y). \end{equation*}

De manera análoga, como: \begin{equation*} \operatorname{senh}^2(y) = |\,\cos(z)\,|^2 – \cos^2(x) \leq |\,\cos(z)\,|^2 \end{equation*} y \begin{align*} |\,\cos(z)\,|^2 & = \cos^2(x) + \operatorname{senh}^2(y)\\ & = \cos^2(x) + \left(\cosh^2(y) -1\right)\\ & = \cosh^2(y) – \left(1 – \cos^2(x)\right)\\ & = \cosh^2(y) – \operatorname{sen}^2(x)\\ & \leq \cosh^2(y), \end{align*} entonces: \begin{equation*} \operatorname{senh}^2(y) \leq |\,\operatorname{sen}(z)\,|^2 \leq \cosh^2(y), \end{equation*} de donde se sigue el resultado al tomar raíz cuadrada en la desigualdad anterior.

Ejemplo 22.8.
Determina todas las soluciones de la ecuación $\cosh(z) = -2$.

Solución. Podemos resolver este problema mediante un planteamiento similar al del ejemplo 22.2, sin embargo, a fin de mostrar otra alternativa procedemos mediante la definición de la función coseno hiperbólico.

Sea $z\in\mathbb{C}$, entonces: \begin{align*} \cosh{(z)} = -2 \quad & \Longleftrightarrow \quad \frac{e^{z} + e^{-z}}{2} = -2,\\ & \Longleftrightarrow \quad e^{z} + e^{-z} = -4,\\ & \Longleftrightarrow \quad e^{z}e^{z} + e^{-z}e^{z} +4e^{z} = 0,\\ & \Longleftrightarrow \quad \left(e^{z}\right)^2 +4e^{z} + 1 = 0. \end{align*}

Resolvemos la ecuación cuadrática para $e^{z}$, entonces: \begin{equation*} e^z = \frac{-4\pm\sqrt{4^2-4(1)(1)}}{2(1)} = \frac{-4\pm\sqrt{3}}{2} = -2\pm\sqrt{3}. \end{equation*}

Para determinar los valores de $z$ que satisfacen esta última igualdad utilizaremos el logaritmo complejo. Dado que las raíces obtenidas son ambas reales y negativas, tenemos que: \begin{equation*} \operatorname{Arg}\left(-2\pm\sqrt{3}\right) = \pi, \end{equation*} entonces: \begin{equation*} \arg\left(-2\pm\sqrt{3}\right) = \pi + 2\pi n = \pi(2n + 1), \quad n\in\mathbb{Z}. \end{equation*}

Consideremos a la primera raíz, es decir $e^z = -2+\sqrt{3}$, entonces: \begin{equation*} z = \log(-2+\sqrt{3}) = \ln\left(\left|-2+\sqrt{3}\right|\right) + i \arg\left(-2+\sqrt{3}\right). \end{equation*}

Notemos que: \begin{equation*} \ln{\left(\left| – 2 + \sqrt{3} \right| \right)} = \ln{\left(\left|\frac{\left[- 2 + \sqrt{3} \, \right] \left[2 + \sqrt{3} \, \right]}{2 + \sqrt{3}}\right|\right)} = \ln{\left(\left|\frac{1}{2 + \sqrt{3}}\right|\right)} = – \ln{\left(\left|2 + \sqrt{3}\right|\right)} = – \ln{\left(2 + \sqrt{3}\right)}, \end{equation*} por lo que: \begin{equation*} z = \log(-2+\sqrt{3}) = – \ln{\left(2 + \sqrt{3}\right)} + i\pi(2n + 1), \quad n\in\mathbb{Z}. \end{equation*}

Consideremos ahora a la segunda raíz, es decir $e^z = -2-\sqrt{3}$, entonces: \begin{equation*} z = \log(-2-\sqrt{3}) = \ln\left(\left|-2-\sqrt{3}\right|\right) + i \arg\left(-2-\sqrt{3}\right). \end{equation*}

Pero tenemos que:
\begin{equation*} \ln{\left(\left| – 2 – \sqrt{3} \right| \right)} = \ln{\left(\left| 2 + \sqrt{3} \right| \right)} = \ln{\left(2 + \sqrt{3}\right)}, \end{equation*} de donde: \begin{equation*} z = \log(-2-\sqrt{3}) =\ln{\left(2 + \sqrt{3}\right)} + i\pi(2n + 1), \quad n\in\mathbb{Z}. \end{equation*}

Por lo tanto, las soluciones de la ecuación $\cosh(z) = -2$ son: \begin{equation*} z = \pm \ln{\left(2 + \sqrt{3}\right)} + i\pi(2n + 1), \quad n\in\mathbb{Z}. \end{equation*}

Proposición 22.4. (Derivadas de las funciones hiperbólicas.)
Considerando el dominio de definición de cada una de las funciones hiperbólicas complejas, tenemos que:

  1. $\operatorname{senh}(z)$ y $\operatorname{cosh}(z)$ son funciones enteras y sus derivadas son, respectivamente: \begin{equation*} \frac{d}{dz} \operatorname{senh}(z) = \operatorname{cosh}(z), \quad \frac{d}{dz} \operatorname{cosh}(z) = \operatorname{senh}(z). \end{equation*}
  2. Para $z \neq i\left(k + \frac{1}{2}\right)\pi$, con $k \in \mathbb{Z}$, las funciones $\operatorname{tanh}(z)$ y $\operatorname{sech}(z)$ son analíticas y se tiene que: \begin{equation*} \frac{d}{dz} \operatorname{tanh}(z) = \operatorname{sec}^2(z), \quad \frac{d}{dz} \operatorname{sech}(z) = \operatorname{sec}(z)\operatorname{tan}(z). \end{equation*}
  3. Para $z \neq i k\pi$, con $k \in \mathbb{Z}$, las funciones $\operatorname{coth}(z)$ y $\operatorname{csch}(z)$ son analíticas y se tiene que: \begin{equation*} \frac{d}{dz} \operatorname{coth}(z) = – \operatorname{csch}^2(z), \quad \frac{d}{dz} \operatorname{csch}(z) = -\operatorname{csch}(z)\operatorname{coth}(z). \end{equation*}

Demostración.

  1. Como las funciones $\operatorname{senh}(z)$ y $\operatorname{cosh}(z)$ están definidas en términos de la función exponencial compleja, la cual es una función entera, entonces es claro que ambas funciones son enteras. Considerando la regla de la cadena para cada una de las funciones tenemos que: \begin{align*} \frac{d}{dz} \operatorname{senh}(z) & = \frac{d}{dz} \left( \frac{e^{z} – e^{-z}}{2} \right)\\ & = \frac{\frac{d}{dz} e^{z} – \frac{d}{dz} e^{-z}}{2}\\ & = \frac{e^{z} + e^{-z}}{2}\\ & = \cosh{(z)}. \end{align*} \begin{align*} \frac{d}{dz} \operatorname{cosh}(z) & = \frac{d}{dz} \left( \frac{e^{z} + e^{-z}}{2} \right)\\ & = \frac{\frac{d}{dz} e^{z} + \frac{d}{dz} e^{-z}}{2}\\ & = \frac{e^{z} – e^{-z}}{2}\\ & = \operatorname{senh}(z). \end{align*}
  2. Se deja como ejercicio al lector.
  3. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 22.9.
Analicemos la analicidad de la función $f(z) = \cosh\left(iz+e^{iz}\right)$ y obtengamos $f'(z)$.

Solución. Notemos que si consideramos a $g(z) = \cosh(z)$ y $h(z) = iz+e^{iz}$, entonces $f = g\circ h$.

Es claro que $h$ y $g$ son ambas funciones enteras, por lo que $f$ es también una función entera. Más aún, para $z\in\mathbb{C}$, por la regla de la cadena tenemos que: \begin{equation*} f'(z) = g'(h(z))h'(z) = \operatorname{senh}(iz+e^{iz}) \left(i + ie^{iz}\right). \end{equation*}

Tarea moral

  1. Completa las demostraciones de la proposiciones de esta entrada.
  2. Determina el valor de cada una de las siguientes funciones trigonométricas e hiperbólicas en su forma $a+ib$.
    a) $\operatorname{tan}(2i)$.
    b) $\operatorname{sec}\left(\frac{\pi}{2}-i\right)$.
    c) $\operatorname{csc}(1+i)$.
    d) $\operatorname{cosh}\left(1+\frac{\pi}{6}i\right)$.
    e) $\operatorname{senh}\left(\frac{\pi}{2}i\right)$.
    f) $\operatorname{tanh}\left(2+3i\right)$.
  3. Muestra que para todo $z\in\mathbb{C}$ se cumple que: \begin{equation*} \operatorname{cos}\left(\overline{z}\right) = \overline{\operatorname{cos}(z)}, \quad \operatorname{sen}\left(\overline{z}\right) = \overline{\operatorname{sen}(z)}. \end{equation*}
  4. Sea $z \in \mathbb{C}$, muestra que: \begin{align*} \operatorname{senh}(z) = 0 \quad \Longleftrightarrow \quad z = ik\pi, \quad k\in\mathbb{Z},\\ \operatorname{cosh}(z) = 0 \quad \Longleftrightarrow \quad z = i\left(k+\frac{1}{2}\right)\pi, \quad k\in\mathbb{Z}. \end{align*} Hint: Utiliza la proposición 22.3.
  5. Para cada inciso prueba lo que se te pide.
    a) Para $z\in\mathbb{C}$, con $z\neq 1$, y para $n\in\mathbb{N}$, muestra que: \begin{equation*} 1 + z + z^2 + \cdots + z^n = \frac{1 – z^{n+1}}{1-z}. \end{equation*} b) Considera a $z=e^{i\theta}$, para $\theta \in\mathbb{R}$ tal que $\theta \neq 2\pi k$, con $k\in\mathbb{Z}$ y muestra que: \begin{equation*} 1 + e^{i\theta} + e^{i2\theta} + \cdots + e^{i n\theta} = \frac{i}{2} \frac{\left(1 – e^{i(n+1)\theta}\right)e^{-i \frac{\theta}{2}}}{\operatorname{sen}\left(\frac{\theta}{2}\right)}. \end{equation*} Hint: Sustituye en (a) $z=e^{i\theta}$, después multiplica y divide por $e^{-i\frac{\theta}{2}}$ y utiliza (22.4).
    c) Toma la parte real e imaginaria de la identidad obtenida en (b) y concluye que: \begin{equation*} \frac{1}{2} + \operatorname{cos}(\theta) + \operatorname{cos}(2\theta) + \cdots + \operatorname{cos}(n \theta) = \frac{\operatorname{sen}\left(\left[n+\frac{1}{2}\right]\theta\right)}{2\operatorname{sen}\left(\frac{\theta}{2}\right)}, \end{equation*} \begin{equation*} \operatorname{sen}(\theta) + \operatorname{sen}(2\theta) + \cdots + \operatorname{sen}(n \theta) = \frac{\operatorname{cos}\left(\frac{\theta}{2}\right) – \operatorname{cos}\left(\left[n+\frac{1}{2}\right]\theta\right)}{2\operatorname{sen}\left(\frac{\theta}{2}\right)}. \end{equation*} La suma $D_n(\theta) = 1 + 2\operatorname{cos}(\theta) + 2\operatorname{cos}(2\theta) + \cdots + 2\operatorname{cos}(n \theta)$ es llamada el núcleo de Dirichlet y juega un papel importante en la teoría de las series de Fourier.
  6. Obtén la parte real e imaginaria de las siguientes funciones:
    a) $f(z) = \operatorname{sen}(2z)$.
    b) $f(z) = z\operatorname{cos}(z)$.
    c) $f(z) = \operatorname{cos}(z^2)$.
    d) $f(z) = \operatorname{tan}(z)$.
  7. Determina el dominio de analicidad de las siguientes funciones y obtén su derivada.
    a) $f(z) = z \tan\left(\frac{1}{z}\right)$.
    b) $f(z) = \cos \left(i e^z\right)$.
    c) $f(z) = \sec \left(z^2\right)$.
    d) $f(z) = \operatorname{sen}(z) \operatorname{senh}{(z)} $.
    e) $f(z) = \tanh{ \left(iz-2\right)}$.
  8. Resuelve las siguientes ecuaciones.
    a) $\cos{(z)} = i \operatorname{sen}{(z)}$.
    b) $\cosh{(z)} = i$.
    c) $\cos{(z)} = 4$.
    d) $ \operatorname{senh}{(z)} = -1$.
  9. ¿Dónde son diferenciables las siguientes funciones? ¿Son analíticas?
    a) $f(z) = \operatorname{sen} \left(|\,z\,|^2\right)$.
    b) $f(z) = \dfrac{e^z}{\operatorname{cos}(z)}$.
  10. Prueba que la función: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} 1 & \text{si} & z = 0, \\ \\ z^{-1} \operatorname{sen}(z) & \text{si} & z\neq 0, \end{array} \right. \end{equation*} es una función continua en $\mathbb{C}$.

Más adelante…

En esta entrada hemos extendido a $\mathbb{C}$ las funciones trigonométricas e hiperbólicas reales a través de la función exponencial compleja. Es interesante notar que a diferencia del caso real, para el caso complejo es posible definir a las funciones elementales a través de las funciones complejas exponencial y logaritmo, mediante las cuales es claro que muchas de las propiedades como continuidad, diferenciabilidad y analicidad, entre otras, se heredan de manera natural a las funciones elementales.

Vimos que muchas de las propiedades con las que estamos familiarizados para el caso real, se cumplen también para el caso complejo. Sin embargo, a diferencia del caso real, las funciones trigonométricas complejas no son acotadas, mientras que las funciones hiperbólicas complejas son periódicas y tienen una infinidad de ceros.

La siguiente entrada analizaremos a las funciones inversas de las funciones complejas trigonométricas e hiperbólicas vistas en esta sección, recordando nuevamente el concepto de función multivaluada.

Entradas relacionadas

Variable Compleja I: Consecuencias de las ecuaciones de Cauchy-Riemann

Por Pedro Rivera Herrera

Introducción

En las entradas anteriores hemos determinado condiciones necesarias y suficientes para garantizar la analicidad de una función compleja. En particular hemos deducido las ecuaciones de C-R y hemos visto que dichas condiciones nos permiten caracterizar por completo la diferenciabilidad en el sentido complejo. Además, a través de dichas ecuaciones hemos probado que la diferenciabilidad en el sentido real de una función vectorial de dos variables no es equivalente a la diferenciabilidad de una función compleja, por lo que debe ser claro que no toda función vectorial de dos variables resultará ser una función analítica.

En esta entrada abordaremos algunos resultados que son consecuencia directa de las ecuaciones de C-R y veremos que es posible extender algunas resultados vistos en nuestros cursos de Cálculo para las funciones complejas a través de las funciones reales correspondientes con las partes real e imaginaria de una función compleja.

Observación 19.1.
De nuestros cursos de Cálculo sabemos que para una función $u:U \to \mathbb{R}$ de clase $C^1$, con $U\subset\mathbb{R}^2$ una región, se cumple que $u$ no depende de la variable $x$ si y solo si $\partial u/ \partial x = 0$ para todo punto en $U$. Análogamente para la variable $y$. Más aún, tenemos que: \begin{align*} \frac{\partial}{\partial x} x = 1, \quad \frac{\partial}{\partial y} x = 0,\\ \frac{\partial}{\partial x} y = 0, \quad \frac{\partial}{\partial y} y = 1. \end{align*}

Para motivar los siguientes planteamientos consideremos el siguiente:

Ejemplo 19.1.
Determinemos si la función compleja $f(z) = 2xy + i(y^2-x^2)$ es analítica o no.

Solución. Es claro que podemos estudiar la analicidad de esta función a través de los resultados de la entrada anterior, sin embargo notemos que operando un poco a la función, para $z=x+iy\in \mathbb{C}$, tenemos que: \begin{align*} f(z) & = 2xy + i(y^2-x^2)\\ & = -i(i2xy) + i(y^2-x^2)\\ & = -i \left[-(y^2-x^2) + i2xy \right]\\ & = -i \left(x^2 -y^2 + i2xy \right)\\ & = – i\left(x+iy\right)^2\\ & = -i z^2, \end{align*} es decir que para todo $z\in \mathbb{C}$ se tiene que $f(z) = -iz^2$, la cual es una función polinómica y por tanto analítica en todo $\mathbb{C}$. Es importante notar que en la función anterior no aparecen términos que dependan del conjugado de $z$.

Debe ser claro que el conjugado de un número complejo $z$, es decir $\overline{z}$, resulta ser una función compleja de la variable $z$. En el ejemplo 17.2, de la entrada 17, hemos visto que la función $f(z)=\overline{z}$ no es analítica en $\mathbb{C}$ desde que no se cumplen las ecuaciones de C-R en ningún punto. Sin embargo, esta función en particular cumple que $u_x = – v_y$ y $u_y = v_x$ para todo $z=x+iy\in \mathbb{C}$.

De acuerdo con la observación 12.5 de la entrada 12, estamos interesados en caracterizar a las funciones complejas que solo dependen de la variable $z$, es decir que no tienen términos que dependan de su conjugado.

Lo anterior nos motiva a considerar a $\overline{z} = x-iy$ como una variable «independiente» de $z=x+iy$. Entonces, nuestro objetivo es determinar un criterio similar al de la observación 19.1 para garantizar la analicidad de una función compleja $f$ cuando esta dependa únicamente de la variable $z$. Tenemos que si $z$ y $\overline{z}$ son variables independientes, entonces: \begin{align*} \frac{\partial}{\partial z} z = 1, \quad \frac{\partial}{\partial \overline{z}} z = 0,\\ \frac{\partial}{\partial z} \overline{z} = 0, \quad \frac{\partial}{\partial \overline{z}} \overline{z} = 1. \end{align*}

Como para todo $z=x+iy\in\mathbb{C}$ se cumple que: \begin{equation*} x = \frac{z+\overline{z}}{2}, \quad y = \frac{z-\overline{z}}{2i}, \tag{19.1} \end{equation*} entonces, dada una función compleja $f(z)=u(x,y) + iv(x,y)$ definida en un conjunto abierto $U\subset \mathbb{C}$ de clase $C^1$, podemos pensarla como una función de las variables independientes $x$ e $y$ o bien de las variables «independientes» $z$ y $\overline{z}$, y así definir: \begin{equation*} g(z,\overline{z}) = \hat{f}(x,y):= f(z) = u\left( \frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}\right) + i v\left( \frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}\right). \end{equation*}

Lo anterior resulta de gran utilidad al considerar a $z$ y $\overline{z}$ como variables independientes, ya que bajo este supuesto podemos obtener a las derivadas parciales complejas $g_z$ y $g_{\overline{z}}$ mediante la regla de la cadena como sigue: \begin{align*} g_{z} = \frac{\partial g}{\partial z} = \frac{\partial g}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial g}{\partial y} \frac{\partial y}{\partial z} = \frac{1}{2}\left(\frac{\partial g}{\partial x} – i \frac{\partial g}{\partial y} \right),\\ g_{\overline{z}} = \frac{\partial g}{\partial \overline{z}} = \frac{\partial g}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial g}{\partial y} \frac{\partial y}{\partial \overline{z}} = \frac{1}{2}\left(\frac{\partial g}{\partial x} + i \frac{\partial g}{\partial y} \right). \end{align*}

De lo anterior obtenemos la siguiente:

Definición 19.1. (Operadores diferenciales complejos de Wirtinger.)
Sea $U\subset \mathbb{C}$ un conjunto abierto y $f(z)=u(x,y)+iv(x,y)$ una función compleja definida en $U$ de clase $C^1$. Definimos los operadores direrenciales complejos de Wirtinger como: \begin{align*} f_z := \frac{\partial f}{\partial z} = \frac{1}{2}\left(\frac{\partial f}{\partial x} – i \frac{\partial f}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u }{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x} – \frac{\partial u}{\partial y} \right),\\ f_{\overline{z}} := \frac{\partial f}{\partial \overline{z}} = \frac{1}{2}\left(\frac{\partial f}{\partial x} + i \frac{\partial f }{\partial y} \right) = \frac{1}{2} \left(\frac{\partial u }{\partial x} – \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x} + \frac{\partial u}{\partial y} \right). \end{align*}

Observación 19.2.
Notemos que la condición $\dfrac{\partial f}{\partial \overline{z}} =0$, intuitivamente nos dice que la función $f$ no depende de la variable $\overline{z}$ como lo planteamos inicialmente. Más aún, considerando la definición anterior se tiene el siguiente:

Lema 19.1.
Sean $U \subset \mathbb{C}$ un conjunto abierto y $f(z) = u(x,y) + iv(x,y)$ una función definida en $U$ de clase $C^1$. Entonces $u$ y $v$ satisfacen las ecuaciones de C-R en $U$ si y solo si $\dfrac{\partial f}{\partial \overline{z}} =0$ para todo $z=x+iy\in U$.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 19.2.
Sea $z\in\mathbb{C}$. Consideremos a la función $f(z) = |\,z\,|$. Determinemos a la función $g(z,\overline{z})$ y a las derivadas parciales $f_z$ y $f_{\overline{z}}$.

Solución. Tenemos que $f(z) = |\,z\,| = \left(z \overline{z}\right)^{1/2}$, por lo que $g(z,\overline{z}) = \left(z \overline{z}\right)^{1/2}$.

Por otra parte, si $z\neq 0$, entonces: \begin{align*} f_z(z) = \frac{\partial g}{\partial z}(z,\overline{z}) = \frac{1}{2}\left(z \overline{z}\right)^{-1/2} \overline{z} = \frac{\overline{z}}{2|\,z\,|},\\ f_{\overline{z}}(z) = \frac{\partial g}{\partial \overline{z}}(z,\overline{z}) = \frac{1}{2}\left(z \overline{z}\right)^{-1/2} z = \frac{z}{2|\,z\,|}. \end{align*}

Observación 19.2.
De acuerdo con el ejercicio 7 de la entrada 16, sabemos que la función $f(z)=|\,z\,|$ no es analítica en ningún punto de $\mathbb{C}$. Podemos analizar esto mediante el lema anterior.

