Archivo del Autor: Lizbeth Fernández Villegas

$\varepsilon-$ redes

Por Lizbeth Fernández Villegas

MATERIAL EN REVISIÓN

Introducción

El concepto de $\varepsilon -$ red está naturalmente relacionado con la distancia de Hausdorff.

Dado un espacio métrico $(X,d)$ y un subconjunto $S \subset X,$ es inmediato verificar que si $d_{H}(S,X) < \varepsilon$ entonces $S$ es una $\varepsilon -$ red en $X$ y viceversa.

Esta reformulación además hace aparente un hecho conceptualmente interesante:

Si $X$ es compacto entonces para cada $\varepsilon >0$ podemos encontrar $S_{\varepsilon} \subset X$ una $\varepsilon -$ red finita.

Sin pérdida de generalidad, podemos suponer que para $\varepsilon _1 < \varepsilon _2,$ se tiene que $S_{\varepsilon_1}$ refina a $S_{\varepsilon_2},$ de modo que:

$d_{H} (S_{\varepsilon},X) \to 0$ cuando $\varepsilon \to 0$

En otras palabras, $X$ se puede aproximar por conjuntos finitos, (es decir, existe una sucesión que converge a $X$ en $d_{H}$). ¡La compacidad se puede ver como una generalización de la finitud!

Para ponerlo de otra forma, los espacios métricos compactos son aquellos que le siguen en complejidad a los espacios finitos, en cierto sentido.

Es interesante mencionar que M. Cassarla probó que también se puede aproximar en el caso compacto a $X$ por otros objetos llamados «gráficas métricas» (que representa, a grandes rasgos un grafo dotado de una métrica) si $X$ es geodésico; la construcción básicamente se reduce a colocar aristas entre los puntos de las $\varepsilon -$ redes de manera inteligente.

Para este resultado y otra generalización aproximada por superficies suaves, ver cita artículo de Cassarla «Approximating compact inner spaces by surfaces».

Podemos sacarle aún más jugo a este análisis. Si ahora nos enfocamos en la llamada distancia de Gromov-Hausdorff (ver Burago-Burago-Ivanov capítulo 6), ¡el mismo razonamiento nos dice que la clase de espacios finitos es $d_{GH}$ -densa en la clase de espacios compactos!

Esto además de ser bonito, tiene consecuencias geniales; en esencia, toda propiedad geométrica que se pueda formular en términos de las distancias entre configuraciones finitas de puntos, es estable bajo convergencia en Gromov-Hausdorff. Por ejemplo, para aquellos que hayan llevado un curso de Geometría Diferencial, es posible describir la condición
$$sec \geq k$$
en términos de triángulos. Por lo tanto $sec \geq k$ es estable bajo $d_{GH},$ lo cual ayuda a definir el concepto de curvatura seccional en espacios métricos que no sean variedades diferenciables. (Para ver más al respecto ver Burago-Burago-Ivanov).

Más adelante

Tarea moral

Enlaces

El teorema de Arzelá-Ascoli

Por Lizbeth Fernández Villegas

Introducción

Como ya podrás haber notado, identificar la compacidad en un espacio métrico es una situación recurrente y de interés en cursos de Análisis. Naturalmente han surgido resultados que permiten identificarla con mayor facilidad en conjuntos cuya métrica no es tan sencilla de manejar, como los espacios de funciones.

En esta entrada veremos un teorema útil para trabajar en el espacio $\mathcal{C^0}(X,Y).$

Teorema Arzelá-Ascoli. Sean $X$ un espacio métrico compacto y $Y$ un espacio métrico completo. Un subconjunto $\mathcal{H}$ de $\mathcal{C^0}(X,Y)$ es relativamente compacto en el espacio $\mathcal{C^0}(X,Y)$ si y solo si $\mathcal{H}$ es equicontinuo y los conjuntos definidos como $\mathcal{H}(x):= \{f(x):f \in \mathcal{H}\}$ son relativamente compactos en $Y$ para cada $x \in X.$

Representación del teorema de Arzelá-Ascoli.