Para $z = 0$ es claro que $f$ no es diferenciable en dicho punto desde que no existe: \begin{equation*} \lim_{h \to 0 } \frac{f(0+h) – f(0)}{h} = \lim_{h \to 0 } \frac{|h|}{h}. \end{equation*}

Por otra parte, para $z\neq 0$ se tiene que: \begin{equation*} \frac{\partial f}{\partial \overline{z}} = 0 \quad \Longleftrightarrow \quad \frac{z}{2|\,z\,|} = 0 \quad \Longleftrightarrow \quad z = 0, \end{equation*} lo cual claramente no es posible, por lo que no se satisfacen las ecuaciones de C-R para ningún $z\neq 0$, es decir que $f$ no es analítica en ningún punto de $\mathbb{C}$.

El ejemplo anterior motiva la siguiente:

Proposición 19.1.
Sean $U\subset \mathbb{C}$ un conjunto abierto y $f(z)=u(x,y)+iv(x,y)$ una función definida en $U$ de clase $C^1$. Las siguientes condiciones son equivalentes:

  1. $f$ es analítica en $U$.
  2. $\dfrac{\partial f}{\partial \overline{z}} = 0$ para todo $z_0\in U$. En tal caso: \begin{equation*} f'(z_0) = \frac{\partial f}{\partial z} (z_0) = \frac{\partial f}{\partial x} (z_0) = -i\frac{\partial f}{\partial y} (z_0), \quad z_0 \in U. \end{equation*}

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Observación 19.3.
La trascendencia de este resultado radica en que podemos pensar a las funciones analíticas como «auténticas funciones complejas» en el sentido de que si $f(z) = u(x,y) + iv(x,y)$ es una función analítica, entonces al sustituir a las variables $x$ e $y$ por $\dfrac{z+\overline{z}}{2}$ y $\dfrac{z-\overline{z}}{2i}$ respectivamente, dicha función no depende de la variable $\overline{z}$ como mencionamos en la observación 19.2.

Ejemplo 19.3.
Consideremos a la función compleja $f(z) = |\,z\,|^2 + \dfrac{z}{\overline{z}}$. Veamos que $f$ no es analítica en ningún punto en $\mathbb{C}$, determinemos dónde $f$ es al menos diferenciable y obtengamos a las derivadas parciales $f_z$ y $f_{\overline{z}}$.

Solución. La función $f$ está definida en el dominio $U = \mathbb{C}\setminus\{0\}$. Para $z=x+iy \in U$ tenemos que: \begin{align*} f(z) & = |\,z\,|^2 + \frac{z}{\overline{z}}\\ & = |\,z\,|^2 + \frac{z^2}{|\,z\,|^2}\\ & = x^2 + y^2 + \frac{x^2+2ixy -y^2}{x^2 + y^2}\\ & = \left(x^2 + y^2 + \frac{x^2 -y^2}{x^2 + y^2}\right) + i \left(\frac{2xy}{x^2 + y^2}\right)\\ & := u(x,y) + i v(x,y). \end{align*}

Para mostrar la utilidad de obtener las derivadas parciales complejas pensando a $f$ como una función $g$ de las variables $z$ y $\overline{z}$, primeramente procedemos a obtener las derivadas parciales $f_z$ y $f_{\overline{z}}$ mediante la definición 19.1.

Derivamos parcialmente a las funciones $u$ y $v$. Sea $z = x+iy \neq 0$, entonces:
\begin{align*} \frac{\partial u}{\partial x} = \frac{2x^5 + 4x^3y^2 + 2xy^4 + 4xy^2}{(x^2+y^2)^2},\\ \frac{\partial u}{\partial y} = \frac{2y^5 + 4y^3x^2 + 2yx^4 – 4yx^2}{(x^2+y^2)^2}, \end{align*} \begin{align*} \frac{\partial v}{\partial x} = \frac{2y^3-2yx^2}{(x^2+y^2)^2},\\ \frac{\partial v}{\partial y} = \frac{2x^3 – 2xy^2}{(x^2+y^2)^2}. \end{align*}

Por tanto, para $z\neq 0$ tenemos que: \begin{align*} \frac{\partial f}{\partial z} & = \frac{1}{2} \left(\frac{\partial u }{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x} – \frac{\partial u}{\partial y} \right),\\ & = \left(x + \frac{x}{x^2+y^2}\right) – i \left(y – \frac{y}{x^2+y^2} \right), \end{align*} \begin{align*} \frac{\partial f}{\partial \overline{z}} &= \frac{1}{2} \left(\frac{\partial u }{\partial x} – \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x} + \frac{\partial u}{\partial y} \right)\\ & = \left(x + \frac{3xy^2 – x^3}{(x^2+y^2)^2}\right) + i \left(y – \frac{3x^2y – y^3}{(x^2+y^2)^2} \right). \end{align*}

Considerando las igualdades dadas en (19.1), tenemos que: \begin{equation*} f_z = \overline{z} + \frac{1}{\overline{z}}, \quad \text{y} \quad f_{\overline{z}} = z – \frac{z}{\overline{z}^2}. \end{equation*}

Notemos que podemos evitar todo el desarrollo anterior si consideramos que: \begin{align*} f(z) & = |\,z\,|^2 + \dfrac{z}{\overline{z}}\\ & = z \overline{z} + \dfrac{z}{\overline{z}}\\ & := g(z,\overline{z}), \quad \forall z \neq 0, \end{align*}

entonces para todo $z\neq 0$ existen las derivadas parciales complejas: \begin{align*} f_z = \frac{\partial g}{\partial z} = \overline{z} + \frac{1}{\overline{z}},\\ f_{\overline{z}} = \frac{\partial g}{\partial \overline{z}} = z – \frac{z}{\overline{z}^2}. \end{align*}

De estas últimas expresiones es claro que las funciones $f_z$ y $f_{\overline{z}}$ son continuas en $U = \mathbb{C}\setminus\{0\}$, por lo que lo son también las derivadas parciales $u_x$, $u_y$, $v_x$ y $v_y$ , es decir que $f$ es de clase $C^1(U)$.

Por otra parte, dado que: \begin{equation*} \frac{\partial f}{\partial \overline{z}} = 0 \quad \Longleftrightarrow \quad z – \frac{z}{\overline{z}^2} = 0 \quad \Longleftrightarrow \quad \overline{z}^2 = 1 \quad \Longleftrightarrow \quad z = \pm 1, \end{equation*} entonces $f$ solo es diferenciable en los puntos $z=1$ y $z=-1$. Puesto que no existe disco abierto alrededor de dichos puntos donde $f$ sea diferenciable, concluimos que $f$ no es analítica en ningún punto en $\mathbb{C}$.

Observación 19.4.
Debe ser claro que si tenemos una función compleja $f$ diferenciable en un punto $z_0$, entonces se cumple que $f_{\overline{z}}(z_0) = 0$. Sin embargo, debemos enfatizar en que la existencia de $f_{\overline{z}}(z_0)$ no garantiza la existencia de $f'(z_0)$, desde que las ecuaciones de C-R no son una condición suficiente para la diferenciabilidad en el sentido complejo.

Ejemplo 19.4.
Consideremos el ejercicio 6 de la entrada 17. Tenemos que la función: \begin{equation*} f(z)= \left\{\begin{array}{lcc} \dfrac{z^5}{|\,z\,|^4}& \text{si} & z\neq 0, \\ 0 & \text{si} & z = 0, \end{array} \right. \end{equation*} satisface las ecuaciones de C-R en $z=0$, pero $f'(0)$ no existe.

Notemos que para $z=x+iy \neq 0$ tenemos que: \begin{equation*} f(z) = \frac{x^5-10x^3y^2 + 5xy^4}{(x^2+y^2)^2} + i \left(\frac{x^4-10x^2y^3 + y^5}{(x^2+y^2)^2}\right), \end{equation*} por lo que: \begin{align*} \frac{\partial u }{\partial x}(0,0) = \lim_{h \to 0} \frac{u(h,0) – u(0,0)}{h} = 0\\ \frac{\partial u }{\partial y}(0,0) = \lim_{k \to 0} \frac{u(0,k) – u(0,0)}{k} = 0\\ \frac{\partial v}{\partial x}(0,0) = \lim_{h \to 0} \frac{v(h,0) – v(0,0)}{h} = 0\\ \frac{\partial v}{\partial y}(0,0) = \lim_{k \to 0} \frac{v(0,k) – u(0,0)}{k} = 0, \end{align*}

entonces, considerando la definición 19.1, tenemos que: \begin{align*} \frac{\partial f}{\partial z}(0,0) = \frac{1}{2} \left(\frac{\partial u }{\partial x}(0,0) + \frac{\partial v}{\partial y}(0,0) \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x}(0,0) – \frac{\partial u}{\partial y}(0,0) \right) = 0,\\ \frac{\partial f}{\partial \overline{z}} (0,0)= \frac{1}{2} \left(\frac{\partial u }{\partial x}(0,0) – \frac{\partial v}{\partial y}(0,0) \right) + \frac{i}{2} \left(\frac{\partial v }{\partial x}(0,0) + \frac{\partial u}{\partial y}(0,0) \right) = 0, \end{align*}

es decir que $f_z(0,0) = f_{\overline{z}}(0,0) = 0$. Sin embargo, notemos que para $z\neq 0$ se tiene que: \begin{align*} \lim_{z\to 0} \frac{f(z) – f(0)}{z-0} & = \lim_{z\to 0} \frac{z^4}{|\,z\,|^4}\\ & = \lim_{z\to 0} \frac{z^2}{\overline{z}^2}, \end{align*} pero dicho límite no existe pues si nos aproximamos a $0$ a través de la recta $y=x$ tenemos que: \begin{align*} \lim_{z\to 0} \frac{f(z) – f(0)}{z-0} & = \lim_{x\to 0} \frac{x^2 \left(1+i\right)^2}{x^2 \left(1-i\right)^2}\ & = \left(\frac{ 1+i}{1-i}\right)^2 = -1, \end{align*}

mientras que si nos aproximamos a $0$ a través del eje $x$ tenemos que: \begin{equation*} \lim_{z\to 0} \frac{f(z) – f(0)}{z-0} = \lim_{x\to 0} \frac{\left(x + i0\right)^2}{\left(x-i0\right)^2} = 1, \end{equation*} por lo que $f'(0)$ no existe.

El resultado obtenido en este ejemplo no contradice el teorema 18.1 de la entrada anterior ni a la proposición 19.1 de esta entrada, sino que en ambos casos no se cumple la hipótesis de continuidad de las derivadas parciales de las funciones $u$ y $v$ que determinan a $f$.

Lema 19.2.
Sea $D\subset\mathbb{R}^2$ un conjunto abierto y conexo. Si $u:D\to\mathbb{R}$ es una función real tal que $u_x(z) = u_y(z) = 0$ para todo $z=(x,y)\in D$, entonces $u$ es una función constante en $D$.

Demostración. Dadas las hipótesis, tomemos a $z_0=(x_0,y_0)\in D$ fijo, entonces existe algún $r>0$ tal que $B(z_0,r)\subset D$. Sea $z=(x,y)\in B(z_0,r)$, procediendo como en la prueba del teorema 18.1 de la entrada anterior, concluimos, por el teorema del valor intermedio para funciones reales, que existen $\alpha, \beta\in(0,1)$, tales que:
\begin{align*} u(z)-u(z_0) & = u(x,y)-u(x_0,y_0)\\ & = (x-x_0) u_x(x_0+\alpha(x-x_0),y) + (y-y_0) u_y(x_0, y_0+\beta(y-y_0)).\tag{19.2} \end{align*}

Sean $\zeta_1 = (x_0+\alpha(x-x_0),y)$ y $\zeta_2 = (x_0,y_0+\beta(y-y_0))$, para algunos $\alpha, \beta\in(0,1)$. Es claro que, figura 75: \begin{equation*} \left| \zeta_1 – z_0 \right| \leq \left| z – z_0 \right|<r, \quad \left| \zeta_2 – z_0\right| \leq \left| z – z_0 \right|<r, \end{equation*} por lo que, la igualdad en (19.2) es equivalente a decir que existen $\zeta_1, \zeta_2 \in B(z_0,r)$ tales que: \begin{equation*} u(z)-u(z_0) = (x-x_0) u_x(\zeta_1) + (y-y_0) u_y(\zeta_2). \tag{19.3} \end{equation*}

Figura 75: $\zeta_1, \zeta_2 \in B(z_0,r)$ dados por el segmento de recta $[z_0, z]$ contenido en el disco abierto con centro en $z_0$ y radio $r>0$.

De acuerdo con la igualdad (19.3), como $\zeta_1, \zeta_2 \in D$, entonces por hipótesis se cumple que: \begin{equation*} u(z)-u(z_0) = (x-x_0) \cdot 0 + (y-y_0) \cdot 0 = 0, \end{equation*} por lo que para todo $z\in B(z_0, r)$ se cumple que $u(z) = u(z_0)$, es decir que $u$ es una función constante en todo disco abierto completamente contenido en $D$.

Para $z_0\in D$ un punto fijo, definimos los siguientes conjuntos: \begin{equation*} U=\{ z\in D : u(z) = u(z_0)\} \quad \text{y} \quad V=\{ z\in D : u(z) \neq u(z_0)\}. \end{equation*}

Probemos que $U$ y $V$ son conjuntos abiertos en $D$.

Sea $z\in U$, entonces $u(z) = u(z_0)$. Por otra parte, como $D$ es abierto entonces existe $r>0$ tal que $B(z,r) \subset D$. Veamos que $B(z,r) \subset U$.

De acuerdo con lo que probamos antes, es claro que para todo $z^* \in B(z,r)$ la función $u$ es constante en dicho disco, por lo que $u(z) = u(z^*)$, entonces para todo $z^* \in B(z,r)$ se cumple que $u(z^*) = u(z_0)$, es decir, $z^* \in U$, entonces: \begin{equation*} B(z,r) \subset U, \end{equation*} por lo que concluimos que $U$ es un conjunto abierto. De manera análoga se verifica que $V$ es un conjunto abierto, por lo que se deja como ejercicio al lector.

Tenemos entonces que $D = U \cup V$ y $U \cap V = \emptyset$, pero como $D$ es un conjunto conexo, entonces uno de los dos conjuntos $U$ o $V$ debe ser vacío. Por construcción es claro que $z_0\in U$, por lo que $V = \emptyset$, por lo tanto $D = U$, entonces para todo $z\in D$ se cumple que $u(z) = u(z_0)$, es decir que $u$ es una función constante en $D$.

$\blacksquare$

Proposición 19.2.
Sean $D\subset\mathbb{C}$ un dominio y $f:D\to\mathbb{C}$ una función analítica en $D$. Si $f'(z) = 0$ para todo $z\in D$, entonces $f$ es una función constante en $D$.

Demostración. Dadas las hipótesis, tomemos a $f(z) = u(x,y) + iv(x,y)$ definida en $D$. Como $f$ es una función analítica en $D$, entonces las funciones $u$ y $v$ satisfacen las ecuaciones de C-R en $D$ y se cumple que: \begin{equation*} f'(z) = u_x(z) + iv_x(z), \quad \forall z = x+iy \in D. \end{equation*}

Por hipótesis tenemos que: \begin{equation*} 0 = f'(z) = u_x(z) + iv_x(z) = v_y(z) – i u_y(z), \end{equation*} para todo $z \in D$, es decir que para todo punto en $D$ se cumple que: \begin{equation*} u_x(x,y) = u_y(x,y) = v_x(x,y) = v_y(x,y) = 0. \end{equation*}

Considerando el lema 19.2 concluimos que las funciones $u$ y $v$ son constantes en $D$ y por tanto que $f$ es una función constante en $D$.

$\blacksquare$

Corolario 19.1.
Sean $D\subset\mathbb{C}$ un dominio y $f,g\in \mathcal{F}(D)$ dos funciones analíticas en $D$. Si $f$ y $g$ coinciden en un punto y tienen la misma derivada en $D$, entonces $f$ y $g$ son idénticas.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Observación 19.5.
La propiedad de conexidad del dominio $D$ es necesaria. Notemos que en la prueba de la proposición 19.2, de manera implícita, usamos fuertemente el hecho de que $D$ era un conjunto conexo, pero si $D$ solo es un conjunto abierto el resultado no es válido.

Ejemplo 19.5.
Consideremos al conjunto $U = \{ z=x+iy\in\mathbb{C} : x \neq 0\}$, el cual es abierto en $\mathbb{C}$. Definimos a la función: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} 1 & \text{si} & \operatorname{Re}(z)>0, \\ 2 & \text{si} & \operatorname{Re}(z)<0. \end{array} \right. \end{equation*} Claramente la función $f(z)$ es analítica en $U$ y $f'(z) = 0$ para todo $z\in U$, sin embargo $f$ no es una función constante.

Procedemos ahora a probar un resultado en el cual podemos ver que la analicidad de una función compleja es una propiedad más restrictiva que la diferenciabilidad en el sentido real.

Proposición 19.3.
Sean $D\subset\mathbb{C}$ un dominio y $f(z) = u(x,y) + iv(x,y)$ una función analítica en $D$.

  1. Si $u$ ó $v$ son constantes en $D$, entonces $f$ también es una función constante en $D$.
  2. Si $|\,f\,|$ es constante en $D$, entonces $f$ también es una función constante en $D$.

Dadas las hipótesis, como $f$ es una función analítica en $D$, entonces las funciones $u$ y $v$ satisfacen las ecuaciones de C-R en $D$ y se tiene que: \begin{equation*} f'(z) = u_x(z) + iv_x(z) = v_y(z) – iu_y(z), \quad \forall z\in D\tag{19.4} \end{equation*}

  1. Probaremos el resultado considerando a la función $u$ como constante, el caso en el que la función $v$ es constante es completamente análogo.

Si suponemos que $u$ es una función constante en $D$, entonces se cumple que: \begin{equation*} u_x(z) = u_y(z) = 0, \quad \forall z=x+iy\in D. \end{equation*}

De acuerdo con (19.4) tenemos que: \begin{equation*} f'(z) = u_x(z) – iu_y(z) = 0, \end{equation*} para todo $z=x+iy\in D$, por lo que se sigue de la proposición 19.2 que $f$ es constante en $D$.

  1. Supongamos ahora que $|\,f\,|$ es una función constante en $D$, entonces tenemos que: \begin{equation*} |\,f(z)\,|^2 = u^2(x,y) + v^2(x,y) = c, \tag{19.5} \end{equation*} para todo $z=x+iy\in D$ y para alguna constante real $c\geq 0$.

Si $c = 0 $, entonces es claro que $f(z) = 0$ para todo $z=x+iy\in D$, por lo que en tal caso $f$ es constante.

Supongamos que $c > 0 $, entonces tomando derivadas parciales en (19.5), con respecto a $x$ e $y$, para todo $z=x+iy\in D$ tenemos que: \begin{align*} 2u(x,y) u_x(x,y) + 2 v(x,y) v_x(x,y) = 0,\\ 2u(x,y) u_y(x,y) + 2 v(x,y) v_y(x,y) = 0, \end{align*}

Por hipótesis sabemos que se cumplen las ecuaciones de C-R en $D$, por lo que para todo $z=x+iy \in D$ se tiene que: \begin{align*} u(x,y) u_x(x,y) – v(x,y) u_y(x,y) = 0,\\ u(x,y) u_y(x,y) + v(x,y) u_x(x,y) = 0. \end{align*}

Multiplicando por las funciones $u(x,y)$ y $v(x,y)$, respectivamente, en las igualdades anteriores, procedemos a sumarlas y restarlas, entonces para todo $z=x+iy\in D$ tenemos que: \begin{align*} u_x(x,y)\left(u^2(x,y) + v^2(x,y) \right) = 0,\\ u_y(x,y)\left(u^2(x,y) + v^2(x,y) \right) = 0, \end{align*} de donde $u_x(x,y) = u_y(x,y) = 0$ para todo $z=x+iy\in D$. De manera análoga podemos obtener que $v_x(x,y) = v_y(x,y) = 0$ en $D$. Considerando el lema 19.2 concluimos que $u$ es una función constante en $D$, por lo que, de acuerdo con la primera parte de la prueba, $f$ es una función constante en $D$.

Tarea moral

  1. Demuestra el lema 19.1 y la proposición 19.1.
  2. Sea $D\subset\mathbb{C}$ un dominio. Supón que $f$ y $|\,f\,|$ son funciones analíticas en $D$. Prueba que $f$ es una función constante en $D$.
  3. Obtén las derivadas parciales $f_z$ y $f_{\overline{z}}$ para las siguientes funciones complejas:
    a) $f(z) = 2x^3y^2 + i(x^2-y)$.
    b) $f(z) = \dfrac{x-1-iy}{(x-1)^2 + y^2}$.
    c) $f(z) = x^2+y^2+3x+1+i3y$.
    d) $f(z) = x^2-y^2+i3xy$.
    e) $f(z) = (x+iy)(x^2+y^2)$.
    ¿Son analíticas? ¿Son diferenciables?
  4. Sea $U\subset \mathbb{C}$ un conjunto abierto y $f:U\to\mathbb{C}$ una función de clase $C^1$. Muestra que para todo $z\in U$ se cumple que:
    a) $(\overline{f})_z = \overline{f_{\overline{z}}}$.
    b) $(\overline{f})_{\overline{z}} = \overline{f_z}$.
  5. Sean $D\subset\mathbb{C}$ un dominio y $f \in \mathcal{F}(D)$ una función analítica. Supón que existen $a,b,c\in\mathbb{R}$, constantes reales con $a^2 + b^2 > 0$, tales que: \begin{equation*} a \operatorname{Re} f(z) + b \operatorname{Im} f(z) = c, \quad \forall z \in D. \end{equation*} Prueba que la función $f$ es constante en $D$.
  6. Sea $f:\mathbb{C} \to \mathbb{C}$ un polinomio. Supón que: \begin{equation*} \frac{\partial f}{\partial z} = 0 = \frac{\partial f}{\partial \overline{z}}, \quad \forall z\in \mathbb{C}. \end{equation*} Prueba que la función $f$ es constante.
  7. Demuestra el corolario 19.1.
  8. Sea $U\subset \mathbb{C}$ un conjunto abierto y sean $f,g:U \to \mathbb{C}$ dos funciones de clase $C^1$. Muestra que para cualesquiera constantes $a,b\in\mathbb{C}$ se cumple que:
    a) $\dfrac{\partial}{\partial z}\left( a f + b g\right) = a \dfrac{\partial f}{\partial z} + b \dfrac{\partial g}{\partial z}$.
    b) $\dfrac{\partial}{\partial \overline{z}}\left( a f + b g\right) = a \dfrac{\partial f}{\partial \overline{z}} + b \dfrac{\partial g}{\partial \overline{z}}$.
    c) $\dfrac{\partial}{\partial z}\left( fg\right) = g \dfrac{\partial f}{\partial z} + f \dfrac{\partial g}{\partial z}$.
    d) $\dfrac{\partial}{\partial \overline{z}}\left( fg\right) = g \dfrac{\partial f}{\partial \overline{z}} + f \dfrac{\partial g}{\partial \overline{z}}$.
  9. Sean $U, V\subset \mathbb{C}$ dos conjuntos abiertos. Supón que $f:U \to \mathbb{C}$ y $g:V \to \mathbb{C}$ son dos funciones de clase $C^1$ y que $f(U) \subset V$. Muestra que: \begin{align*} \left(g\circ f\right)_z = \left(g_z \circ f\right)f_z + \left(g_{\overline{z}} \circ f\right)\left(\overline{f}\right)_z,\\ \left(g \circ f\right)_{\overline{z}} = \left(g_z\circ f\right)f_{\overline{z}} + \left(g_{\overline{z}} \circ f\right)\left(\overline{f}\right)_{\overline{z}}. \end{align*} Concluye que:
    a) Si $f$ es analítica en $U$, entonces: \begin{equation*} \left(g\circ f\right)_z = \left(g_z \circ f\right)f’, \quad \left(g \circ f\right)_{\overline{z}} = \left(g_{\overline{z}} \circ f\right)\overline{f’}. \end{equation*}
    b) Si $g$ es analítica en $V$, entonces: \begin{equation*} \left(g\circ f\right)_z = \left(g’ \circ f\right)f_z, \quad \left(g\circ f\right)_{\overline{z}} = \left(g’ \circ f\right)f_{\overline{z}}.\end{equation*}

Más adelante…

En esta entrada hemos deducido una serie de resultados que son consecuencia directa de las ecuaciones de C-R, además de caracterizar aún más a la diferenciabilidad compleja a través del concepto de analicidad de una función, que como vimos resulta ser un concepto más restrictivo que el de diferenciabilidad real. Mediante los resultados de esta entrada hemos concluido que las «genuinas» funciones complejas que resultan ser analíticas son aquellas que solo están dadas en términos de la variable compleja $z$, es decir que no dependen de $\overline{z}$.

La siguientes entradas definiremos algunas de las funciones complejas elementales para la teoría. Mediante estas funciones haremos una extensión de las funciones reales como la exponencial, el logaritmo y las funciones trigonométricas. Veremos que para el caso complejo muchas de las propiedades que satisfacen dichas funciones reales se seguirán cumpliendo, aunque como es de esperarse veremos que en el caso complejo estas funciones cumplen otras propiedades como la periodicidad y retomaremos nuevamente el concepto de funciones multivaludas.

Entradas relacionadas

Variable Compleja I: Ecuaciones de Cauchy-Riemann. Condiciones suficientes para la diferenciabilidad compleja.

Por Pedro Rivera Herrera

Introducción

En las entradas anteriores hemos definido y trabajado con los conceptos de diferenciabilidad y analicidad de una función compleja, en particular hemos visto que dichos conceptos no son equivalentes, desde que la analicidad de una función compleja en un punto $z_0$ implica la diferenciabilidad de la función en todo un $\varepsilon$-vecindario de $z_0$.

Como hemos visto a lo largo de la unidad 2, toda función compleja está totalmente definida a través de un par de funciones reales de dos variables, a las cuales hemos llamado su parte real e imaginaria. Más aún, hemos caracterizado algunos conceptos matemáticos importantes como el de límite y continuidad a través de dichas funciones, por lo que resulta natural cuestionarnos acerca de si es posible caracterizar la diferenciabilidad de una función compleja mediante estás funciones reales.

La entrada anterior deducimos las ecuaciones de Cauchy-Riemann y vimos que para una función compleja $f(z)=u(x,y) + iv(x,y)$ analítica en un conjunto abierto $U\subset\mathbb{C}$ las funciones $u$ y $v$, correspondientes con su parte real e imaginaria, deben satisfacer dichas ecuaciones. Sin embargo, vimos que dichas ecuaciones son solamente una condición necesaria, pero no suficiente, que las funciones $u$ y $v$ deben satisfacer. En esta entrada veremos que además de las ecuaciones de C-R, es necesario imponer unas condiciones extras sobre las funciones $u$ y $v$ para garantizar que una función compleja es analítica.

Recordemos la definición de diferenciabilidad de una función real de dos variables, vista en nuestros cursos de Cálculo.

Definición 18.1. (Diferenciabilidad de funciones reales de dos variables.)
Sea $U\subset\mathbb{R}^2$ un conjunto abierto. Una función real de dos variables $u:U \to \mathbb{R}$, es diferenciable en $(x_0,y_0) \in U$ si existen $A,B\in\mathbb{R}$ constantes tales que: \begin{equation*} \lim_{(x,y) \to (x_0, y_0)} \frac{u(x,y) – u(x_0, y_0) – A(x-x_0) – B(y-y_0)}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} = 0, \end{equation*} en tal caso $A = \dfrac{\partial u}{\partial x}(x_0, y_0)$ y $B = \dfrac{\partial u}{\partial y}(x_0, y_0)$.

Observación 18.1.
De acuerdo con la definición 18.1, tenemos que una función real de dos variables $u$, definida sobre un abierto $U\subset \mathbb{R}^2$, es diferenciable en $(x_0,y_0)\in U$ si puede escribirse de la forma: \begin{equation*} u(x,y) = u(x_0,y_0) + A(x-x_0) + B(y-y_0) + \varepsilon(x,y)\sqrt{(x-x_0)^2 + (y-y_0)^2}, \end{equation*} donde $A = \dfrac{\partial u}{\partial x}(x_0, y_0)$ y $B = \dfrac{\partial u}{\partial y}(x_0, y_0)$ son constantes reales y $\lim\limits_{(x,y) \to (x_0,y_0)}\varepsilon(x,y) = 0$.

Consideremos el siguiente resultado.

Proposición 18.1.
Sean $U\subset\mathbb{C}$ un conjunto abierto y $f:U\to\mathbb{C}$ una función. Entonces, $f$ es analítica en $z_0\in U$ si y solo si $f$ se puede escribir de la forma: \begin{equation*} f(z) = f(z_0) + c(z-z_0) + \varepsilon(z)(z-z_0), \tag{18.2} \end{equation*} donde $c\in\mathbb{C}$ es una constante, $\varepsilon: U \to \mathbb{C}$ es continua en $z_0$ y $\lim\limits_{z \to z_0} \varepsilon(z) = 0$. En tal caso se tiene que $f'(z_0) = c$.

Demostración. Dadas las hipótesis, tenemos lo siguiente.

$\Rightarrow)$
Supongamos que $f'(z_0)$ existe, entonces definimos la función: \begin{equation*} \varepsilon(z)= \left\{ \begin{array}{lcc} \dfrac{f(z)- f(z_0)}{z – z_0} – f'(z_0) & \text{si} & z\neq z_0, \\ 0 & \text{si} & z = z_0. \end{array} \right. \end{equation*} Es claro que dicha función satisface que $\lim_{z \to z_0} \varepsilon(z) = 0$ y además es una función continua en $z_0$.

$(\Leftarrow$
Supongamos que $f(z)$ se puede escribir como (18.2) con $c\in\mathbb{C}$ constante, entonces para $z\neq z_0$, tenemos que: \begin{equation*} \frac{f(z) – f(z_0)}{z – z_0} = c + \varepsilon(z), \end{equation*} por lo que, tomando límites en la igualdad anterior: \begin{equation*} \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z – z_0} = \lim_{z\to z_0} \left(c + \varepsilon(z)\right) = c, \end{equation*} de donde $f'(z_0) = c$.

$\blacksquare$

La proposición anterior establece que la diferenciabilidad de una función compleja $f(z)$ en $z_0$ es equivalente a que dicha función se puede aproximar en $z_0$ por la función lineal $f(z_0) + c(z-z_0)$, con $c\in\mathbb{C}$ constante, en el sentido que cuando $z$ está cerca de $z_0$ la diferencia entre $f(z)$ y $f(z_0) + c(z-z_0)$ es pequeña comparada con $|\,z-z_0\,|$.

Procedemos ahora a responder nuestra pregunta sobre cuáles son las condiciones suficientes que se deben imponer sobre las funciones $u$ y $v$, correspondientes con la parte real e imaginaria de una función compleja, además de las ecuaciones de C-R, para garantizar la analicidad de una función compleja.

Teorema 18.1.
Una función compleja $f(z) = u(x,y) + iv(x,y)$ es analítica en un conjunto abierto $U\subset\mathbb{C}$ si las cuatro derivadas parciales $u_x, v_x, u_y$ y $v_y$ existen y son continuas en todo punto de $U$ (es decir $u$ y $v$ son funciones de clase $C^1$) y satisfacen las ecuaciones de C-R en todo punto de $U$. En tal caso, para todo $z_0=x_0+iy_0\in U$ se tiene que: \begin{equation*} f'(z_0) = \frac{\partial u}{\partial x}(x_0,y_0) + i \frac{\partial v}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0) – i \frac{\partial u}{\partial y}(x_0,y_0). \tag{18.3} \end{equation*}

Demostración. Dadas las hipótesis, tomemos a $z_0 = x_0 + iy_0 \in U$ fijo, entonces existe $r>0$ tal que $B(z_0, r) \subset U$. Sea $z \in B(z_0, r)$ y supongamos que $z \neq z_0$, entonces tenemos que el segmento de recta que une a $z_0$ con $z$, es decir $[z_0, z]$, está totalmente contenido en $B(z_0, r)$ (¿por qué?). Sin perdida de generalidad supongamos que $x>x_0$ y $y>y_0$ (los casos restantes son completamente análogos), figura 74, por lo que: \begin{equation*} u(x,y) – u(x_0, y_0) = u(x,y) – u(x_0, y) + u(x_0, y) – u(x_0, y_0). \end{equation*}

Figura 74: Segmento de recta $[z_0, z]$ contenido en el disco abierto con centro en $z_0$ y radio $r>0$. Caso $x>x_0$ y $y>y_0$.

Definimos $h = x – x_0 > 0$ y $k = y – y_0 > 0$. Sean $g_1 : [0,h] \to \mathbb{R}$ y $g_2 : [0,k] \to \mathbb{R}$ dadas por: \begin{equation*} g_1(t) = u(x_0 + t,y) \quad \text{y} \quad g_2(t) = u(x_0,y_0 + t). \end{equation*}

Tenemos que: \begin{align*} g_1′(t) & = \lim_{h\to 0} \frac{g_1(t+h)-g_1(t)}{h}\\ & = \lim_{h\to 0} \frac{u(x_0 + t + h,y)-u(x_0 + t,y)}{h}\\ & = \frac{\partial u}{\partial x}(x_0 + t,y), \end{align*} \begin{align*} g_2′(t) & = \lim_{k\to 0} \frac{g_2(t+k)-g_2(t)}{k}\\ & = \lim_{k\to 0} \frac{u(x_0,y_0 + t + k)-u(x_0,y_0 + t)}{k}\\ & = \frac{\partial u}{\partial y}(x_0,y_0+t). \end{align*}

Como $u_x$ y $u_y$ existen en $U$, entonces para $y$ fijo tenemos que $g_1$ es una función diferenciable en $[0,h]$ y para $x_0$ fijo tenemos que $g_2$ también es una función diferenciable en $[0,k]$, por lo que $g_1$ y $g_2$ son funciones continuas en $[0,h]$ y $[0,k]$ respectivamente.

Por el teorema del valor medio para funciones reales, tenemos que existen $c_1\in(0,h)$ y $c_2\in(0,k)$ tales que: \begin{align*} g_1(h) – g_1(0) = g_1′(c_1) (h – 0),\\ g_2(h) – g_2(0) = g_2′(c_2) (k – 0), \end{align*} o equivalentemente que existen $\alpha_1, \beta_1 \in (0,1)$, tales que: \begin{align*} g_1(h) – g_1(0) = h \, g_1′(h\alpha_1),\\ g_2(h) – g_2(0) = k \, g_2′(k\beta_1), \end{align*} es decir: \begin{align*} u(x, y) – u(x_0, y) & = u(x_0 + h, y_0 + k) – u(x_0, y_0 + k)\\ & = h \, u_x(x_0 +\alpha_1 h, y_0 + k), \end{align*} \begin{align*} u(x_0, y) – u(x_0, y_0) & = u(x_0, y_0 + k) – u(x_0, y_0)\\ & = k \, u_y(x_0, y_0 + \beta_1 k). \end{align*} Por lo que: \begin{equation*} u(x,y) – u(x_0, y_0) = h \, u_x(x_0 +\alpha_1 h, y_0 + k) + k \, u_y(x_0, y_0 + \beta_1 k). \end{equation*}

De manera análoga concluimos que existen $\alpha_2, \beta_2 \in (0,1)$ tales que: \begin{align*} v(x_0 + h, y_0 + k) – v(x_0, y_0 + k) = h \, v_x(x_0 +\alpha_2 h, y_0 + k),\\ v(x_0, y_0 + k) – v(x_0, y_0) = k \, v_y(x_0, y_0 + \beta_2 k), \end{align*} donde $h = x – x_0 > 0$ y $k = y – y_0 > 0$.

Por lo que: \begin{equation*} v(x,y) – v(x_0, y_0) = h \, v_x(x_0 +\alpha_2 h, y_0 + k) + k \, v_y(x_0, y_0 + \beta_2 k). \end{equation*} Entonces, para $z\neq z_0$ tenemos que: \begin{align*} \frac{f(z) – f(z_0)}{z-z_0} & = \frac{u(x,y) + iv(x,y) – \left[ u(x_0,y_0) + iv(x_0,y_0)\right]}{(x – x_0) + i (y-y_0)}\\ & = \frac{u(x,y) – u(x_0,y_0)}{h + i k} + i \left[ \frac{v(x,y) – v(x_0,y_0)}{h + i k}\right]\\ & = \frac{h \, u_x(x_0 +\alpha_1 h, y_0 + k) + k \, u_y(x_0, y_0 + \beta_1 k)}{h + i k}\\ & \quad + i \left[ \frac{h \, v_x(x_0 +\alpha_2 h, y_0 + k) + k \, v_y(x_0, y_0 + \beta_2 k)}{h + i k}\right]\\ & = \frac{h}{h+ik}\left[u_x(x_0 +\alpha_1 h, y_0 + k) + i v_x(x_0 +\alpha_2 h, y_0 + k)\right]\\ & \quad + \frac{k}{h+ik} \left[u_y(x_0, y_0 + \beta_1 k) + i v_y(x_0, y_0 + \beta_2 k)\right], \end{align*} donde $h = x – x_0 > 0$, $k = y – y_0 > 0$ y $\alpha_i, \beta_i \in (0,1)$ para $i=1,2$. Además la igualdad anterior se cumple aún si $x = x_0$ o $y = y_0$.

Dado que $u_x, u_y, v_x$ y $v_y$ son continuas en $U$, entonces tenemos que: \begin{align*} \lim_{(h,k) \to (0,0)} u_x(x_0 +\alpha_1 h, y_0 + k) = u_x(x_0, y_0),\\ \lim_{(h,k) \to (0,0)} v_x(x_0 +\alpha_2 h, y_0 + k) = v_x(x_0, y_0),\\ \lim_{(h,k) \to (0,0)} u_y(x_0, y_0 + \beta_1 k) = u_y(x_0, y_0),\\ \lim_{(h,k) \to (0,0)} v_y(x_0, y_0 + \beta_2 k) = v_y(x_0, y_0). \end{align*} Por lo que: \begin{align*} \frac{f(z) – f(z_0)}{z-z_0} & = \frac{h}{h+ik}\left[u_x(x_0, y_0) + i v_x(x_0, y_0) + \varepsilon_1 \right]\\ & \quad + \frac{k}{h+ik} \left[u_y(x_0, y_0) + i v_y(x_0, y_0) + \varepsilon_2 \right], \end{align*} donde $\varepsilon_1, \varepsilon_2 \to 0$ si $(h,k) \to (0,0)$ o equivalentemente si $z \to z_0$.

Como se cumplen las ecuaciones de C-R, tenemos que: \begin{align*} u_x(x_0, y_0) = A = v_y(x_0, y_0),\\ u_y(x_0, y_0) = B = – v_x(x_0, y_0), \end{align*} para algunos $A$ y $B$ números reales.

Entonces: \begin{align*} \frac{f(z) – f(z_0)}{z-z_0} & = \frac{h}{h+ik}\left(A – i B\right) + \frac{k}{h+ik} \left(B + i A\right) + \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik}\\ & = \frac{A\left(h + i k\right)}{h+ik} -i \frac{B\left(h + ik\right)}{h+ik} + \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik}\\ & = A -iB + \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik}\\ & = u_x(x_0, y_0) +iv_x(x_0,y_0) + \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik}, \end{align*} donde $\varepsilon_1, \varepsilon_2 \to 0$ si $z \to z_0$.

Dado que para todo $z\in\mathbb{C}$ se cumple que $|\,\operatorname{Re}(z)\,| \leq |\,z\,|$ e $|\,\operatorname{Im}(z)\,| \leq |\,z\,|$, entonces: \begin{align*} 0<|\,h\,| \leq |\,h+ik\,| \quad \Longrightarrow \frac{|\,h\,|}{|\,h+ik\,|} \leq 1,\\ 0<|\,k\,| \leq |\,h+ik\,| \quad \Longrightarrow \frac{|\,k\,|}{|\,h+ik\,|} \leq 1. \end{align*} Por lo que: \begin{align*} \left| \, \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik} \, \right| & \leq \left|\, \frac{h \varepsilon_1}{h+ik} \,\right| + \left|\, \frac{k \varepsilon_2}{h+ik} \,\right|\\ & = \frac{\left|\, h \,\right|}{\left|\, h+ik\,\right|} \left|\,\varepsilon_1 \,\right| + \frac{\left|\, k \,\right|}{\left|\,h+ik\,\right|} \left|\,\varepsilon_2 \,\right|\\ & \leq \left|\,\varepsilon_1 \,\right| + \left|\,\varepsilon_2 \,\right|, \end{align*} tomando límites en la desigualdad anterior concluimos que: \begin{equation*} \lim_{(h,k) \to (0,0)} \frac{h \varepsilon_1 + k \varepsilon_2}{h+ik} = \lim_{z \to z_0} \frac{(x-x_0) \varepsilon_1 + (y-y_0) \varepsilon_2}{(x-x_0)+i(y-y_0)} = 0. \end{equation*} Por tanto, tenemos que: \begin{align*} \lim_{z \to z_0} \frac{f(z) – f(z_0)}{z-z_0} & =\lim_{z \to z_0} \left( u_x(x_0, y_0) +iv_x(x_0,y_0) + \frac{(x-x_0) \varepsilon_1 + (y-y_0) \varepsilon_2}{(x-x_0)+i(y-y_0)} \right)\\ & =\lim_{z \to z_0} u_x(x_0, y_0) + \lim_{z \to z_0} iv_x(x_0,y_0) + \lim_{z \to z_0} \frac{(x-x_0) \varepsilon_1 + (y-y_0) \varepsilon_2}{(x-x_0)+i(y-y_0)}\\ & = u_x(x_0, y_0) +iv_x(x_0,y_0). \end{align*}

Entonces $f$ es analítica en $z_0 =x_0+iy_0 \in U$ y su derivada está dada por (18.3).

Dado que $z_0 = x_0 + iy_0\in U$ era arbitrario, entonces el resultado se cumple para todo punto en $U$.

$\blacksquare$

El resultado anterior es un primer recíproco parcial del teorema 17.1 de la entrada anterior, en el cual vimos que las ecuaciones de C-R son solo una condición necesaria, pero no suficiente, para la analicidad de una función compleja.

Observación 18.2.
Es importante recordar que los conceptos de diferenciabilidad y analicidad de una función no son intercambiables, por lo que puede suceder que una función sea diferenciable en un punto, pero no analítica en dicho punto. Considerando el resultado anterior podemos determinar a través de las ecuaciones de C-R dónde una función sí puede ser al menos diferenciable.

Ejemplo 18.1.
Sea $z=x+iy \in \mathbb{C}$. Consideremos a la función $f(z)=x^2+y^2+2ixy$. Veamos que $f$ no es analítica en ningún punto, pero es diferenciable en todo el eje real. Más aún, veamos que en dicho conjunto de puntos se tiene que $f'(z) = 2x$.

Solución. Considerando a la función $f$ tenemos que: \begin{equation*} u(x,y) = x^2 + y^2 \quad \quad \text{y} \quad \quad v(x,y) = 2xy. \end{equation*} Claramente ambas funciones están definidas sobre todo $\mathbb{C}$, por lo que $f$ está definida en $\mathbb{C}$.

Tenemos que: \begin{align*} \frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = 2y,\\ \frac{\partial v}{\partial x} = 2y, \quad \frac{\partial v}{\partial y} = 2x. \end{align*} Es claro que las derivadas parciales existen y son continuas para todo $z = x+iy \in \mathbb{C}$.