Demostración:
En Convergencia uniforme y continuidad concluimos que por las propiedades de $X$ y $Y, \,$ $\mathcal{C^0}(X,Y)$ es completo, así por lo visto en la entrada anterior sabemos que como $\mathcal{H}$ es relativamente compacto en $\mathcal{C^0}(X,Y),$ esto implica que $\mathcal{H}$ es totalmente acotado.
Sea $\varepsilon >0.$ Existen funciones $g_1, \, g_2,…,g_m \in \mathcal{H}$ tales que
\begin{align}
\mathcal{H} \subset B_\infty(g_1, \, \frac{\varepsilon}{3}) \cup B_\infty(g_2, \, \frac{\varepsilon}{3}) \cup … \cup B_\infty(g_m, \, \frac{\varepsilon}{3}).
\end{align}
Donde $B_\infty$ denota bolas abiertas con la métrica uniforme en $\mathcal{C^0}(X,Y)$

En el dibujo las $g’s $ aunque son puntos representan funciones. La zona verde es el conjunto de funciones $\mathcal{H}.$ Las bolas abiertas descritas lo cubren.

Esto significa que cualquier función de $\mathcal{H}$ se aproxima mucho a alguna $g_i, \, i \in \{1,2,..,m\}.$ Sea $x \in X.$ Considera el conjunto
$$\mathcal{H}(x):= \{f(x):f \in \mathcal{H}\}$$

Dado un $f(x) \in \mathcal{H}(x),$ por (1) sabemos que existe $i \in \{1,2,..,m\}$ tal que la función $f \in B_\infty \left(g_i, \, \frac{\varepsilon}{3} \right).$

De modo que $d_\infty (g_i,f) < \frac{\varepsilon}{3}. $ En particular para $x$ se cumple que $d_Y(g_i(x),f(x)) < \frac{\varepsilon}{3}$ por lo tanto
$$f(x) \in B_Y \left( g_i(x), \, \frac{\varepsilon}{3} \right)$$


De donde se sigue
\begin{align}
\mathcal{H}(x) \subset B_Y \left( g_1(x), \, \frac{\varepsilon}{3} \right) \cup B_Y \left( g_2(x), \, \frac{\varepsilon}{3} \right) \cup … \cup B_Y \left( g_m(x), \, \frac{\varepsilon}{3} \right)
\end{align}
lo que significa que $\mathcal{H}(x)$ es totalmente acotado. Como $Y$ es completo se sigue por la equivalencia de la entrada anterior que $\mathcal{H}(x)$ es relativamente compacto en $Y.$

Para probar que $\mathcal{H}$ es equicontinuo tomemos en cuenta que $X$ es compacto y por lo visto en la entrada Continuidad uniforme sabemos que cada $g_i$ es uniformemente continua en $X$. Entonces cada $g_i$ tiene su respectiva $\delta_i >0$ tal que para cualesquiera $x,z \in X,$ si $d_X(x,z)< \delta_i$ entonces
$$d_Y(g_i(x),g_i(z)) < \frac{\varepsilon}{3.}$$

Sea $\delta := \text{mín}\{\delta_1,…,\delta_m\}.$
Sea $f \in \mathcal{H}.$ Dicho lo anterior y recordando que existe $i \in \{1,2,..,m\}$ tal que $f \in B_\infty \left(g_i, \, \frac{\varepsilon}{3} \right),$ tenemos que si $d_X(x,z) < \delta$ entonces

\begin{align}
\nonumber d_Y(f(x),f(z)) &\leq d_Y(f(x),g_i(x)) + d_Y(g_i(x),g_i(z))+ d_Y(g_i(z),f(z)) \\
\nonumber &< \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3} \\
&= \varepsilon
\end{align}

lo cual prueba que $\mathcal{H}$ es equicontinuo.

A continuación probaremos el regreso. Tengamos presentes las ideas: suponemos que $\mathcal{H}$ es equicontinuo y para cada $x \in X,$ los conjuntos definidos como $\mathcal{H}(x):= \{f(x):f \in \mathcal{H}\}$ son relativamente compactos en $Y.$ Buscamos demostrar que $\mathcal{H}$ de $\mathcal{C^0}(X,Y)$ es relativamente compacto en el espacio $\mathcal{C^0}(X,Y).$

Dado que $\mathcal{C^0}(X,Y)$ es completo, por la equivalencia de la entrada anterior basta con probar que $\mathcal{H}$ es totalmente acotado.