Notemos que $u_x = v_y$, pero $u_y \neq -v_x$. Sin embargo: \begin{align*} \frac{\partial u}{\partial y} = – \frac{\partial v}{\partial x} \quad & \Longleftrightarrow \quad y = 0\\ & \Longleftrightarrow \quad z = \operatorname{Re}(z) = x. \end{align*}

Por lo que, por el teorema 18.1, concluimos que $f$ únicamente es diferenciable para todo $z$ en el eje real y su derivada en dicho conjunto de puntos es: \begin{equation*} f'(z) = f'(x) = \frac{\partial u}{\partial x}(x,0) + i \frac{\partial v}{\partial x}(x,0) = 2x. \end{equation*}

Dado que para todo $z_0=x_0+i0$ en el eje real y para todo $\delta>0$, existe $z_\delta=x_0 + i\frac{\delta}{2} \in B(z_0, \delta)$ un punto en donde $f$ no es diferenciable, entonces no existe un disco abierto alrededor de $z_0$ en el cual $f$ sea diferenciable y por tanto no es analítica en ningún punto sobre el eje real y en general en ningún punto en $\mathbb{C}$.

Ejemplo 18.2.
Sea $f:\mathbb{C} \to \mathbb{C}$ dada por $f(z)=x^2 – y^3 + i(x-y)$. Mostremos que $f$ no es analítica en $\mathbb{C}$ y determinemos el conjunto de puntos donde es diferenciable y hallemos su derivada en dicho conjunto.

Solución. De acuerdo con la definición de $f$ tenemos que: \begin{equation*} u(x,y) = x^2 – y^3 \quad \quad \text{y} \quad \quad v(x,y) = x-y. \end{equation*}

Tanto $u$ como $v$ son funciones reales diferenciables en todo punto en $\mathbb{R}^2$ y: \begin{align*} \frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = -3y^2,\\ \frac{\partial v}{\partial x} = 1, \quad \frac{\partial v}{\partial y} = -1, \end{align*} las cuales existen y son continuas para todo punto en $\mathbb{R}^2$.

Es claro que $u_x \neq v_y$ y $u_y \neq -v_x$. Procedemos a determinar en qué puntos de $\mathbb{C}$ se satisfacen las igualdades: \begin{align*} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad & \Longleftrightarrow \quad 2x = -1\\ & \Longleftrightarrow \quad x = -\frac{1}{2}. \end{align*} \begin{align*} \frac{\partial u}{\partial y} = – \frac{\partial v}{\partial x} \quad & \Longleftrightarrow \quad -3y^2 = -1\\ & \Longleftrightarrow \quad y = \pm \frac{1}{\sqrt{3}}. \end{align*}

Sea $S = \left\{-\frac{1}{2}+i\frac{\sqrt{3}}{3}, -\frac{1}{2}-i\frac{\sqrt{3}}{3} \right\}$.

Entonces, por el teorema 18.1, concluimos que $f$ únicamente es diferenciable para $z_0 \in S$ y su derivada en dicho conjunto de puntos es: \begin{align*} f’\left(z_0\right) & = \frac{\partial u}{\partial x}\left(-\frac{1}{2},\pm \frac{\sqrt{3}}{3}\right) + i \frac{\partial v}{\partial x}\left(-\frac{1}{2},\pm \frac{\sqrt{3}}{3}\right)\\ & = -1 + i. \end{align*}

Notemos que para todo $z_0\in S$ y para todo $\delta>0$, existe $z_\delta=z_0 + \frac{\delta}{2} \in B(z_0, \delta)$ un punto en donde $f$ no es diferenciable, entonces no existe un disco abierto alrededor de $z_0$ en el cual $f$ sea diferenciable y por tanto no es analítica en ningún punto en $S$ y en general en ningún punto en $\mathbb{C}$.

Definición 18.2. (Dominio de analicidad.)
Un conjunto $U \subset \mathbb{C}$ es llamado un dominio de analicidad de una función compleja $f$ si $U$ es el mayor conjunto abierto en el cual $f$ es analítica.

Ejemplo 18.3
Para las funciones $f(z) = 1/z$ y $g(z) = \overline{z}$ tenemos que sus dominios de analicidad son los conjuntos $U = \mathbb{C} \setminus \{0\}$ y $G = \emptyset$ respectivamente.

Considerando la proposición 18.1 y la observación 18.1, planteamos el siguiente resultado en el cual establecemos cuales son las condiciones necesarias y suficientes que deben satisfacer las funciones reales $u$ y $v$, correspondientes con la parte real e imaginaria de una función compleja, para garantizar la analicidad de dicha función en un conjunto abierto $U\subset\mathbb{C}$.

Teorema 18.2.
Una función compleja $f(z) = u(x,y) + iv(x,y)$ es una función analítica en un conjunto abierto $U\subset\mathbb{C}$ si y solo si las funciones reales de dos variables $u$ y $v$ son diferenciables en $U$ y satisfacen las ecuaciones de C-R en todo punto de $U$. En tal caso, para todo $z_0=x_0+iy_0\in U$ se tiene que: \begin{equation*} f'(z_0) = \frac{\partial u}{\partial x}(x_0,y_0) + i \frac{\partial v}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0) – i \frac{\partial u}{\partial y}(x_0,y_0). \tag{18.3.} \end{equation*}

Demostración. Sea $f(z) = u(x,y) + iv(x,y)$ una función compleja definida sobre un conjunto abierto $U\subset \mathbb{C}$ y sea $z = x+iy\in U$.

$\Rightarrow)$
Supongamos que $f$ es analítica en $U$ y sea $z_0 = x_0 +i y_0 \in U$ fijo. De acuerdo con la proposición 18.1, como la función $f$ es analítica en $z_0 \in U$, entonces puede escribirse como en (18.2), es decir de la forma: \begin{equation*} f(z) – f(z_0) = c(z-z_0) + \varepsilon(z)(z-z_0), \end{equation*} donde $c = f'(z_0) \in \mathbb{C}$ es constante y $\lim\limits_{z \to z_0} \varepsilon(z) = 0$.

Sea $c = f'(z_0) = A+iB\in\mathbb{C}$ para algunos $A$ y $B$ números reales. Entonces podemos reescribir esta última igualdad como: \begin{equation*} u(x,y) + iv(x,y) – \left[u(x_0,y_0) + iv(x_0,y_0)\right] = (A+iB)\left[(x-x_0) + i(y-y_0)\right] + \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right]. \end{equation*} Separando en la parte real e imaginaria de la igualdad anterior obtenemos: \begin{align*} u(x,y) – u(x_0,y_0) = A(x-x_0) – B(y-y_0) + \operatorname{Re}\left( \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \right),\\ v(x,y) – v(x_0,y_0) = B(x-x_0) + A(y-y_0) + \operatorname{Im}\left( \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \right). \end{align*} Tenemos que: \begin{align*} \operatorname{Re}\left( \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \right) & = \bigg(\operatorname{Re}\bigg[ \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \bigg]\bigg) \frac{\sqrt{(x-x_0)^2 + (y-y_0)^2}}{\sqrt{(x-x_0)^2 + (y-y_0)^2}}\\ & = \bigg(\operatorname{Re}\bigg[\frac{\varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right]}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} \bigg]\bigg) \sqrt{(x-x_0)^2 + (y-y_0)^2}\\ & =:\varepsilon_1(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}, \end{align*} y de manera análoga obtenemos que: \begin{equation*} \operatorname{Im}\left( \varepsilon(x+iy) \left[ (x-x_0) + i(y-y_0)\right] \right) =: \varepsilon_2(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}. \end{equation*} Por tanto: \begin{align*} u(x,y) – u(x_0,y_0) = A(x-x_0) – B(y-y_0) + \varepsilon_1(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2},\\ v(x,y) – v(x_0,y_0) = B(x-x_0) + A(y-y_0) + \varepsilon_2(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}. \tag{18.4} \end{align*} Notemos que: \begin{equation*} |\, \varepsilon_1(x,y)\,| \leq |\, \varepsilon(z)\,| \quad \text{y} \quad |\, \varepsilon_2(x,y)\,| \leq |\, \varepsilon(z)\,|. \end{equation*} Dado que $\lim\limits_{z \to z_0} \varepsilon(z) = 0$, entonces tomando límites en estas dos desigualdades concluimos que: \begin{equation*} \lim_{(x,y) \to (x_0,y_0)} \varepsilon_1(x,y) = 0 \quad \text{y} \lim_{(x,y) \to (x_0,y_0)} \varepsilon_2(x,y) = 0. \tag{18.5} \end{equation*} Por lo tanto, considerando (18.4) y (18.5), se sigue de la observación 18.1 que $u$ y $v$ son funciones diferenciables en $(x_0,y_0)\in U$ y se cumple que: \begin{align*} \frac{\partial u}{ \partial x}(x_0,y_0) = A =\frac{\partial v}{ \partial y}(x_0,y_0),\\ \frac{\partial v}{ \partial x}(x_0,y_0) = B = -\frac{\partial u}{ \partial y}(x_0,y_0), \end{align*} es decir que se satisfacen las ecuaciones de C-R en $z_0 = x_0 + iy_0 \in U$. Dado que dicho punto era arbitrario entonces el resultado es válido para todo punto en $U$.

$(\Leftarrow$
Supongamos ahora que las funciones reales de dos variables $u$ y $v$ son diferenciables en un punto $(x_0, y_0) \in U$ y satisfacen las ecuaciones de C-R en dicho punto, entonces: \begin{align*} \frac{\partial u}{ \partial x}(x_0,y_0) = A =\frac{\partial v}{ \partial y}(x_0,y_0),\\ \frac{\partial v}{ \partial x}(x_0,y_0) = B = -\frac{\partial u}{ \partial y}(x_0,y_0) \end{align*} para algunos $A$ y $B$ números reales.

Por la observación 18.1 y considerando las igualdades anteriores tenemos que $u$ y $v$ se pueden escribir de la forma: \begin{align*} u(x,y) – u(x_0,y_0) = A(x-x_0) – B(y-y_0) + \varepsilon_1(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2},\\ v(x,y) – v(x_0,y_0) = B(x-x_0) + A(y-y_0) + \varepsilon_2(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}, \end{align*} donde $\varepsilon_1(x,y) \to 0$ y $\varepsilon_2(x,y) \to 0$ si $(x,y) \to (x_0,y_0)$.

Considerando a la función $f(z) = u(x,y) + iv(x,y)$, tenemos que: \begin{align*} f(z) – f(z_0) & = u(x,y) + iv(x,y) – \left[u(x_0,y_0) + iv(x_0,y_0)\right]\\ & = u(x,y) – u(x_0,y_0) + i\left[ v(x,y) – v(x_0,y_0)\right]\\ & = A(x-x_0) – B(y-y_0) + \varepsilon_1(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}\\ & \quad \quad + i \left[ B(x-x_0) + A(y-y_0) + \varepsilon_2(x,y) \sqrt{(x-x_0)^2 + (y-y_0)^2}\right]\\ & = (A+iB)\left[(x-x_0)+i(y-y_0)\right] + \sqrt{(x-x_0)^2 + (y-y_0)^2} \left[ \varepsilon_1(x,y) + i\varepsilon_2(x,y) \right]. \end{align*} Tomando: \begin{equation*} \varepsilon(x+iy) : = \frac{\sqrt{(x-x_0)^2 + (y-y_0)^2}}{(x-x_0) +i (y-y_0)}\left[ \varepsilon_1(x,y) + i\varepsilon_2(x,y) \right], \end{equation*} entonces: \begin{align*} f(z) – f(z_0) & = (A+iB)\left[(x-x_0)+i(y-y_0)\right] + \varepsilon(x+iy) \left[(x-x_0) +i (y-y_0)\right]\\ & = (A+iB)\left(z – z_0\right) + \varepsilon(z) \left( z- z_0\right). \tag{18.6} \end{align*} Claramente: \begin{equation*} |\, \varepsilon(z)\,| \leq |\, \varepsilon_1(x,y)\,| + |\, \varepsilon_2(x,y)\,|. \end{equation*} Como $\varepsilon_1(x,y) \to 0$ y $\varepsilon_2(x,y) \to 0$ si $(x,y) \to (x_0,y_0)$, entonces tomando límites en esta última desigualdad concluimos que: \begin{equation*} \lim\limits_{z \to z_0} \varepsilon(z) = 0. \tag{18.7} \end{equation*} Por lo tanto, considerando (18.6) y (18.7), se sigue de la proposición 18.1 que $f$ es analítica en $z_0 \in U$.

Más aún, tenemos que: \begin{equation*} f'(z_0) = A+iB = \frac{\partial u}{ \partial x}(x_0,y_0) + i \frac{\partial v}{ \partial x}(x_0,y_0) = \frac{\partial v}{ \partial y}(x_0,y_0) – i \frac{\partial u}{ \partial y}(x_0,y_0), \end{equation*} por lo que se cumple (18.3).

Dado que $z_0 = x_0 + iy_0\in U$ era arbitrario, entonces el resultado se cumple para todo punto en $U$.

$\blacksquare$

Observación 18.3.
Recordemos que hemos construido a $\mathbb{C}$ a través de $\mathbb{R}^2$, por lo que si pensamos a una función compleja $f$ como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$ podemos preguntarnos acerca de la relación entre la diferenciabilidad compleja y la diferenciabilidad real de $f$.

Definición 18.3. (Diferenciabilidad de una función vectorial de dos variables.)
Sean $U\subset\mathbb{R}^2$ un conjunto abierto, $z_0 =(x_0,y_0) \in U$ y $f: U\to\mathbb{R}^2$ una función. Decimos que $f$ es diferenciable en $z_0$ (en el sentido real) si y solo si existe una transformación lineal $D_{f(z_0)} : \mathbb{R}^2 \to \mathbb{R}^2$ tal que: \begin{equation*}\lim_{z \to z_0}\frac{\|f(z)-f(z_0)-D_{f(z_0)}\left(z-z_0\right)\|}{\left\| z-z_0 \right\|} = 0, \tag{18.8} \end{equation*} donde $\|\cdot\|$ denota la norma usual en $\mathbb{R}^2$.

Por nuestros cursos de Cálculo sabemos que si una función vectorial de dos variables $f:U\to\mathbb{R}^2$, dada por $f(x,y) = (f_1(x,y),f_2(x,y))$, es diferenciable en un punto $z_0\in U\subset\mathbb{R}^2$, es decir existe el límite (18.8), entonces existen todas las derivadas parciales (de primer orden) en el punto $z_0$, de las funciones componentes de $f$ y al considerar la base canónica de $\mathbb{R}^2$, la matriz de $2\times2$ que representa a la transformación lineal $D_{f(z_0)}$ está formada por dichas derivadas parciales y recibe el nombre de la matriz Jacobiana, es decir: \begin{equation*} J_{f}(z_0) = \left(\begin{matrix} \frac{\partial f_1}{\partial x}(z_0) & \frac{\partial f_1}{\partial y}(z_0)\\ \\ \frac{\partial f_2}{\partial x}(z_0) & \frac{\partial f_2}{\partial y}(z_0) \end{matrix} \right). \tag{18.9} \end{equation*} Más aún, se prueba que $f$ es diferenciable en $U$ si y solo si $f_i: U \to \mathbb{R}$, con $i=1,2$, son funciones diferenciables en $U$.

De acuerdo con lo anterior podemos hacer algunas observaciones importantes. Notemos que la norma usal en $\mathbb{R}^2$ coincide con el módulo complejo en $\mathbb{C}$. Además, para una función compleja $f(z) = u(x,y) + iv(x,y)$, al considerarla como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$, se tiene que las funciones componentes de $f$ son: \begin{equation*} f_1(x,y) = u(x,y), \quad f_2(x,y) = v(x,y). \tag{18.10} \end{equation*}

Considerando a un número complejo $\lambda = a+ib$ fijo y $z=x+iy\in\mathbb{C}$, tenemos que su producto es: \begin{equation*} \lambda z = (a+ib)(x+iy) = (ax -by) + i(ay + bx). \end{equation*}

Por lo que, a través del producto de dos números complejos es posible definir una trasnformación lineal de $\mathbb{R}^2$ a $\mathbb{R}^2$, como sigue. Sean $\lambda=(a,b)\in\mathbb{R}^2$ constante y $z=(x,y)\in\mathbb{R}^2$, entonces: \begin{equation*} M_{\lambda} : \mathbb{R}^2 \to \mathbb{R}^2, \quad M_{\lambda}(z) = \begin{pmatrix} ax-by\\ ay+bx \end{pmatrix} = \begin{pmatrix} a & -b\\ b & a \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}, \tag{18.11} \end{equation*} de donde es claro que la matriz $A = \begin{pmatrix} a & -b\\ b & a \end{pmatrix}$ representa, en la base canónica de $\mathbb{R}^2$, a la transformación $M_\lambda$ correspondiente con la multiplicación de dos números complejos.

Procedamos ahora a analizar la definición de diferenciabilidad compleja dada en la entrada 16. De acuerdo con la definición 16.1, sabemos que para $U\subset\mathbb{C}$ un conjunto abierto y $f:U \to \mathbb{C}$ una función, decimos que $f$ es diferenciable en $z_0\in U$ si existe el límite: \begin{equation*} \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z-z_0}, \end{equation*} lo cual es equivalente a que exista un número complejo $\lambda = a+ib\in\mathbb{C}$ tal que: \begin{align*} \lim_{z\to z_0} \frac{f(z) – f(z_0)}{z-z_0} = \lambda \quad & \Longleftrightarrow \quad \lim_{z\to z_0} \frac{f(z) – f(z_0) – \lambda(z-z_0)}{z-z_0} = 0\\ & \Longleftrightarrow \quad \lim_{z\to z_0} \frac{| \, f(z) – f(z_0) – \lambda(z-z_0)\,|}{|\,z-z_0\,|} = 0, \tag{18.12} \end{align*} en cuyo caso $\lambda = f'(z_0)$.

De acuerdo con todo lo anterior, tenemos que la existencia de los límites dados en (18.8) y (18.12), así como el cumplimiento de las ecuaciones de C-R, nos deja ver que hay una estrecha relación entre las definiciones de diferenciabilidad real, para una función vectorial de dos variables, y de diferenciabilidad compleja.

Sean $U\subset\mathbb{C}$ un conjunto abierto y $f(z)=u(x,y)+iv(x,y)$ una función definida en $U$ y consideremos que $z=x+iy=(x,y)\in U$.

Si $f$ es una función analítica en $z_0\in U$, entonces existe $\lambda=a+ib\in\mathbb{C}$ tal que se cumple (18.12). Notemos que: \begin{align*} \lambda(z-z_0) &= (a+ib)\left[(x-x_0)+i(y-y_0)\right]\\ & = \left[a(x-x_0) – b(y-y_0)\right] + i \left[b(x-x_0) + a(y-y_0)\right], \end{align*} por lo que, considerando la transformación lineal dada por (18.11), tenemos que: \begin{equation*} M_\lambda(z-z_0) = \left(a(x-x_0) – b(y-y_0), b(x-x_0) + a(y-y_0)\right), \end{equation*} entonces: \begin{align*} 0 & = \lim_{z\to z_0} \frac{| \, f(z) – f(z_0) – \lambda(z-z_0)\,|}{|\,z-z_0\,|}\\ & = \lim_{z \to z_0} \frac{\left\| f(z) – f(z_0) – M_\lambda(z-z_0) \right\|}{\left\| z-z_0 \right\|}, \end{align*} por lo que $f$ es diferenciable, en el sentido real como función de $\mathbb{R}^2$ a $\mathbb{R}^2$. Más aún, la matriz $A$ que representa a la transformación lineal $M_\lambda$, en la base canónica de $\mathbb{R}^2$, debe ser igual a la matriz Jacobiana de $f$ en $z_0$, entonces considerando (18.10) tenemos que: \begin{equation*} \begin{pmatrix} a & -b\\ b & a \end{pmatrix} = \left(\begin{matrix} u_x(z_0) & u_y(z_0)\\ \\ v_x(z_0) & v_y(z_0) \end{matrix} \right), \end{equation*} de donde se siguen las ecuaciones de C-R y se cumple que $\lambda = f'(z_0) = u_x(z_0) + iv_x(z_0) = v_y(z_0) – i u_x(z_0)$.

Si suponemos ahora que $f$, como función de $\mathbb{R}^2$ a $\mathbb{R}^2$, es diferenciable en el sentido real y que se satisfacen las ecuaciones de C-R, entonces tenemos que se cumple (18.8).

Considerando a la matriz Jacobiana que representa a la transformación lineal $D_{f(z_0)}$, dada en (18.8), como se cumplen las ecuaciones de C-R, tenemos que dicha matriz es de la forma: \begin{equation*} \left(\begin{matrix} u_x(z_0) & -u_y(z_0)\\ \\ u_y(z_0) & u_x(z_0) \end{matrix} \right) = \begin{pmatrix} a & -b\\ b & a \end{pmatrix}, \end{equation*} para algunos $a,b\in\mathbb{R}$.

Dado que la transformación lineal $D_{f(z_0)}$ es única y la matriz que la representa es igual a la de la transformación dada en (18.11), entonces debe suceder que $D_{f(z_0)} = M_\lambda$, para $\lambda = a+ib\in\mathbb{C}$, es decir que se trata de la multiplicación por el número complejo $\lambda$, entonces: \begin{align*} 0 & = \lim_{z \to z_0} \frac{\| f(z) – f(z_0) – D_{f(z_0)}(z-z_0)\|}{\left\| z-z_0 \right\|}\\ & = \lim_{z\to z_0} \frac{| \, f(z) – f(z_0) – \lambda(z-z_0)\,|}{|\,z-z_0\,|}\ \end{align*}

Con lo anterior hemos probado el siguiente resultado.

Teorema 18.3.
Sean $U\subset\mathbb{C}$ un conjunto abierto y $f(z) = u(x,y) + iv(x,y)$ una función compleja definida en $U$. Las siguientes condiciones son equivalentes:

  1. $f$ es diferenciable en $z_0\in U$, en el sentido complejo.
  2. $f$ es diferenciable en $z_0=(x_0,y_0) \in U$, en el sentido real, pensada como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$, y se satisfacen las ecuaciones de C-R en $z_0$.

$\blacksquare$

Ejemplo 18.4.
Sea $z=x+iy\in\mathbb{C}$ y sea $f:\mathbb{C} \to \mathbb{C}$ una función compleja dada por $f(z)=x^2-y^2+i2xy$. Veamos que $f$ es analítica en $\mathbb{C}$.

Solución. Si consideramos a $f$ como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$ tenemos que $f(x,y) = (x^2 – y^2, 2xy)$, de donde se sigue que sus funciones componentes son: \begin{equation*} f_1(x,y)=u(x,y) = x^2-y^2, \quad f_2(x,y)=v(x,y) = 2xy. \end{equation*}

Dado que: \begin{align*} \frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = -2y,\\ \frac{\partial v}{\partial x} = 2y, \quad \frac{\partial v}{\partial y} = 2x, \end{align*} existen y son continuas para todo $z=(x,y)\in\mathbb{R}^2$, entonces $f$ es una función diferenciable, en el sentido real, en $\mathbb{R}^2$.

Es claro que $u_x = v_y$ y $u_y = – v_x$ para todo $z=(x,y)\in\mathbb{R}^2$, por lo que de acuerdo con el teorema 18.3, concluimos que $f$ es diferenciable en todo $\mathbb{C}$ y por tanto analítica en todo punto.

Por último, tenemos que la matriz Jacobiana de dicha función compleja es: \begin{equation*} J_f = \begin{pmatrix} u_x & u_y\\ v_x & v_y \end{pmatrix} = \begin{pmatrix} u_x & -v_x\\ v_x & u_x \end{pmatrix} = \begin{pmatrix} 2x & -2y\\ 2y & 2x \end{pmatrix}, \end{equation*} para todo $z=x+iy\in\mathbb{C}$.

Entonces, para $z_0=x_0+iy_0\in\mathbb{C}$ se tiene que: \begin{equation*} f'(z_0) = u_x(x_0,y_0) + i v_x(x_0,y_0) = 2x_0 + i2y_0 = 2z_0, \end{equation*} lo cual era de esperarse ya que $f(z) = z^2 = x^2 – y^2 + i2xy$.

Observación 18.4.
Es importante notar que el resultado anterior es solo una reformulación del teorema 18.3, desde que la diferenciabilidad, en el sentido real, de una función $f:U\subset\mathbb{R}^2 \to \mathbb{R}^2$ es equivalente a la diferenciabilidad de sus funciones componentes. Sin embargo, la importancia de este resultado radica en que ahora que conocemos la matriz Jacobiana de una función analítica, pensada como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$, es claro, por el ejercicio 3 de la entrada 12, que dicha matriz corresponde con la derivada compleja de una función analítica en cualquier punto. Además veremos que a través de esta representación matricial de la derivada es posible establecer algunos resultados de las funciones analíticas que veremos en la siguiente entrada.

Por otra parte, estos últimos resultados nos dejan ver que la diferenciabilidad compleja es más fuerte que la diferenciabilidad real, lo cual resulta sorprendente, pues a diferencia de algunos conceptos como el límite y la continuidad para los cuales vimos que podemos caracterizarlos a través de dos funciones reales, correspondientes con la parte real e imaginaria de la función, en el caso de la diferenciabilidad es claro que no bastará la diferenciabilidad en el sentido real de dichas funciones o de la diferenciabilidad en el sentido real de la función vectorial conformada por dichas funciones reales. Esto resulta de suma importancia pues nos permite diferenciar a las funciones complejas de las funciones vectoriales de dos variables, desde que la diferenciabilidad de las primeras implica la diferenciabilidad de las segundas, pero el recíproco no es cierto ya que se deben cumplir también las ecuaciones de C-R, que como probamos antes resultan ser una condición necesaria para la diferenciabilidad compleja y por ende para la analicidad de una función compleja.

Para convencernos de esto último, basta con considerar a la función $f(z)=\overline{z} = x-iy$. Es claro que está función no es diferenciable en el sentido complejo desde que las ecuaciones de C-R no se satisfacen en ningún punto en $\mathbb{C}$ y por tanto tampoco es analítica. Sin embargo, si la consideramos como una función de $\mathbb{R}^2$ a $\mathbb{R}^2$ es claro que dicha función sí es diferenciable en el sentido real.

Tanto el teorema 18.1 como el teorema 18.2 nos dejan ver que además de las ecuaciones de C-R, es necesario imponer una serie de hipótesis extras sobre las funciones reales $u$ y $v$, que caracterizan a una función compleja $f(z)=u(x,y)+iv(x,y)$, para garantizar la analicidad de dicha función. Cerraremos esta entrada con un notable resultado que nos muestra que la condición de continuidad de las derivadas parciales en el teorema 18.1 resulta superfluo. No daremos una prueba de este, pero puede consultarse en algún texto como Complex Analysis in One Variable de Raghavan Narasimhan e Yves Nievergelt.

Teorema 18.4. (Teorema de Looman-Menchoff.)
Sean $U\subset$ un conjunto abierto y $f(z)=u(x,y) = iv(x,y)$ una función definida en $U$. Si las funciones reales $u$ y $v$ son continuas en $U$ (es decir que $f$ es continua en $U$), las cuatro derivadas parciales $u_x$, $u_y$, $v_x$ y $v_y$ existen en $U$ y se satisfacen las ecuaciones de C-R en $U$, entonces $f$ es analítica en $U$.

Tarea moral

  1. Muestra que las siguientes funciones son diferenciables solo en los conjuntos dados y determina su derivada.
    a) $f(z) = x – iy^2$ en $S=\{z\in\mathbb{C} : \operatorname{Im}(z) = -1/2\}$.
    b) $f(z) = x^2 + iy^2$ en $S=\{z\in\mathbb{C} : \operatorname{Re}(z) = \operatorname{Im}(z)\}$.
    c) $f(z) = yx + iy^2$ en $S=\{z\in\mathbb{C} : \operatorname{Re}(z) = \operatorname{Im}(z) = 0 \}$.
    d) $f(z) = x^3+i(1-y)^3$ en $S=\{z\in\mathbb{C} : \operatorname{Re}(z) = 0 \,\, \text{y} \,\, \operatorname{Im}(z) = 1\}$.
  2. Para cada una de las siguientes funciones complejas determina el conjunto donde $f$ es diferenciable y el dominio de analicidad de $f$. Donde exista, determina su derivada.
    a) $f(z) = (x^3 + 3xy^2 – 3x) + i(y^3 + 3x^2y – 3y)$.
    b) $f(z) = 6\overline{z}^2 – 2\overline{z} – 4i|\,z\,|^2$.
    c) $f(z) = (3x^2 + 2x – 3y^2 -1) + i(6xy + 2y)$.
    d) $f(z) = \dfrac{2z^2 + 6}{z(z^2 + 4)}$.
  3. Determina el dominio de analicidad de las siguientes funciones.
    a) $f(z) = 4x^2+5x-4y^2+9+i(8xy+5y-1)$.
    b) $f(z) = 5r\operatorname{cos}(\theta) + r^4\operatorname{cos}(4 \theta) + i(5r\operatorname{sen}(\theta) + r^4 \operatorname{sen}(4 \theta))$.
    c) $f(z) = \dfrac{x^3+xy^2+x}{x^2+y^2} + i \dfrac{y^3+x^2y-y}{x^2+y^2}$.
    d) $f(z) = \dfrac{\operatorname{cos}(\theta)}{r} – i \dfrac{\operatorname{sen}(\theta)}{r}$.
    e) $f(z) = \dfrac{x-1}{(x-1)^2+y^2} – i \dfrac{y}{(x-1)^2+y^2}$.
  4. ¿Cuál debe ser el valor de las constantes reales $a,b,c$ y $d$ para que las siguientes funciones sean analíticas?
    a) $f(z) = 3x-y+5+i(ax+by-3)$.
    b) $f(z) = x^2 + axy+by^2+i(cx^2+dxy+y^2)$.
  5. Supón que $f$ es una función analítica en un conjunto abierto $U\subset\mathbb{C}$. Prueba que el determinante de su matriz Jacobiana es igual a $|f'(z)|^2$ para todo $z\in U$.
  6. Sean $f(z) = z^3$, $z_1 = 1$ y $z_2 = i$. Prueba que no existe un punto $z_0$ en el segmento de recta que une a $z_1$ y $z_2$, es decir $[z_1,z_2]$, tal que: \begin{equation*} f(z_2) – f(z_1) = f'(z_0) (z_2 – z_1). \end{equation*} Concluye que el teorema del valor medio para funciones reales no se extiende para funciones complejas.
  7. Sea $f$ una función analítica en un conjunto abierto $U\subset\mathbb{C}$. Prueba que la función $g(z)=\overline{f(\overline{z})}$ es analítica en el conjunto $U^*=\{\overline{z} : z\in U\}$.

Más adelante…

En esta entrada vimos bajo que condiciones es posible garantizar la analicidad de una función compleja $f(z)=u(x,y) + i v(x,y)$ sobre un conjunto abierto $U\subset\mathbb{C}$. Para ello recurrimos nuevamente a analizar las funciones reales $u$ y $v$, concluyendo que, además de las ecuaciones de C-R, es necesario imponer algunas condiciones extras sobre dichas funciones.

El objetivo de esta entrada fue dar algunos recíprocos parciales para el Teorema 17.1 de la entrada anterior. Es interesante notar que es posible relajar algunas condiciones sobre las funciones $u$ y $v$ para garantizar la analicidad de una función compleja, como es el caso del teorema de Looman-Menchoff.

La siguiente entrada abordaremos algunos resultados interesantes que son consecuencia directa de las ecuaciones de Cauchy-Riemann y que nos permitirán caracterizar aún más a las funciones complejas a través de su parte real e imaginaria, extendiendo algunos resultados obtenidos en nuestros cursos de Cálculo.

Entradas relacionadas

Variable Compleja I: Ecuaciones de Cauchy-Riemann. Condiciones necesarias para la diferenciabilidad compleja.

Por Pedro Rivera Herrera

Introducción

Hasta ahora hemos visto que toda función compleja $f(z)$ diferenciable es continua, más aún sabemos que toda función compleja continua es de la forma: \begin{equation*} f(z) = u(x,y) + i v(x,y), \end{equation*} donde $u(x,y)$ y $v(x,y)$ son funciones reales continuas de variables $x,y$, por lo que resulta natural preguntarnos acerca de qué condiciones deben cumplir dichas funciones para que una función compleja $f(z)$ sea analítica. La respuesta a esta pregunta esta dada por las ecuaciones de Cauchy-Riemann, a las cuales nos referiremos simplemente como las ecuaciones de C-R. Dichas ecuaciones aparecieron por primera vez en 1821 en los primeros trabajos del matemático fránces Augustin Louis Cauchy sobre integrales de funciones complejas. Su relación con la existencia de la derivada compleja apareció hasta 1851 en la tesis doctoral del matemático alemán Bernhard Riemann.

Como veremos a lo largo de las siguientes entradas, las ecuaciones de C-R resultan ser un pilar en la teoría de las funciones complejas, por lo que nuestro objetivo será deducirlas y obtener una serie de resultados que nos permitan caracterizar a las funciones analíticas mediante dichas ecuaciones.

Recordemos las siguientes definiciones vistas en nuestros cursos de cálculo.

Definición 17.1. (Derivada parcial.)
Supongamos que $u: \mathbb{R}^2 \to \mathbb{R}$ es una función real de variables reales, $x,y$, definida en un conjunto abierto no vacío $U\subset \mathbb{R}^2$. Si consideramos a la variable $y$ como constante, entonces podemos pensar a $u$ como una función únicamente de $x$ y derivar con respecto a $x$. Entonces: \begin{equation*} \frac{\partial u }{\partial x}(x,y) = \lim_{h \to 0} \frac{u(x+h, y) – u(x,y)}{h}. \end{equation*}

En caso de existir dicho límite lo llamaremos la derivada parcial de $u$ con respecto a $x$ y es denotada como $\frac{\partial u }{\partial x}$ o $u_x$. Dicha derivada resulta ser una función evaluada en el punto $(x,y)$, lo cual se suele omitir por simplicidad en la notación.

Análogamente, fijando a $x$ y considerando a $u(x,y)$ como una función de $y$, tenemos al derivar con respecto a $y$ la derivada parcial de $u$ con respecto a $y$, es decir: \begin{equation*} \frac{\partial u }{\partial y}(x,y) = \lim_{h \to 0} \frac{u(x, y+h) – u(x,y)}{h}. \end{equation*}

Definición 17.2. (Funciones clase $C^k$.)
Si $U\subset\mathbb{R}^2$ es un conjunto abierto y $u:U\to\mathbb{R}$ es una función, entonces $u$ es llamada de clase $C^1$ o continuamente diferenciable en $U$ si $\partial u/\partial x$ y $\partial u/\partial y$ existen y son continuas en $U$. Lo anterior se denota de forma abreviada como $u\in C^1(U)$.

De forma general si $k\in\mathbb{N}$, entonces una función real $u$ definida en $U\subset\mathbb{R}^2$, es llamada de clase $C^k$ o $k$-veces continuamente diferenciable si todas las derivadas parciales hasta el orden $k$ existen y son continuas en $U$. En dicho caso escribimos $u\in C^k(U)$. En particular, diremos que una función $u$ es clase $C^0$ si simplemente es una función continua.

Entonces, para $U\subset \mathbb{C}$ abierto, una función $f(z) = u(x,y) + i v(x,y)$ definida en $U$, es llamada de clase $C^k$ si $u$ y $v$ son de clase $C^k$.

Observación 17.1.
A partir de ahora usaremos la notación $U$ para denotar conjuntos abiertos en $\mathbb{C}$ y $D$ para denotar dominios o regiones en $\mathbb{C}$, estos conceptos se abordaron en la Unidad 1: Introducción y preliminares.

De acuerdo con la observación 16.2 sabemos que si una función $f:U\to\mathbb{C}$ es diferenciable en un punto $z_0\in U$, entonces el límite: \begin{equation*} f'(z_0) = \lim_{z \to z_0} \dfrac{f(z) – f(z_0)}{z-z_0} = \lim_{h \to 0} \dfrac{f(z_0 + h) – f(z_0)}{h}, \end{equation*} existe y es único sin importar como $h$ se aproxime a $0$ en el plano complejo. Sin embargo es importante notar que al igual que en el caso de funciones reales, podemos considerar a dos direcciones privilegiadas cuando $h \to 0$, figura 73, las cuales son:

  1. a lo largo de un eje paralelo al eje real, es decir cuando $h\in \mathbb{R}$,
  2. a lo largo de un eje paralelo al eje imaginario, es decir cuando $h=ki\in\mathbb{C}$, con $k\in\mathbb{R}$, es un número complejo puro.
Figura 73: Gráfica de las dos direcciones privilegiadas por las que $z$ se aproxima a $z_0$ al calcular $f'(z_0)$.

Veamos entonces qué sucede al calcular el límite que define a $f'(z)$ si consideramos las direcciones privilegiadas descritas previamente. Supongamos que $f(z) = u(x,y) + iv(x,y)$ es una función diferenciable en un punto $z_0=x_0+iy_0\in U$, con $U \subset \mathbb{C}$ abierto.

Si $h$ es real, entonces: \begin{align*} f'(z_0) &= \lim_{h \to 0} \frac{f(z_0+h) – f(z_0)}{h}\\ & = \lim_{h \to 0} \left[ \frac{u(x_0+h,y_0) – u(x_0,y_0)}{h} + i \frac{v(x_0+h,y_0) – v(x_0,y_0)}{h}\right]\\ & = \lim_{h \to 0} \frac{u(x_0+h,y_0) – u(x_0,y_0)}{h} + i \lim_{h \to 0} \frac{v(x_0+h,y_0) – v(x_0,y_0)}{h}\\ & = \frac{\partial u}{ \partial x}(x_0,y_0) + i \frac{\partial v}{ \partial x}(x_0,y_0)\\ & =: \frac{\partial f}{\partial x}(x_0,y_0) = f_x(z_0). \tag{17.1} \end{align*}

Si $h$ es un número imaginario puro, es decir $h=ik$, con $k$ real, entonces $h\to 0$ si y solo si $k\to 0$, por lo que: \begin{align*} f'(z_0) &= \lim_{h \to 0} \frac{f(z_0+h) – f(z_0)}{h}\\ & = \lim_{k \to 0} \left[ \frac{u(x_0,y_0+k) – u(x_0,y_0)}{ik} + i \frac{v(x_0,y_0+k) – v(x_0,y_0)}{ik}\right]\\ & = \frac{1}{i}\lim_{k \to 0} \frac{u(x_0,y_0+k) – u(x_0,y_0)}{k} + \lim_{k \to 0} \frac{v(x_0,y_0+k) – v(x_0,y_0)}{k}\\ & = -i \frac{\partial u}{ \partial y}(x_0,y_0) + \frac{\partial v}{ \partial y}(x_0,y_0)\\ & =: -i\frac{\partial f}{\partial y}(x_0,y_0) = -i f_y(z_0). \tag{17.2} \end{align*}

De ambos casos es claro que la existencia de las cuatro derivadas parciales: \begin{equation*} \frac{\partial u}{\partial x}, \quad \frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial x}, \quad \frac{\partial v}{\partial y} \end{equation*} en el punto $(x_0,y_0)$, está garantizada por la existencia del límite que define a la derivada compleja en el punto $z_0 = x_0 +iy_0 \in U$.

Observación 17.1.
Hemos introducido en las últimas igualdades de las ecuaciones (17.1) y (17.2) una notación usual en algunos textos para referirnos a la derivada de una función compleja en términos de las derivadas parciales de las funciones $u$ y $v$, es importante no confundirnos con dicha notación la cual se usará de manera indistinta en el curso.

Dado que $f'(z_0)$ existe sin importar la dirección en que $h$ se aproxime a $0$, entonces los dos límites dados en (17.1) y (17.2) deben ser iguales, es decir: \begin{equation*} f'(z_0) = \frac{\partial u}{ \partial x}(x_0,y_0) + i \frac{\partial v}{ \partial x}(x_0,y_0) = \frac{\partial v}{ \partial y}(x_0,y_0) -i \frac{\partial u}{ \partial y}(x_0,y_0), \tag{17.3} \end{equation*} o equivalentemente: \begin{equation*} f'(z_0) = f_x(z_0) = -i f_y(z_0). \tag{17.4} \end{equation*}

Igualando las partes reales e imaginarias de estos dos números complejos tenemos que: \begin{equation*} \frac{\partial u}{ \partial x} (x_0, y_0)= \frac{\partial v}{ \partial y}(x_0, y_0), \quad \text{y} \quad \frac{\partial u}{ \partial y}(x_0, y_0) = – \frac{\partial v}{ \partial x}(x_0, y_0). \tag{17.5} \end{equation*}

Al par de ecuaciones diferenciales parciales dado en (17.5) se les conoce como las ecuaciones de Cauchy-Riemann.

Con lo anterior hemos probado el siguiente resultado.

Teorema 17.1. (Ecuaciones de Cauchy-Riemann.)
Sean $U\subset \mathbb{C}$ un conjunto abierto y $f:U\to \mathbb{C}$ una función. Si $f(z) = u(x,y) + iv(x,y)$ es analítica en un punto $z_0=x_0 +iy_0\in U$, entonces existen las derivadas parciales: \begin{equation*} \frac{\partial u}{\partial x}, \quad \frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial x}, \quad \frac{\partial v}{\partial y} \end{equation*} en $(x_0,y_0)$ y satisfacen las ecuaciones de Cauchy-Riemann (17.5) en dicho punto. En tal caso se tiene que: \begin{equation*} f'(z_0) = \frac{\partial u}{\partial x}(x_0,y_0) + i \frac{\partial v}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0) – i \frac{\partial u}{\partial y}(x_0,y_0). \end{equation*}

$\blacksquare$

Corolario 17.1.
Si $f(z)=u(x,y) + iv(x,y)$ es una función analítica en un conjunto abierto $U\subset\mathbb{C}$, entonces las ecuaciones de C-R se satisfacen en todo punto de $U$.

$\blacksquare$

De acuerdo con el corolario 16.1 de la entrada anterior, sabemos que todo polinomio complejo es una función entera, es decir, analítica en todo $\mathbb{C}$, por lo que de acuerdo con el corolario 17.1 se deben cumplir las ecuaciones de C-R para todo $z=x+iy\in\mathbb{C}$.

Ejemplo 17.1
Consideremos al polinomio complejo $f(z) = 2z^2 + 3z$, para $z=x+iy\in\mathbb{C}$, veamos que se satisfacen las ecuaciones de C-R en $\mathbb{C}$ y obtengamos la derivada de $f$.

Solución. Tenemos que: \begin{equation*} f(z) = 2(x^2 – y^2) + 3x + i(4xy + 3y), \end{equation*} de donde $u(x,y) = 2(x^2 – y^2) + 3x$ y $v(x,y) = 4xy + 3y$.

Entonces para todo $z=x+iy\in\mathbb{C}$ se satisfacen las ecuaciones de C-R: \begin{align*} \frac{\partial u}{\partial x} = 4x + 3 = \frac{\partial v}{\partial y},\\ \frac{\partial u}{\partial y} = -4y = – \frac{\partial v}{\partial x}. \end{align*}

Por otra parte, de acuerdo con el teorema 1 tenemos que la derivada de $f$ es: \begin{equation*} f'(z) = 4x+3 + i4y = 4(x+iy) + 3 = 4z + 3. \end{equation*}

Observación 17.3.
El teorema 17.1 establece que una condición necesaria para que una función $f(z)=u(x,y)+i v(x,y)$ sea analítica en un punto $z_0\in U \subset\mathbb{C}$ es que las ecuaciones de C-R se satisfagan en dicho punto.

La importancia del teorema 17.1 y del corolario 17.1 radica en que tenemos ahora un criterio para determinar cuando una función no es analítica por medio de las ecuaciones de C-R. Para mostrar esto consideremos los siguientes ejemplos.

Ejemplo 17.2.
De acuerdo con el ejemplo 16.3 de la entrada anterior, sabemos que las funciones $f(z) = \overline{z}$ y $g(z) = \operatorname{Re}(z)$ no son analíticas en ningún punto de $\mathbb{C}$. Utilizando la contrapuesta del corolario 17.1 procedemos a verificar nuestro resultado.