Sea $\varepsilon >0.$ Como $\mathcal{H}$ es equicontinuo, para cada $x \in X$ existe $\delta_x >0$ tal que para toda $f \in \mathcal{H}$ siempre que $d_X(x,z) < \delta_x,$ con $z \in X,$ se satisface
\begin{align}
d_Y(f(z),f(x)) < \frac{\varepsilon}{4}
\end{align}

Por supuesto que $\{B_X \left( x, \delta_x \right): \, x \in X \}$ es una cubierta abierta de $X.$

Como es compacto, existen $x_1, \, x_2,…,x_n \, \in X$ tales que

\begin{align}
X \subset B_X \left( x_1, \delta_{x_1} \right) \cup B_X \left( x_2, \delta_{x_2} \right) \cup … \cup B_X \left( x_n, \delta_{x_n} \right)
\end{align}

y como cada $\mathcal{H}(x_i)$ es totalmente acotado, para cada $x_i$ existen $y^i_1,\ y^i_2,…,y^i_{k_i} \, \in Y$ tales que
\begin{align}
\mathcal{H}(x_i) \subset B_Y \left( y^i_1, \frac{\varepsilon}{4} \right) \cup B_Y \left( y^i_2, \frac{\varepsilon}{4} \right) \cup… \cup B_Y \left( y^i_{k_i}, \frac{\varepsilon}{4} \right)
\end{align}

Uniendo todos los $\mathcal{H}(x_i)$ y todas las bolas que cubren a estos conjuntos tenemos que, renombrando los centros, existen finitos $y_1,…,y_{m} \, \in Y$ que satisfacen

\begin{align}
\mathcal{H}(x_1) \cup … \cup \mathcal{H}(x_n) \subset B_Y \left( y_1, \frac{\varepsilon}{4} \right) \cup … \cup B_Y \left( y_{m}, \frac{\varepsilon}{4} \right)
\end{align}

Podemos pensar en clasificar las funciones de $\mathcal{H}$ dependiendo de a qué bola de radio $y_k,$ para algún $k \in \{1,…,m\}$ es enviado cada $x_i, \, i \in \{1,…,n\}.$ Como este comportamiento puede asignarse a través de una función $\sigma:\{1,2,…,n\} \to \{1,2,…,m\},$ definimos los conjuntos:

$$\mathcal{H_\sigma}:= \left\{ f \in \mathcal{H}: \, f(x_i) \in B_Y\left(y_{\sigma(i)},\frac{1}{4}\right) \, \forall \, i=1,2,…,n\right\}.$$

Sea $S$ el conjunto de todas las funciones con dominio en $\{1,2,…,n\}$ e imagen en $\{1,2,…,m\}.$ Se cumple que

\begin{align}
\mathcal{H} \subset \underset{\sigma \in S}{\cup} \, \mathcal{H}_\sigma
\end{align}

Argumentando formalmente, si $f \in \mathcal{H}$ por la expresión (7) se asegura que cada $f(x_i)$ con $i \in \{1,2,…,n\}$ está en alguna bola $B_Y \left( y_k, \frac{\varepsilon}{4} \right)$ para algún $k \in \{1,2,…,m\}.$ Nota que la función que relaciona a cada $i$ con su respectiva $k,$ según esta descripción, es algún elemento $\sigma \in S,$ por lo tanto se cumple (8).

Ahora vamos a probar que cada $\mathcal{H}_\sigma$ está contenida en una bola de radio $\varepsilon$ con centro en $\mathcal{H}.$

Considera $f,g \in \mathcal{H}_\sigma$ y sea $x \in X.$ Por (5) $x$ pertenece a alguna bola abierta $B_X(x_i, \delta_{x_i})$ para algún $i \in \{1,2,…,n\}.$ Entonces $d_X(x,x_i)< \delta_{x_i}.$ Recordemos que esta $\delta_{x_i}$ se eligió de tal forma que satisface la definición de equicontinuidad en $x_i.$ Así, según (4) se sigue que para cada $h \in \mathcal{H}:$
$$d_Y(h(x),h(x_i)) < \frac{\varepsilon}{4}.$$