Solución. Es claro que ambas funciones están definidas en todo $\mathbb{C}$. Sea $z=x+iy\in\mathbb{C}$.

a) Para $f(z) = \overline{z} = x – iy$ tenemos que $u(x,y) = x$ y $v(x,y) = -y$, por lo que: \begin{align*} \frac{\partial u}{\partial x} = 1 \quad \text{y} \quad \frac{\partial u}{\partial y} = 0,\\ \frac{\partial v}{\partial x} = 0 \quad \text{y} \quad \frac{\partial v}{\partial y} = -1. \end{align*} Es claro que $\partial u/\partial x \neq \partial v/\partial y$ para todo $z = x+iy \in \mathbb{C}$, por lo que $f$ no es analítica en ningún punto.

b) Por otra parte, para $g(z) = \operatorname{Re}(z) = x$ tenemos que $u(x,y) = x$ y $v(x,y) = 0$, por lo que: \begin{align*} \frac{\partial u}{\partial x} = 1 \quad \text{y} \quad \frac{\partial u}{\partial y} = 0,\\ \frac{\partial v}{\partial x} = 0 \quad \text{y} \quad \frac{\partial v}{\partial y} = 0. \end{align*} Tenemos que $\partial u/\partial x \neq \partial v/\partial y$ y $\partial u/\partial y \neq -\partial v/\partial x$ para todo $z = x+iy \in \mathbb{C}$, por lo que $f$ no es analítica en ningún punto.

Ejemplo 17.3.
Sea $z=x+iy\in\mathbb{C}$. Veamos que la función compleja $f(z) = 2x^2 +y +i(y^2-x)$ no es analítica en ningún punto.

Solución. Notemos que $u(x,y) = 2x^2 + y$ y $v(x,y) = y^2 – x$, entonces: \begin{equation*} \frac{\partial u}{\partial x} = 4x \quad \text{y} \quad \frac{\partial u}{\partial y} = 1, \end{equation*} \begin{equation*} \frac{\partial v}{\partial x} = -1 \quad \text{y} \quad \frac{\partial v}{\partial y} = 2y. \end{equation*}

Es claro que $\partial u/\partial y = -\partial v/\partial x$ para todo $z=x+iy \in \mathbb{C}$, mientras que la igualdad $\partial u/\partial x = \partial v/\partial y$ se satisface solamente en la recta $y=2x$. Sin embargo, para todo punto $z=x+iy$ sobre dicha recta, no existe un disco abierto alrededor de $z$ en el cual $f$ sea diferenciable, por lo que $f$ no es analítica en ningún punto.

Es importante notar que aunque se satisfagan las ecuaciones de C-R en un punto $z_0= x_0+iy_0\in D$, esto no es suficiente para garantizar la existencia de $f'(z_0)$ en $D$, desde que existen muchas otras direcciones por las que $z$ se aproxima a $z_0$ al calcular el límite que define a $f'(z_0)$. Consideremos el siguiente ejemplo para verificar lo anterior.

Ejemplo 17.4.
Sea $z=x+iy$. Veamos que la función: \begin{equation*} f(z)= \left\{\begin{array}{lcc} \dfrac{x^3(1+i) – y^3(1-i)}{x^2+y^2}& \text{si} & z\neq 0, \\ 0 & \text{si} & z = 0, \end{array} \right. \end{equation*} es continua en $z=0$ y que en dicho punto se satisfacen las ecuaciones de C-R, pero $f'(0)$ no existe.

Solución. Sea $f(z)=u(z)+iv(z)$, entonces para $z\neq 0$ tenemos que: \begin{equation*} u(x,y) = \frac{x^3 – y^3}{x^2+y^2}, \quad v(x,y) = \frac{x^3 + y^3}{x^2+y^2}, \end{equation*} con $x\neq 0$ y $y\neq 0$.

Primeramente verifiquemos que $f(z)$ es continua en todo $\mathbb{C}$. Es claro que si $z\neq 0$, entonces las funciones racionales $u(x,y)$ y $v(x,y)$ están bien definidas y son continuas, por lo que en dicho caso $f(z)$ es continua. Probemos ahora que $f(z)$ es continua en $z=0$. Utilizando coordenadas polares tenemos que: \begin{equation*} u(r,\theta) = r\left(\operatorname{cos}^3(\theta) – \operatorname{sen}^3(\theta)\right), \quad v(r,\theta) = r\left(\operatorname{cos}^3(\theta) + \operatorname{sen}^3(\theta)\right). \end{equation*}

Notemos que si $z\to 0$, entonces $r \to 0$, para cualquier argumento $\theta$, por lo que: \begin{equation*} \lim_{r \to 0} u(r,\theta) = \lim_{r \to 0} v(r,\theta) = 0, \end{equation*} entonces: \begin{equation*} \lim_{z \to 0} f(z) = 0 = f(0), \end{equation*} por lo que $f(z)$ es continua en $z=0$ y por tanto es continua en todo $\mathbb{C}$.

Veamos ahora que en $z=0$ las ecuaciones de C-R se satisfacen. Si $z=0$, entonces: \begin{align*} f(0) = 0 \quad & \Longleftrightarrow \quad u(0,0) + iv(0,0) = 0\\ & \Longleftrightarrow \quad u(0,0) = v(0,0) = 0. \end{align*} Por definición tenemos que: \begin{align*} \frac{\partial u}{\partial x} (0,0) & = \lim_{h\to 0}\frac{u(h,0) – u(0,0)}{h}\\ & = \lim_{h\to 0}\frac{h – 0}{h}\\ & = 1. \end{align*} \begin{align*} \frac{\partial u}{\partial y} (0,0) & = \lim_{h\to 0}\frac{u(0,h) – u(0,0)}{h}\\ & = \lim_{h\to 0}\frac{-h – 0}{h}\\ & = -1. \end{align*} Mientras que: \begin{align*} \frac{\partial v}{\partial x} (0,0) & = \lim_{h\to 0}\frac{v(h,0) – v(0,0)}{h}\\ & = \lim_{h\to 0}\frac{h – 0}{h}\\ & = 1. \end{align*} \begin{align*} \frac{\partial v}{\partial y} (0,0) & = \lim_{h\to 0}\frac{v(0,h) – v(0,0)}{h}\\ & = \lim_{h\to 0}\frac{h – 0}{h}\\ & = 1. \end{align*} Entonces, en el origen tenemos que: \begin{equation*} \frac{\partial u}{ \partial x} = \frac{\partial v}{ \partial y}, \quad \frac{\partial v}{ \partial x} = -\frac{\partial u}{ \partial y}, \end{equation*} por lo que en $z=0$ se satisfacen las ecuaciones de C-R. Sin embargo, $f(z)$ no es diferenciable en dicho punto.

Para $z=x+iy$ tenemos que: \begin{align*} f'(0) & = \lim_{z \to 0} \frac{f(z) – f(0)}{z}\\ & = \lim_{z \to 0} \frac{f(z) – 0}{z}\\ & = \lim\limits_{\begin{subarray}{l} x \to 0\\ y \to 0 \end{subarray}} \frac{(x^3 – y^3) + i (x^3 + y^3)}{(x^2+y^2)(x+iy)}. \end{align*} Notemos que si $z$ se aproxima $0$ a lo largo de la recta $y=x$, entonces: \begin{align*} f'(0) & = \lim_{z \to 0} \frac{f(z) – f(0)}{z}\\ & = \lim_{x \to 0} \frac{2ix^3}{2x^3(1+i)}\\ & = \frac{i}{1+i}. \end{align*} Por otra parte, si $z$ se aproxima $0$ a lo largo del eje real $x$, es decir si $y=0$, entonces: \begin{align*} f'(0) & = \lim_{z \to 0} \frac{f(z) – f(0)}{z}\\ & = \lim_{x \to 0} \frac{x^3(1+i)}{x^3}\\ & = 1+i. \end{align*} Dado que estos límites son distintos, entonces $f'(0)$ no existe y por tanto $f(z)$ no es diferenciable en $z=0$.

De acuerdo con la proposición 16.1 de la entrada anterior, sabemos que una consencuencia de la analicidad de una función $f$ en un punto $z_0 \in U\subset\mathbb{C}$, es la continuidad de la función $f$ en dicho punto. Sin embargo, el ejemplo 17.4 muestra que el recíproco de dicha proposición no es cierto, pues la función $f(z)$ de dicho ejemplo es continua en $z_0 = 0$, pero no es analítica en dicho punto.

Observación 17.4.
De nuestros cursos de geometría sabemos que al trabajar con coordenadas polares es posible establecer una transformación biunívoca entre las coordenadas polares y las coordenadas cartesianas mediante la transformación: \begin{align*} T: (0,\infty) \times (-\pi,\pi] \to \mathbb{R}^2\setminus\{(0,0)\},\\ T(r,\theta)=(r\operatorname{cos}(\theta), r\operatorname{sen}(\theta)). \end{align*} Por ejemplo, para el conjunto de puntos: \begin{equation*} U^* = \left\{(r,\theta) : 1\leq r \leq 2 \, \, \text{y} \,\, 0\leq \theta \leq \pi/2\right\}, \end{equation*} se tiene que $T(U^*) = U$, con: \begin{equation*} U = \left\{(x,y) : 1/2 \leq x \leq 1 \, \, \text{y} \,\, \sqrt{1-x^2} \leq y \leq \sqrt{3} x \right\}\cup \left\{(x,y) : 1 \leq x \leq 2 \, \, \text{y} \,\, 0 \leq y \leq \sqrt{4-x^2}\right\}. \end{equation*}

De acuerdo con la observación 12.5, al considerar a $z\in\mathbb{C}$, $z\neq 0$, en su forma polar, es posible expresar a una función compleja $f(z)$ en términos de su parte real e imaginaria, las cuales son funciones reales de las variables $r$ y $\theta$, por lo que considerando la transformación anterior, resulta sencillo verificar el siguiente resultado.

Proposición 17.1. (Forma polar de las ecuaciones de C-R.)
Sean $U\subset\mathbb{C}\setminus{0}$ un conjunto abierto y $f\in\mathcal{F}(U)$ una función. Si la función $f(z)=u(x,y) + iv(x,y)$ es analítica en $U$, entonces considerando la transformación dada por $x=r\operatorname{cos}(\theta)$, $y=r\operatorname{sen}(\theta)$, para $(r,\theta)\in U^*$ y $U^* \subset (0,\infty)\times(-\pi, \pi]$, se tiene que las ecuaciones de Cauchy-Riemann en su forma polar están dadas por: \begin{equation*} \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text{y} \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}, \tag{17.6} \end{equation*} las cuales existen para cada punto de $U$.

Más aún, en consecuencia con el teorema 1, se tiene que para $z_0 = r_0 \operatorname{cis}(\theta_0) \in U$, un punto donde $f$ es analítica, se cumple que: \begin{align*} f'(z_0) & = \operatorname{cis}(-\theta) \left[ \frac{\partial u}{\partial r} (r_0, \theta_0)+ i \frac{\partial v}{\partial r}(r_0, \theta_0)\right]\\ & = \left[\operatorname{cos}(\theta) – i \operatorname{sen}(\theta) \right]\left[ u_r(r_0, \theta_0)+ i v_r(r_0, \theta_0)\right]. \end{align*}

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 17.5.
Consideremos a la función $f(z) = \dfrac{1}{z^2}$. De acuerdo con el corolario 16.1 sabemos que dicha función es analítica en $\mathbb{C}\setminus\{0\}$, por lo que considerando a $z\neq 0$ en coordenadas polares podemos verificar que se cumplen las ecuaciones de C-R en su forma polar para todo $(r,\theta) \in (0,\infty) \times (-\pi,\pi]$ o equivalentemente, por la observación 17.4, para todo $z \in \mathbb{C}\setminus\{0\}$.

Solución.
Sea $z=r\operatorname{cis}(\theta) \neq 0$, con $r = |\,z\,|$ y $\theta = \operatorname{Arg} z$. Por la fórmula de De Moivre tenemos que: \begin{align*} f(z) = \frac{1}{z^2} & = \frac{1}{\left[r\operatorname{cis}(\theta)\right]^2}\\ & = \frac{1}{r^2\left[\operatorname{cos}(2\theta) + \operatorname{sen}(2\theta)\right]}\\ & = \frac{\operatorname{cos}(2\theta) – i \operatorname{sen}(2\theta)}{r^2}\\ & = \frac{\operatorname{cos}(2\theta)}{r^2} – i \frac{\operatorname{sen}(2\theta)}{r^2}. \end{align*} Entonces: \begin{align*} u(r,\theta) = \frac{\operatorname{cos}(2\theta)}{r^2},\\ v(r,\theta) = – \frac{\operatorname{sen}(2\theta)}{r^2}. \end{align*} Tenemos que para todo $(r,\theta)\in(0,\infty)\times (-\pi,\pi]$ se cumple que: \begin{align*} \frac{\partial u}{\partial r} = – \frac{2\operatorname{cos}(\theta)}{r^3} = \frac{1}{r} \frac{\partial v}{\partial \theta},\\ \frac{\partial v}{\partial r} = \frac{2\operatorname{sen}(\theta)}{r^3} = -\frac{1}{r} \frac{\partial u}{\partial \theta}. \end{align*} Por lo tanto, para todo $z=r\operatorname{cis}(\theta) \in \mathbb{C}\setminus\{0\}$ se satisfacen las ecuaciones de C-R.

Es claro que utilizando las reglas de derivación vistas en la entrada anterior es posible obtener la derivada de $f$ para todo $z\neq 0$, sin embargo utilizando la proposición 17.1 tenemos que: \begin{align*} f'(z) & = \operatorname{cis}(-\theta) \left[ \frac{\partial u}{\partial r}+ i \frac{\partial v}{\partial r}\right]\\ & = \left[\operatorname{cos}(\theta) – i \operatorname{sen}(\theta) \right]\left[ – \frac{2\operatorname{cos}(\theta)}{r^3} + i \frac{2\operatorname{sen}(\theta)}{r^3}\right]\\ & = – \frac{2}{r^3} \left[ \left( \operatorname{cos}^3(\theta) -3\operatorname{sen}^2(\theta) \operatorname{cos}(\theta)\right) – i \left( 3\operatorname{cos}^2(\theta) \operatorname{sen}(\theta) – \operatorname{sen}^3(\theta) \right)\right]\\ & = – \frac{2}{r^3} \left[ \operatorname{cos}(-3\theta) + i \operatorname{sen}(-3\theta)\right]\\ & = – \frac{2}{r^3 \operatorname{cis}(3\theta)}\\ & = – \frac{2}{\left( r \operatorname{cis}(\theta)\right)^3} = – \frac{2}{z^3}. \end{align*}

Ejemplo 17.6.
De acuerdo con el ejemplo 16.5 sabemos que $f_0$, es decir la rama principal de la función multivaluada $F(z)=\sqrt{z}$, es analítica en el dominio $D=\mathbb{C}\setminus(-\infty,0]$. Veamos que se cumplen las ecuaciones de C-R en $D$.

Solución. Sea $z\in D$. Escribiendo $z = r\operatorname{cis}(\theta)$, con $r=|\,z\,|$ y $\theta =\operatorname{Arg}(z)$, entonces: \begin{align*} f_0(z) & = \sqrt{r}\operatorname{cis}\left(\frac{\theta}{2}\right)\\ & = \sqrt{r}\operatorname{cos}\left(\frac{\theta}{2}\right) + i \sqrt{r}\operatorname{sen}\left(\frac{\theta}{2}\right)\\ & = u(r,\theta) + iv(r,\theta). \end{align*}

Es claro que para todo $(r,\theta)\in(0,\infty)\times (-\pi,\pi)$ se cumple que: \begin{align*} \frac{\partial u}{\partial r} = \frac{\operatorname{cos}\left(\frac{\theta}{2}\right)}{2\sqrt{r}} = \frac{1}{r} \frac{\partial v}{\partial \theta},\\ \frac{\partial v}{\partial r} = \frac{\operatorname{sen}\left(\frac{\theta}{2}\right)}{2\sqrt{2}} = -\frac{1}{r} \frac{\partial u}{\partial \theta}. \end{align*}

Por lo que para todo $z = r\operatorname{cis}(\theta)\in D$ se cumplen las ecuaciones de C-R.

Tarea moral

  1. Demuestra la proposición 17.1.
    Hint: Observa que $u(x,y) = u(r\operatorname{cos}(\theta), r\operatorname{sen}(\theta))$ y $v(x,y) = v(r\operatorname{cos}(\theta), r\operatorname{sen}(\theta))$. Dado que la función $f$ es analítica en el abierto $U$, por el corolario 1 se satisfacen las ecuaciones de C-R en $U$, por lo que utilizando la regla de la cadena para funciones reales de dos variables se tiene que: \begin{align*} \frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r}, \quad \frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta},\\ \frac{\partial v}{\partial r} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial r}, \quad \frac{\partial v}{\partial \theta} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \theta}. \tag{17.7} \end{align*}
  2. De las ecuaciones dadas en (17.7), resuelve para $u_x$, $u_y$, $v_x$ y $v_y$ y concluye que: \begin{align*} \frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \operatorname{cos}(\theta) – \frac{\partial u}{\partial \theta} \frac{\operatorname{sen(\theta)}}{r}, \quad \frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \operatorname{sen}(\theta) + \frac{\partial u}{\partial \theta}\frac{\operatorname{cos(\theta)}}{r},\\ \frac{\partial v}{\partial x} = \frac{\partial v}{\partial r} \operatorname{cos}(\theta) – \frac{\partial v}{\partial \theta} \frac{\operatorname{sen(\theta)}}{r}, \quad \frac{\partial v}{\partial y} = \frac{\partial v}{\partial r} \operatorname{sen}(\theta) + \frac{\partial v}{\partial \theta}\frac{\operatorname{cos(\theta)}}{r}. \end{align*} Suponiendo que el teorema 1 se cumple para la forma polar de las ecuaciones de C-R, utiliza las ecuaciones anteriores para verificar que las ecuaciones de C-R se verifican ahora para las funciones reales $u(x,y)$ y $v(x,y)$. Con esto se verifica que las ecuaciones dadas en (17.6) en efecto son la forma polar de las ecuaciones de C-R.
  3. Prueba que las siguientes funciónes no son analíticas en su dominio.
    a) $f(z) = |\,z\,|^2$, pero es diferenciable en $z=0$.
    b) $f(z) = y + ix$, para $z=x+iy\in\mathbb{C}$.
    c) $f(z) = \overline{z}^2$ para $z=x+iy\in\mathbb{C}$.
    d) $f(z) = 4z – 6 \overline{z} + 3$ para $z=x+iy\in\mathbb{C}$.
  4. Supón que $f(z) = u(x,y) + iv(x,y)$ es una función analítica en un conjunto abierto $U\subset\mathbb{C}$. Sean $h(z) = \overline{f(z)}$ y $g(z) = v(x,y) + iu(x,y)$ dos funciones complejas definidas en el mismo conjunto $U$, entonces ¿son $h$ y $g$ funciones analíticas en $U$?
  5. Sean $U\subset\mathbb{C}$ un conjunto abierto y $f(z) = u(x,y) + iv(x,y)$ una función analítica en un $U$. Prueba que:
    a) $f'(z) = u_x(z) – i u_y(z) = v_y(z) + i v_x(z)$.
    b) $|\,f'(z)\,|^2 = u_x^2 + u_y^2 = v_x^2 + v_y^2$, para todo $z=x+iy\in U$.
  6. Considera la siguiente función: \begin{equation*} f(z)= \left\{\begin{array}{lcc} \dfrac{z^5}{|\,z\,|^4}& \text{si} & z\neq 0, \\ 0 & \text{si} & z = 0. \end{array} \right. \end{equation*} Muestra que en $z=0$ la función $f$ satisface las ecuaciones de C-R, pero $f'(0)$ no existe.

Más adelante…

En esta entrada hemos deducido las ecuaciones de Cauchy-Riemann y probamos que para una función compleja $f(z) = u(x,y) + iv(x,y)$ dichas ecuaciones resultan ser un conjunto de condiciones necesarias que deben satisfacer la parte real y la parte imaginaria, $u$ y $v$ respectivamente, en un punto donde $f(z)$ es analítica. Sin embargo, vimos mediante algunos ejemplos que dichas ecuaciones no son una condición suficiente para garantizar la analicidad de una función en un conjunto abierto $U\subset\mathbb{C}$.

Lo anterior nos motiva a preguntarnos bajo qué condiciones, además de las ecuaciones de C-R, las funciones reales $u$ y $v$ nos permiten garantizar que una función compleja $f(z)$ sea analítica en $U$, lo cual responderemos en la siguiente entrada.

Entradas relacionadas

Variable Compleja I: Continuidad en $\mathbb{C}$

Por Pedro Rivera Herrera

Introducción

En esta entrada abordaremos de manera formal el concepto de continuidad en el sentido complejo. El concepto de continuidad en el ámbito matemático se remonta hace cientos de años atrás, aunque fue hasta mediados del siglo XIX cuando matemáticos como Augustin Louis Cauchy comienzan a dar una formulación precisa de dicho concepto. Desde entonces el concepto de continuidad ha sido refinado, abstraído y generalizado para muchas de las ramas de las matemáticas, en particular en el Cálculo y el Análisis.

En el caso real, solíamos asociar la idea intuitiva de que una función real continua era aquella cuya gráfica no tenía «huecos» o «saltos». Sin embargo, como hemos mencionado antes, en el caso complejo nos será imposible visualizar la gráfica de una función compleja, por lo que resulta interesante cuestionarnos sobre cómo podríamos pensar de forma intuitiva dicho concepto en el caso complejo.

Aunque tendremos definiciones similares a las del caso real, no debemos dar por hecho que el comportamiento de las funciones complejas será necesariamente el mismo que el de las funciones reales, de hecho veremos que las funciones complejas extienden ciertas propiedades de las funciones reales de dos variables continuas, pero veremos que en general las funciones complejas se comportan distinto a las funciones vectoriales de $\mathbb{R}^2$ a $\mathbb{R}^2$, pues resultan ser más restrictivas en ciertas propiedades.

Continuidad de funciones complejas

Definición 15.1. (Continuidad de una función compleja.)
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Diremos que $f$ es continua en un punto $z_0\in S$ si para todo $\varepsilon>0$ existe $\delta>0$ tal que si $z\in S$ y $|\,z-z_0\,|<\delta$, entonces $|\,f(z)-f(z_0)\,|<\varepsilon$. Si $f$ es continua en todo punto $z_0 \in S$, entonces diremos que $f$ es continua en $S$. Si $f$ no es continua en $z_0\in S$, entonces diremos que es discontinua en $z_0$.

Ejemplo 15.1
a) Veamos que las funciones $f(z) = \operatorname{Re}(z)$ y $g(z) = \operatorname{Im}(z)$ son continuas para todo $z_0\in\mathbb{C}$.
Solución. Sea $z_0 \in \mathbb{C}$. De acuerdo con la observación 3.1 tenemos que: \begin{equation*} |\,\operatorname{Re}(z) – \operatorname{Re}(z_0)\,| \leq |\,z – z_0\,|,\end{equation*} \begin{equation*}|\,\operatorname{Im}(z) – \operatorname{Im}(z_0)\,| \leq |\,z – z_0\,|. \end{equation*} Por lo que para todo $\varepsilon>0$ existe $\delta = \varepsilon >0$ tal que si $z\in\mathbb{C}$ y $|\,z – z_0\,| < \delta$, entonces:
\begin{equation*}|\,f(z) – f(z_0)\,| = |\,\operatorname{Re}(z) – \operatorname{Re}(z_0)\,| < \varepsilon, \end{equation*} \begin{equation*}|\,g(z) – g(z_0)\,| = |\,\operatorname{Im}(z) – \operatorname{Im}(z_0)\,| < \varepsilon. \end{equation*} De donde se sigue el resultado.

b) Veamos que la función $h(z)=|\,z\,|$ es continua para todo $z_0 \in\mathbb{C}$.
Solución. Sean $z, z_0\in\mathbb{C}$, con $z_0$ fijo. Por la proposición 3.3 sabemos que: \begin{equation*}|\,|\,z\,| – |\,z_0\,| \,| \leq |\,z – z_0\,|. \end{equation*} Entonces, para todo $\varepsilon>0$ existe $\delta = \varepsilon>0$ tal que si $z\in\mathbb{C}$ y $|\,z-z_0\,|<\delta$, entonces: \begin{equation*} |\,h(z) – h(z_0)\,| = |\,|\,z\,| – |\,z_0\,| \,| < \varepsilon. \end{equation*} Por lo que $f$ es continua para todo $z_0\in\mathbb{C}$.

Observación 15.1.
Al igual que con el límite, podemos ver que la continuidad de una función compleja $f(z) = u(x,y) + i v(x,y)$, se puede garantizar a través de la continuidad de las funciones reales $u(x,y)$ y $v(x,y)$, correspondientes con la parte real y la parte imaginaria de $f$. Para ello recordemos la definición de continuidad para una función real de dos variables, vista en nuestros cursos de Cálculo.

Definición 15.2. (Continuidad de una función real de dos variables.)
Sean $U\subset\mathbb{R}^2$ y $u:U\to\mathbb{R}$ una función real de dos variables, digamos $x$ e $y$. Para $(x_0, y_0)\in U$ diremos que $u$ es contninua en $(x_0, y_0)$ si para todo $\varepsilon>0$ existe $\delta>0$ tal que si $(x,y)\in U$ y $\sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$, entonces: \begin{equation*} |u(x,y) – u(x_0,y_0)| < \varepsilon. \end{equation*}

Proposición 15.1.
Toda función compleja es continua si y solo si su parte real y su parte imaginaria son continuas.

Demostración. Sean $S \subset \mathbb{C}$ y $f: S \to \mathbb{C}$ una función compleja arbitraria y sea $z = x+iy \in S$.

De acuerdo con la proposición 12.1 sabemos que toda función compleja $f$ puede escribirse de la forma:\begin{equation*} f(z) = u(x,y) + i v(x,y), \end{equation*} donde las funciones reales $u(x,y)$ y $v(x,y)$ son su parte real y su parte imaginaria, respectivamente.

Para $z_0 = x_0 + iy_0\in S$ fijo tenemos por la observación 3.1 que: \begin{equation*} |\,u(x,y) – u(x_0, y_0)\,| \leq |\,f(z) – f(z_0)\,| \leq |\,u(x,y) – u(x_0, y_0)\,| + |\,v(x,y) – v(x_0, y_0)\,|, \end{equation*} \begin{equation*} |\,v(x,y) – v(x_0, y_0)\,| \leq |\,f(z) – f(z_0)\,| \leq |\,u(x,y) – u(x_0, y_0)\,| + |\,v(x,y) – v(x_0, y_0)\,|, \end{equation*} por lo que considerando las definiciones 15.1, 15.2 y las desigualdades anteriores se sigue el resultado.

$\blacksquare$

Observación 15.2.
Notemos que en la definición 15.1 se tiene implícita la condición de que:

  1. existe $f(z_0)$.

De acuerdo con la proposición 9.4 de la entrada 9, sabemos que para $z_0 \in S\subset\mathbb{C}$ pueden suceder dos casos:

  • $z_0$ es un punto aislado de $S$, es decir que $z_0 \in S \setminus S’$,
  • $z_0$ es un punto de acumulación de $S$, es decir que $z_0 \in S \cap S’$.

Debe ser claro que si $z_0$ es un punto aislado, entonces existe alguna $\delta$-vecindad de $z_0$, digamos $B(z_0,\delta)$, tal que no contiene otros puntos de $S$ aparte de $z_0$, es decir para todo $z\in S$: \begin{equation*} |\,z-z_0\,|<\delta \quad \Longrightarrow \quad z=z_0, \end{equation*} por lo que $|\,f(z) – f(z_0)\,|=0<\varepsilon$. Entonces, de acuerdo con la definición 15.1, una función compleja $f$ es siempre continua en un punto aislado.

Mientras que si $z_0 \in S\cap S’$ también debe cumplirse que:

  1. existe $\lim\limits_{z \to z_0} f(z)$,
  2. y $\lim\limits_{z \to z_0} f(z) = f(z_0)$.

Por lo que basta con que no se cumpla alguna de estas tres condiciones para que una función $f\in\mathcal{F}(S)$ sea discontinua en $z_0\in S\subset\mathbb{C}$.

Ejemplo 15.2.
Sea $c\in\mathbb{C}$ una constante y $n\in\mathbb{N}^+$. Consideremos a la función $f(z) = c z^n$. Veamos que $f$ es continua en $\mathbb{C}$.

Solución. De acuerdo con la observación 14.5 de la entrada anterior, para toda $n\in\mathbb{N}^+$ tenemos que: \begin{equation*} \lim_{z \to z_0} f(z) = c z_0^n. \end{equation*} Por otra parte, tenemos que $f(z_0) = cz_0^n$ para todo $n\in\mathbb{N}^+$, por lo que $f$ es una función continua en $\mathbb{C}$.

Ejemplo 15.3.
a) Verificar si la función $f(z) = z^2 – iz + 2$ es continua en $z_0 = 1 – i \in \mathbb{C}$.
Solución. De acuerdo con la observación 15.2 para ver si la función $f$ es continua en el punto $z_0 \in \mathbb{C}$ basta con ver que se cumplan las tres condiciones establecidas en dicha observación.

  1. Es claro que $f$ está definida en $z_0$, y es tal que: \begin{equation*} f(z_0) = (1-i)^2 – i(1-i) + 2 = 1 – 3i. \end{equation*}
  2. Considerando la observación 14.6 tenemos que: \begin{align*} \lim_{z \to z_0} f(z) &= \left(\lim_{z \to z_0} z\right)^2 – i \left( \lim_{z \to z_0} z\right) + 2\\ & = \left(1-i\right)^2 – i \left(1-i\right) + 2\\ & = 1-3i. \end{align*}
  3. Tenemos que: \begin{equation*} \lim_{z \to z_0} f(z) = f(z_0). \end{equation*}

Por lo tanto $f$ es continua en $z_0 = 1-i \in \mathbb{C}$.

b) Consideremos a la siguiente función: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} z^2 & \text{si} & z \neq i, \\ 0 & si & z = i. \end{array} \right. \end{equation*} Probar que $f$ no es continua en $z_0 = i$.
Solución. Notemos que:

  1. $f$ está definida en $z_0$, y es tal que: \begin{equation*} f(z_0) = 0. \end{equation*}
  2. De acuerdo con la observación 14.6 tenemos que: \begin{align*} \lim_{z \to z_0} f(z) &= \left(\lim_{z \to i} z\right)^2\ & = (i)^2 = -1. \end{align*}
  3. Es claro que: \begin{equation*} \lim_{z \to z_0} f(z) = -1 \neq 0 = f(z_0). \end{equation*}

Por lo tanto, tenemos que $f$ no es continua en $z_0 = i$.

Observación 15.3.
Dado que $\mathbb{C}$ dotado con el módulo es un espacio métrico, entonces son válidas las propiedades de continuidad para espacios métricos probadas en la entrada 9, en particular establecemos la siguiente caracterización.

Proposición 15.2.
Sean $S\subset \mathbb{C}$, $z_0 \in S$ y $f\in\mathcal{F}(S)$ una función. Las siguientes condiciones son equivalentes:

  1. $f$ es continua en $z_0$ de acuerdo con la definición 15.1,
  2. para todo $\varepsilon>0$ existe $\delta>0$ tal que: \begin{equation*} B(z_0,\delta) \cap S \subset f^{-1}\left[ B(f(z_0),\varepsilon)\right]. \end{equation*}
  3. $\lim\limits_{n\to\infty} f(z_n) = f(z_0)$, para toda sucesión $\{z_n\}_{n\geq 1} \subset S$ que converge a $z_0$.

$\blacksquare$

Proposición 15.3.
Sean $S\subset \mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Las siguientes condiciones son equivalentes:

  1. $f$ es continua en $S$ de acuerdo con la definición 15.1,
  2. si $U\subset \mathbb{C}$ es abierto en $\mathbb{C}$, entonces $f^{-1}(U)$ es también abierto en $S$,
  3. si $F\subset \mathbb{C}$ es cerrado en $\mathbb{C}$, entonces $f^{-1}(F)$ es también cerrado en $S$.

$\blacksquare$

Proposición 15.4.
Sea $H\subset \mathbb{C}$, $g\in\mathcal{F}(H)$ una función tal que $g(H) \subset S \subset\mathbb{C}$ y sea $f\in\mathcal{F}(S)$. Supongamos que $z_0$ es un punto de acumulación de $H$, que $\lim\limits_{z \to z_0} g(z) = w_0 \in S$ y que $f$ es continua en $w_0$. Entonces $\lim\limits_{z \to z_0} f(g(z)) = f(w_0)$, es decir: \begin{equation*} \lim_{z \to z_0} f(g(z)) = f\left(\lim_{z \to z_0} g(z) \right). \end{equation*}

Demostración. Dadas las hipótesis, tenemos que dado $\varepsilon>0$ existe $\eta>0$ tal que si $w\in S$ y $|\,w – w_0\,| < \eta $ entonces: \begin{equation*} |\,f(w) – f(w_0)\,| < \varepsilon. \end{equation*} Más aún, tenemos que para dicha $\eta>0$ existe un $\delta>0$ tal que si $z\in H$ y $0<|\,z-z_0\,|<\delta$ entonces: \begin{equation*} |\,g(z) – w_0\,| < \eta. \end{equation*} Por lo que considerando estas dos implicaciones se sigue que si $z\in H$ y $0<|\,z-z_0\,|<\delta$ entonces: \begin{equation*} |\,f(g(z)) – f(w_0)\,| < \varepsilon. \end{equation*} Por lo tanto $\lim\limits_{z \to z_0} f(g(z)) = f(w_0)$.

$\blacksquare$

Proposición 15.5.
Sean $S\subset \mathbb{C}$ y $f,g\in\mathcal{F}(S)$ dos funciones continuas en $S$, entonces:

  1. $f \pm g$ es continua en $S$.
  2. $fg$ es continua en $S$. Si $g$ es constante, es decir si $g(z) = c\in\mathbb{C}$ para todo $z\in S$, entonces $cf$ es continua en $S$.
  3. Si $g(z) \neq 0$ para todo $z\in S$, entonces $\dfrac{f}{g}$ es continua en $S$.
  4. Si $z_0 \in S$ y $h$ es una función definida en un conjunto $U \subset f(S)$ tal que $h$ es continua en $f(z_0)$, entonces la composición $h\circ f$ es continua en $z_0$.

Demostración. Utilizando la definición 15.1 y la proposición 14.3 de la entrada anterior es fácil probar el resultado, por lo que se deja como ejercicio al lector.

$\blacksquare$

Corolario 15.1.
Los polinomios son continuos en $\mathbb{C}$. Las funciones racionales son continuas en su dominio de definición.

Demostración. Sea $p(z) = c_0 + c_1 z + c_2 z^2 + \cdots + c_n z^n$, con $z\in\mathbb{C}$, un polinomio de coeficientes complejos, es decir $c_i \in\mathbb{C}$ para toda $i\in{0,1,\ldots, n}$, con $c_n\neq 0$.

Procedemos a realizar la prueba por inducción sobre $n$. Notemos que para $n=0$ se tiene que $p(z) = c_0\neq 0$ es una función constante, entonces considerando el ejemplo 14.1(c) de la entrada anterior, tenemos que: \begin{equation*} \lim_{z\to z_0} p(z) = \lim_{z\to z_0} c_0= c_0 = p(z_0), \end{equation*} por lo que en dicho caso $p(z)$ es continuo para todo $z_0\in\mathbb{C}$.

Para $n=1$, tenemos que $p(z) = c_0 + c_1 z$, por lo que considerando la proposición 15.5(1), al ser $c_0$ y $c_1 z$ funciones continuas en $\mathbb{C}$, entonces $p(z) = c_0 + c_1 z$ es continuo para todo $z\in\mathbb{C}$. Supongamos que el polinomio $q(z) = c_0 + \sum_{i = 1}^{k}c_i z^i$, para algún $k\in\mathbb{N}$ fijo, es continuo para todo $z\in\mathbb{C}$.

Para $n=k+1$ tenemos que: \begin{align*} p(z) & = c_0 + \sum_{i = 1}^{k+1}c_i z^i\\ & = c_0 + \sum_{i = 1}^{k}c_i z^i + c_{k+1} z^{k+1}\\ & = q(z) + c_{k+1} z^{k+1}, \end{align*} por hipótesis de inducción tenemos que $q(z)$ es un polinomio continuo y al ser $c_{k+1} z^{k+1}$ una función continua, entonces por la proposición 15.5(1), es claro que para $n=k+1$ el polinomio $p(z)$ es continuo para todo $z\in\mathbb{C}$, por lo que el resultado es válido para todo $n\in\mathbb{N}$.

Por otra parte, consideremos a $f(z) = \dfrac{p(z)}{q(z)}$, la cual es una función racional definida como el cociente de dos polinomios. De acuerdo con la proposición 15.5(3), considerando que todo polinomio es continuo en $\mathbb{C}$ se sigue que $f$ es continua en todo su dominio de definición, es decir en $S =\{z\in\mathbb{C} \, : \, q(z)\neq 0\}$.

$\blacksquare$

Ejemplo 15.4.
Considera la siguiente función y determina dónde es continua. \begin{equation*} f(z) = \frac{z-i}{z^2 + 1}. \end{equation*}

Solución. Tenemos que $z^2 + 1 = 0$ si y solo si $z=i$ o $z=-i$, por lo que el dominio natural de $f$ es el conjunto $S = \mathbb{C}\setminus\{i, -i\}$. De acuerdo con el corolario 15.1, dado que $f$ es una función racional entonces $f$ es continua en $S$.

Una pregunta que podemos hacernos es ¿se puede asignar un valor a la función $f$ de tal modo que sea continua en $z=i$?

Notemos que: \begin{equation*} f(z) = \frac{z-i}{z^2 + 1} = \frac{z-i}{(z-i)(z+i)}. \end{equation*} Para $z\neq i$ tenemos que: \begin{align*} \lim_{z \to i} f(z) & = \lim_{z \to i} \frac{z-i}{z^2 + 1}\\ & = \lim_{z \to i} \frac{z-i}{(z-i)(z+i)}\\ & = \lim_{z \to i} \frac{1}{z+i}\\ & = \frac{1}{2i} = -\frac{i}{2}. \end{align*} Por lo que podemos definir a la función:
\begin{equation*} g(z)= \left\{ \begin{array}{lcc} \dfrac{z-i}{z^2 + 1} & \text{si} & z \neq -i, \\ -\dfrac{i}{2} & si & z = i, \end{array} \right. \end{equation*} la cual claramente es una función continua en $z=i$, por lo que la discontinuidad de la función $f(z)$ en el punto $z=i$ pudo removerse.

Definición. 15.3. (Discontinuidad removible.)
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función discontinua en un punto $z_0\in S$. Se dice que $f(z)$ tiene una {\bf discontinuidad removible} en $z_0$ si existe el límite de $f(z)$ en dicho punto y la función no está definida en $z_0$ o tiene asignado un valor distinto al del límite, en tal caso la función $f(z)$ puede hacerse continua definiendo el valor de la función en $z_0$ como el valor del límite.

Si un punto $z_0 \in S$ no es una discontinuidad removible, diremos que es una discontinuidad irremovible.

Ejemplo 15.5.
Veamos que la función $f(z) = \dfrac{\operatorname{Re}(z)}{z}$ tiene una discontinuidad irremovible en $z=0$.

Solución. De acuerdo con el corolario 15.1, es claro que la función $f(z)$ no es continua en $z=0$. Veamos que el límite de la función $f(z)$ cuando $z$ tiende a $0$ no existe.

Sea $z=x+iy \neq 0$. Si nos aproximamos a $0$ a lo largo del eje real, es decir si $y=0$ y $z=x$, entonces: \begin{align*} \lim_{z\to 0 } f(z) & = \lim_{z\to 0 } \frac{\operatorname{Re}(z)}{z}\\ & = \lim_{x\to 0 } \frac{x}{x}\\ & = \lim_{x\to 0 } 1\\ & = 1. \end{align*} Por otra parte, si nos aproximamos a $0$ a lo largo del eje imaginario, es decir si $x=0$ y $z=iy$, entonces: \begin{align*} \lim_{z\to 0 } f(z) & = \lim_{z\to 0 } \frac{\operatorname{Re}(z)}{z}\\ & = \lim_{x\to 0 } \frac{0}{iy}\\ & = \lim_{x\to 0 } 0\\ & = 0. \end{align*} Por lo que el $\lim\limits_{z \to 0} f(z)$ no existe. Entonces la función tiene una discontinuidad irremovible en $z=0$.

Ejemplo 15.6.
Veamos que la función $f(z) =\operatorname{Arg}(z)$ tiene una discontinuidad irremovible en $z=0$. Más aún, veamos que todo $z$ en el eje real negativo es una discontinuidad irremovible y por tanto que $f$ solo es continua en el dominio $\mathbb{C} \setminus (-\infty, 0]$.

Solución. Sabemos que para $z=0$ la función argumento principal no está definida, por lo que en $z=0$ dicha función no es continua. Veamos que dicho valor es una discontinuidad irremovible mostrando que el límite en dicho punto no existe.

Sabemos que:

  1. si $z=x>0$, entonces $\operatorname{Arg}(z) = 0$,
  2. si $z=x<0$, entonces $\operatorname{Arg}(z) = \pi$.

Por lo que:

  1. para $x>0$ se tiene que $\lim\limits_{z \to 0} \operatorname{Arg}(z) = \lim\limits_{x \to 0^+} \operatorname{Arg}(z) = 0$,
  2. mientras que para $x<0$ se tiene que $\lim\limits_{z \to 0} \operatorname{Arg}(z) = \lim\limits_{x \to 0^-} \operatorname{Arg}(z) = \pi$.

Por la unicidad del límite concluimos que no existe $\lim\limits_{z \to 0} \operatorname{Arg}(z)$, por lo que $z=0$ es una discontinuidad irremovible.

Sea $z_0\in \mathbb{C}\setminus\{0\}$, tal que $z_0 = x_0 < 0$, fijo, entonces $\operatorname{Arg}(z_0) = \pi$. De acuerdo con la definición de la función $\operatorname{Arg}(z)$ dada en la entrada 13, es claro que para $z=x+iy\in\mathbb{C}\setminus\{0\}$, se tiene que:

  1. si $x<0$ y $y\geq0$, entonces $\operatorname{Arg}(z) = \operatorname{arc\,tan}\left( \frac{y}{x} \right) + \pi$,
  2. si $x<0$ y $y <0$, entonces $\operatorname{Arg}(z) = \operatorname{arc \,tan}\left( \frac{y}{x} \right) – \pi$.

Por lo que, si nos aproximamos a $z_0$ mediante $z = z_0 + iy$ tenemos:
\begin{align*} \lim\limits_{z \to z_0} \operatorname{Arg}(z) = \lim\limits_{y \to 0^+} \operatorname{Arg}(z) = \pi,\\ \lim\limits_{z \to z_0} \operatorname{Arg}(z) = \lim\limits_{y \to 0^-} \operatorname{Arg}(z) = -\pi. \end{align*}

Entonces la función $\operatorname{Arg}(z)$ es discontinua en $z_0 = x_0<0$ y desde que no existe $ \lim\limits_{z \to z_0} \operatorname{Arg}(z)$ tenemos que $z_0$ es una discontinuidad irremovible. Como $z_0 = x_0<0$ era arbitrario, entonces todo $z_0 \in (-\infty, 0)$ es una discontinuidad irremovible.

Procedemos a verificar que $f$ es continua en el dominio $\mathbb{C} \setminus (-\infty, 0]$.

Por la proposición 13.1, entrada 13, sabemos que para $z\neq 0$ si $z \in \mathbb{C} \setminus (-\infty, 0)$ entonces: \begin{equation*} \operatorname{Arg}(z) = 2 \operatorname{arc tan}\left(\dfrac{y}{|\,z\,| + x}\right), \end{equation*} de donde $u(x,y) = 2 \operatorname{arc tan}\left(\dfrac{y}{|\,z\,| + x}\right)$ y $v(x,y) =0$, las cuales son funciones reales continuas, entonces de la proposición 15.1 se sigue que la función $\operatorname{Arg}(z)$ es continua en $\mathbb{C} \setminus (-\infty, 0]$.

Observación 15.4.
Debe ser claro que la función $f(z) = \operatorname{Arg}(z) = \operatorname{Arg}_{(-\pi, \pi]}(z)$ corresponde con una rama de la función multivaluada $G(z) = \operatorname{arg}(z)$ desde que $f$ es continua en $\mathbb{C} \setminus (-\infty, 0] = \left\{ z\in\mathbb{C} : |\,z\,|>0, -\pi < \operatorname{arg} z < \pi \right\}$, dicha rama es llamada la rama principal del argumento.

Más aún, para $\alpha \in \mathbb{R}$ fijo e $I=(\alpha, \alpha+2\pi]$, tenemos por la proposición 13.3 que la función $g(z) = \operatorname{Arg}_I(z)$ está dada por: \begin{equation*} \operatorname{Arg}_I(z) = \operatorname{Arg}\left(-z\operatorname{cis}(-\alpha)\right) + \alpha + \pi, \end{equation*} por lo que podemos verificar que $g$ será continua dónde lo sea $f$.

Veamos entonces que $g$ es continua en $\mathbb{C}\setminus L_\alpha$, donde $L_\alpha = \left\{ r\operatorname{cis}(\alpha) : r \geq 0 \right\}$, figura 69.

Notemos que si $z \in L_\alpha$, entonces $z = r\operatorname{cis}(\alpha)$, con $r = |\,z\,|$ y $\alpha = \operatorname{arg} z$. Claramente $r>0$ pues en $z=0$ la función $f$ no está definida. Entonces, por la prueba de la proposición 13.3 tenemos que: \begin{equation*} -z \operatorname{cis}(-\alpha) = -r\operatorname{cis}(\alpha)\operatorname{cis}(-\alpha) = -r\operatorname{cis}(\alpha – \alpha) = -r(1) = -r, \end{equation*} de donde $-r < 0$, por lo que $-r \in (-\infty, 0)$, pero en dicho conjunto $f$ no es continua, por lo que para $z \in L_\alpha$ la función $g(z) = \operatorname{Arg}_I(z) $ no es continua.

Por otra parte, si $z \in \mathbb{C}\setminus L_\alpha$ tenemos que $z = \rho \operatorname{cis}(\theta)$, con $\rho = |\,z\,|>0$ y $\theta = \operatorname{Arg}_I(z)$, entonces: \begin{equation*} \alpha < \theta < \alpha + 2\pi \quad \Longleftrightarrow \quad -\pi < \theta – \alpha – \pi < \pi, \end{equation*} pues $\operatorname{cis}(\alpha + 2\pi) = \operatorname{cis}(\alpha) \operatorname{cis}(2\pi) = \operatorname{cis}(\alpha)$.

Tenemos que:
\begin{equation*} -z \operatorname{cis}(-\alpha) = \operatorname{cis}(-\pi) \, \rho \operatorname{cis}(\theta)\operatorname{cis}(-\alpha) = \rho \operatorname{cis}(\theta – \alpha – \pi ), \end{equation*} por lo que $ -z \operatorname{cis}(-\alpha) \in \mathbb{C}\setminus(-\infty, 0]$, donde $f$ es continua.

Entonces la función $g(z) = \operatorname{Arg}_I(z)$ solo es continua en $\mathbb{C}\setminus L_\alpha$. Por lo tanto, la función $g$ determina una rama de la función multivaluada $G(z) = \operatorname{arg}(z)$, siempre que se defina en el dominio, figura 69: \begin{equation*} D = \mathbb{C}\setminus L_\alpha = \left\{ z\in\mathbb{C} : |\,z\,|>0, \alpha < \operatorname{arg} z < \alpha + 2\pi \right\}. \end{equation*}

Figura 69: Dominio de continuidad $D$ de la rama del argumento $g(z) = \operatorname{Arg}_I(z)$.

Ejemplo 15.7.
Veamos que la función $f(z) = z^{1/2}$, correspondiente con la raíz cuadrada principal, definición 13.5, tiene una discontinuidad irremovible en $z=-1$. Más aún, veamos que todo $z$ en el eje real negativo es una discontinuidad irremovible, aún cuando esta función solo asigna una única raíz. Concluyamos que la raíz cuadrada principal es una rama, la rama principal de la función multivaluada $F(z) = z^{1/2}$, solo si se restringe al dominio $\mathbb{C} \setminus (-\infty, 0]$.

Solución. Sea $z =r\operatorname{cis}(\theta)\neq 0$. De acuerdo con la definición 13.5, la raíz cuadrada principal está dada por: \begin{equation*} f(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} donde $r=|\,z\,|$ y $\theta =\operatorname{Arg}(z)$.

Sea $z_0 = -1$, veamos que no existe $\lim\limits_{z\to z_0} f(z) = \lim\limits_{z\to -1} z^{1/2}$. Para ello consideremos a la circunferencia unitaria $C(0,1)$, es decir la circunferencia centrada en $z=0$ y de radio $1$, figura 70.

Figura 70: Punto $z\in C(0,1)$ que se aproxima a $z_0=-1$ por dos trayectorias distintas, dadas por la circunferencia $C(0,1)$.

Si $z \in C(0,1)$, entonces podemos aproximarnos a $z_0 = -1$ mediante la trayectoria dada por el cuarto de circunferencia en el segundo cuadrante, es decir $\pi/2 < \operatorname{Arg}(z) < \pi$, con $\operatorname{Arg}(z) \to \pi$, entonces: \begin{align*} \lim_{z\to -1} z^{1/2} & = \lim_{z\to -1} \sqrt{|\,z\,|}\operatorname{cis}\left(\frac{\operatorname{Arg}(z)}{2}\right)\\ & = \lim_{\operatorname{Arg}(z) \to \pi} \sqrt{1}\operatorname{cis}\left(\frac{\operatorname{Arg}(z)}{2}\right)\\ & = \lim_{\operatorname{Arg}(z) \to \pi} \left[ \operatorname{cos}\left(\frac{\operatorname{Arg}(z)}{2}\right) + i \operatorname{sen}\left(\frac{\operatorname{Arg}(z)}{2}\right)\right]\\ & = \operatorname{cos}\left(\frac{\pi}{2}\right) + i \operatorname{sen}\left(\frac{\pi}{2}\right)\\ & = 0 + i(1)\\ & = i. \end{align*}

Si ahora nos aproximamos a $z_0=-1$ con $z\in C(0,1)$ a través de la trayectoria dada por el cuarto de circunferencia en el tercer cuadrante, es decir $-\pi < \operatorname{Arg}(z) < -\pi/$, con $\operatorname{Arg}(z) \to -\pi$, entonces: \begin{align*} \lim_{z\to -1} z^{1/2} & = \lim_{z\to -1} \sqrt{|\,z\,|}\operatorname{cis}\left(\frac{\operatorname{Arg}(z)}{2}\right)\\ & = \lim_{\operatorname{Arg}(z) \to -\pi} \sqrt{1}\operatorname{cis}\left(\frac{\operatorname{Arg}(z)}{2}\right)\\ & = \lim_{\operatorname{Arg}(z) \to -\pi} \left[ \operatorname{cos}\left(\frac{\operatorname{Arg}(z)}{2}\right) + i \operatorname{sen}\left(\frac{\operatorname{Arg}(z)}{2}\right)\right]\\ & = \operatorname{cos}\left(-\frac{\pi}{2}\right) + i \operatorname{sen}\left(-\frac{\pi}{2}\right)\\ & = 0 + i(-1)\\ & = -i. \end{align*}

Dado que estos dos límites son distintos, concluimos que $\lim\limits_{z\to -1} z^{1/2}$ no existe, por tanto $z_0 = -1$ es una discontinuidad irremovible.

De manera similar podemos probar que cualquier punto en el eje real negativo es una discontinuidad irremovible. Sin embargo, desde que la función $\operatorname{Arg}(z)$ es discontinua en $(-\infty, 0]$ y la función $f$ está dada en términos de dicha función, debe ser claro que $f$ será discontinua en el mismo conjunto.

Procedemos a verificar que $f$ es continua en el dominio $\mathbb{C} \setminus (-\infty, 0]$, es decir que bajo esa restricción obtenemos una rama de la función multivaluada $F(z) = z^{1/2}$, a la cual llamamos la rama principal $f_0$, es decir: \begin{equation*} f_0(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} donde $r=|\,z\,|$ y $\theta =\operatorname{Arg}(z)$ y $z \in \mathbb{C} \setminus(-\infty,0] = \left\{ w\in\mathbb{C} : |\,w\,|>0, -\pi < \operatorname{Arg}(w) <\pi \right\}$.

Sea $z = x+iy \in \mathbb{C} \setminus (-\infty, 0]$. Por la proposición 13.1 tenemos que: \begin{equation*} \operatorname{Arg}(z) = 2 \operatorname{arc tan}\left(\dfrac{y}{|\,z\,| + x}\right). \end{equation*}

Entonces, para $r=|\,z\,|$ y $\theta =\operatorname{Arg}(z)$ tenemos que: \begin{align*} f_0(z) & = \sqrt{|\,z\,|} \operatorname{cis}\left(\frac{\operatorname{Arg}(z)}{2}\right)\\ & = \sqrt[4]{x^2+y^2} \operatorname{cis}\left(\frac{2 \operatorname{arc tan}\left(\dfrac{y}{\sqrt{x^2+y^2} + x}\right)}{2}\right)\\ & = \sqrt[4]{x^2+y^2} \operatorname{cos}\left(\operatorname{arc tan}\left(\dfrac{y}{\sqrt{x^2+y^2} + x}\right)\right) + i \sqrt[4]{x^2+y^2} \operatorname{sen}\left(\operatorname{arc tan}\left(\dfrac{y}{\sqrt{x^2+y^2} + x}\right)\right)\\ & := u(x,y) + iv(x,y). \end{align*}

Como las funciones $u(x,y)$ y $v(x,y)$ son funciones reales continuas, entonces por la proposición 15.1 concluimos que la función $f_0$ es continua en $\mathbb{C} \setminus (-\infty, 0]$ y por tanto que es una rama de la función multivaluada $F(z) = z^{1/2}$.

Observación 15.5.
Considerando la definición 14.2 y la proposición 14.4 de la entrada anterior, notemos que podemos extender el concepto de continuidad para funciones definidas sobre el plano complejo extendido, es decir, diremos que una función $f: \mathbb{C}_\infty \to \mathbb{C}_\infty$ es continua en $\infty$ si \begin{equation*} f(\infty) = \lim_{z\to \infty} f(z) \end{equation*} y si $f(a) = \infty$, entonces $f$ es continua en $a$ si \begin{equation*} f(a) = \infty =\lim_{z\to a} f(z). \end{equation*}

Ejemplo 15.8.
Consideremos a la siguiente función:
\begin{equation*} f(z) = \frac{z+i}{z-i}. \end{equation*} Es claro que dicha función no está definida en $z=i$. Sin embargo, dado que: \begin{equation*} f(i) = \infty = \lim_{z\to i} f(z) \end{equation*} y \begin{equation*} f(\infty) = 1 = \lim_{z\to \infty} f(z), \end{equation*} entonces definiendo: \begin{equation*} g(z)= \left\{ \begin{array}{lcc}
\dfrac{z+i}{z-i} & \text{si} & z \neq i, \\ 1 & \text{si} & z = \infty, \\ \infty & \text{si} & z = i, \end{array} \right. \end{equation*} es claro que $g$ es una función continua de $\mathbb{C}_\infty$ en $\mathbb{C}_\infty$.

De acuerdo con los resultados de la entrada 10 para funciones continuas entre espacios métricos, tenemos que son válidas las siguientes afirmaciones para funciones complejas continuas.

Proposición 15.6. (Funciones continuas sobre conjuntos conexos y compactos.)
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función continua en $S$.

  1. Si $S$ es un conjunto conexo, entonces $f(S)$ es también conexo.
  2. Si $S$ es un conjunto compacto, entonces $f(S)$ es también compacto.

$\blacksquare$

Cerraremos esta entrada con el siguiente concepto.

Definición 15.4. (Continuidad uniforme.)
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Diremos que $f$ es uniformemente continua en $S$, si para todo $\varepsilon>0$ existe $\delta>0$ (que depende solo de $\varepsilon$) tal que si $z, w \in S$ y $|\,z-w\,|<\delta$ entonces $|\,f(z) – f(w)\,|<\varepsilon$.

Ejemplo 15.9.
Sea $f(z) = \overline{z}$ definida en $\mathbb{C}$. Veamos que $f$ es uniformemente continua en $\mathbb{C}$.

Solución. Para $z,w\in\mathbb{C}$ tenemos que: \begin{equation*} |\,f(z) – f(w)\,| = |\,\overline{z} – \overline{w}\,| = |\,\overline{\overline{z} – \overline{w}}\,| = |\,z-w\,| < \varepsilon, \end{equation*} por lo que tomando $\delta=\varepsilon>0$ se cumple la definición.

Observación 15.6.
De acuerdo con la definición 15.4, notamos que el concepto de continuidad uniforme es más restrictivo que el de continuidad de una función, por lo que la continuidad uniforme estará sujeta al conjunto $S$ en el que la función esté definida, para ver esto consideremos el siguiente:

Ejemplo 15.10.
a) Sea $f(z) = z^2$ definida en $S = B(0,1)$. Veamos que $f$ es uniformemente continua en $S$.

Solución. Notemos que para $z,w\in S$ se tiene que $|\,z\,|<1$ y $|\,w\,|<1$. Entonces: \begin{align*} |\,f(z) – f(w)\,| & = |\,z^2 – w^2\,|\\ & = |\,z – w\,| |\,z + w\,|\\ & < \left( |\,z\,| + |\,w\,|\right) \delta\\ & < 2\delta <\varepsilon, \end{align*} por lo que basta con tomar $\delta = \frac{\varepsilon}{2}>0$ para que se cumpla la definición.

b) Sea $f(z) = z^2$ definida en $\mathbb{C}$. Veamos que $f$ no es uniformemente continua en $\mathbb{C}$.

Solución. Sea $\varepsilon=1$, entonces dado $\delta>0$, por la propiedad arquimediana existe $n\in\mathbb{N}^+$ tal que $n\delta >1$. Sean $z = n$ y $w=n+\frac{\delta}{2}$, entonces se tiene que $|\,z-w\,|=\frac{\delta}{2} < \delta$, pero:
\begin{align*} |\,f(z) – f(w)\,| & = |\,z^2 – w^2\,|\\ & = n^2 + n\delta +\frac{\delta^2}{4} – n^2\\ & = n\delta +\frac{\delta^2}{4} > n\delta > 1 = \varepsilon, \end{align*} por lo que $f$ no es uniformemente continua en $\mathbb{C}$.

Proposición 15.7.
Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Las siguientes afirmaciones son equivalentes.

  1. $f$ es uniformemente continua en $S$,
  2. $\operatorname{Re} f$ e $\operatorname{Im} f$ son uniformemente continuas en $S$,
  3. para cualesquiera sucesiones $\{z_n\}_{n\geq 1}$ y $\{w_n\}_{n\geq 1}$ en $S$ tales que $\lim\limits_{n\to\infty} |\,z_n – w_n\,| = 0$, se cumple que $\lim\limits_{n\to\infty} |\,f(z_n) – f(w_n)\,| = 0$.

Dadas las hipótesis, tenemos que:
$1. \Leftrightarrow 2.$ Su prueba es análoga a la de la proposición 15.1, por lo que se deja como ejercicio al lector.

$1. \Rightarrow 3. $
Sean $\{z_n\}_{n\geq 1}$ y $\{w_n\}_{n\geq 1}$ dos sucesiones en $S$ tales que $\lim\limits_{n\to\infty} |\,z_n – w_n\,| = 0$ y supongamos que $f$ es uniformemente continua en $S$.

Sea $\varepsilon>0$, entonces existe $\delta>0$ tal que si $z,w\in S$ y $|\,z-w\,|<\delta$, entonces $|\,f(z) – f(w)\,|<\varepsilon$. Como $\lim\limits_{n\to\infty} |\,z_n – w_n\,| = 0$, entonces para el $\delta>0$ se tiene que existe $N\in\mathbb{N}^+$ tal que: \begin{equation*} |\,|\,z_n – w_n\,| – 0 \,| = |\,z_n – w_n\,| < \delta, \quad \forall n\geq N, \end{equation*} por lo que para toda $n\geq N$ se cumple que: \begin{equation*} |\,|\,f(z_n) – f(w_n)\,| – 0 \,| = |\,f(z_n) – f(w_n)\,| < \varepsilon, \end{equation*} es decir que $\lim\limits_{n\to\infty} |\,f(z_n) – f(w_n)\,| = 0$.

$3. \Rightarrow 1.$
Sean $\{z_n\}_{n\geq 1}$ y $\{w_n\}_{n\geq 1}$ dos sucesiones en $S$ tales que si $\lim\limits_{n\to\infty} |\,z_n – w_n\,| = 0$, entonces $\lim\limits_{n\to\infty} |\,f(z_n) – f(w_n)\,| = 0$.

Por reducción al absurdo, supongamos que $f$ no es uniformemente continua en $S$, entonces existe $\varepsilon>0$ tal que para todo $\delta>0$ existen $z,w\in S$ tales que $|\,z-w\,|<\delta$ y $|\,f(z) – f(w)\,|\geq \varepsilon$.

Tenemos que para todo $n\in\mathbb{N}^+$ se tiene que $z_n, w_n \in S$ y $\frac{1}{n}>0$, por lo que: \begin{equation*} |\,z_n – w_n\,|<\frac{1}{n} \quad \text{y} \quad |\,f(z_n) – f(w_n)\,|\geq \varepsilon, \end{equation*} lo cual contradice nuestra hipótesis, por lo que $f$ es uniformemente convergente.

Tarea moral

  1. Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Prueba que $f$ es continua en $z_0 \in S$ si y solo si $\overline{f}$ es continua en $z_0 \in S$.
  2. Sea $S = [a,b] = \{ x\in\mathbb{R} \, : \, a\leq x \leq b\}$. Considera a $S\subset \mathbb{C}$ y sea $f: S \to \mathbb{C}$ una función compleja de variable real. Tomando $z=x+i0$ podemos escribir $f(z) = u(x) + i v(x)$. Prueba que $f$ es continua si y solo si $u$ y $v$ son continuas.
  3. Analiza la continuidad de la función: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} \dfrac{z^3 – 1}{z-1} & \text{si} & |\,z\,| \neq 1, \\ 3 & \text{si} & |\,z\,| = 1, \end{array} \right. \end{equation*} en los puntos $z_0 = 1$, $z_1 = -1$, $z_2 = i$ y $z_3 = -i$.
  4. Analiza la continuidad de las siguientes funciones y determina el valor de $f(z)$ en el punto $z_0$ de tal forma que la función sea continua en dicho punto.
    a) $f(z) = \dfrac{z^3 – z_0}{z – z_0}$.
    b) $f(z) = \left(\dfrac{1}{z – z_0}\right)\left( \dfrac{1}{z} – \dfrac{1}{z_0}\right)$.
    c) $f(z) = \dfrac{\operatorname{Re}(z) \operatorname{Im}(z)}{|\,z\,|^2}$.
    d) $f(z) = \dfrac{\left(\operatorname{Re}(z)\right)^2 – \left(\operatorname{Im}(z)\right)^2}{|\,z\,|^2}$.
  5. Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Prueba que si $f$ es continua en $z_0 \in S$, entonces $|\,f\,|$ es continua en $z_0 \in S$. ¿Es cierto el recíproco?
  6. Considera la siguiente función definida en $\mathbb{C}_\infty$: \begin{equation*} f(z)= \left\{ \begin{array}{lcc} \dfrac{z+1}{4z+3} & \text{si} & z \neq \frac{-3}{4}, \\ \infty & \text{si} & z = \frac{-3}{4}. \end{array} \right. \end{equation*} Analiza la continuidad de $f$ en $z = -\frac{3}{4}$.
  7. Sean $S\subset\mathbb{C}$ y $f\in\mathcal{F}(S)$ una función. Prueba que si $f$ es uniformemente continua en $S$, entonces $f$ es continua en $S$. ¿Es cierto el recíproco?
  8. Sea $f(z)=\dfrac{1}{z^2}$, prueba que:
    a) $f$ es uniformemente continua en $S = \left\{z\in\mathbb{C} : \frac{1}{2} \leq |\,z\,| \leq 1\right\}$,
    b) $f$ no es uniformemente continua en $S = \{z\in\mathbb{C} : |\,z\,| \leq 1\}$.

Más adelante…

En esta entrada hemos abordado de manera formal el concepto de continuidad y continuidad uniforme para funciones complejas. Caracterizamos la continuidad (y la continuidad uniforme) de las funciones complejas a través de la continuidad (y la continuidad uniforme) de su parte real e imaginaria, en particular vimos que toda función compleja continua es de la forma $f(z) = u(x,y) + i v(x,y)$.

Aunque las definiciones que hemos dado en esta entrada son muy similares a las de las funciones reales, veremos en la siguiente entrada que al trabajar con funciones complejas algunos conceptos se vuelven más restrictivos para estas funciones, el cual es el caso de la diferenciabilidad compleja.

La siguiente entrada abordaremos la diferenciabilidad en el sentido complejo y veremos que la diferenciabilidad para $\mathbb{R}^2$, que hemos estudiado en nuestros cursos de Cálculo, no bastará para garantizar la diferenciabilidad en el sentido complejo.

Entradas relacionadas