De esto y la desigualdad del triángulo tenemos:

\begin{align}
\nonumber d_Y(f(x),g(x)) &\leq d_Y(f(x),f(x_i)) + d_Y(f(x_i),g(x))\\
\nonumber &\leq d_Y(f(x),f(x_i)) + d_Y(f(x_i),y_{\sigma(i)})+ d_Y(y_{\sigma(i)},g(x))\\
\nonumber &\leq d_Y(f(x),f(x_i)) + d_Y(f(x_i),y_{\sigma(i)})+ d_Y(y_{\sigma(i)},g(x_i))+ d_Y(g(x_i),g(x))\\
\nonumber &\leq \frac{\varepsilon}{4} +\frac{\varepsilon}{4} +\frac{\varepsilon}{4} +\frac{\varepsilon}{4} \\
&= \varepsilon.
\end{align}

Si tomamos el máximo de las $x´s \in X$ concluimos que $d_\infty(f,g) < \varepsilon$ para cualesquiera $f,g \in \mathcal{H}_\sigma,$ en consecuencia el conjunto $\mathcal{H}_\sigma$ está contenido en una bola de radio $\varepsilon$ con centro en cualquiera de sus funciones. Es decir, para cualquier $g_\sigma \in \mathcal{H}_\sigma$

$$\mathcal{H}_\sigma \subset B_\infty(g_\sigma,\varepsilon)$$

De esta contención y la expresada en (8) obtenemos que

$$\mathcal{H} \subset \underset{\sigma \in S}{\cup}B_\infty(g_\sigma,\varepsilon).$$

Y como $S$ es finito, concluimos que $\mathcal{H}$ es totalmente acotado.

Terminemos esta sección con el siguiente:

Corolario. Sea $X$ un espacio métrico compacto. Un subconjunto $\mathcal{H}$ de $\mathcal{C}^0(X, \mathbb{R}^n)$ es relativamente compacto en $\mathcal{C}^0(X, \mathbb{R}^n)$ si y solo si $\mathcal{H}$ es equicontinuo y acotado en $\mathcal{C}^0(X, \mathbb{R}^n).$

Demostración:
Sea $\mathcal{H}$ un subconjunto relativamente compacto en $\mathcal{C}^0(X, \mathbb{R}^n).$ Por el teorema de Arzelá-Ascoli, $\mathcal{H}$ es equicontinuo. Como $\overline{\mathcal{H}}$ es compacto entonces es acotado en $\mathcal{C}^0(X, \mathbb{R}^n),$ por lo tanto $\mathcal{H}$ también es acotado en $\mathcal{C}^0(X, \mathbb{R}^n).$

Ahora supongamos que $\mathcal{H}$ es equicontinuo y acotado en $\mathcal{C}^0(X, \mathbb{R}^n).$ Entonces existen $f_0 \in \mathcal{H}$ y $M>0$ tales que para cada $f \in \mathcal{H}$

$$\norm{f-f_0}_\infty := \underset{x \in X}{máx}\norm{f(x) \, – \, f_0(x)} \leq M$$

De aquí podemos concluir que para cada $x \in X,$ el conjunto $\mathcal{H}(x)$ está acotado en $\mathbb{R}^n$ entonces así lo es también su cerradura, por lo que $\overline{\mathcal{H}}$ es cerrado y acotado en $\mathbb{R}^n$ de modo que $\mathcal{H}(x)$ es relativamente compacto y por el teorema de Arzelá-Ascoli, se cumple que $\mathcal{H}$ es relativamente compacto en $\mathcal{C}^0(X, \mathbb{R}^n).$

Más adelante…

Terminaremos la sección de compacidad mostrando un concepto que sigue la misma idea de las bolas de radio $\varepsilon$ que son las $\varepsilon$-redes. Hablaremos de la métrica de Hausdorff y de cómo es posible entender la compacidad a través de conjuntos finitos.

Tarea moral

  1. Para cada $n \in \mathbb{N},$ sea $f_n:[0, \infty) \to \mathbb{R}$ tal que $f_n(x):= sen \sqrt{x + 4 \pi ^2 n ^2}.$ Demuestra que
    a) El conjunto $\mathcal{H} := \{f_n: n \in \mathbb{N} \}$ es equicontinuo.
    b) Para cada $x \in [0, \infty)$ el conjunto $\mathcal{H}(x)$ es relativamente compacto en $\mathbb{R}.$ Te sugerimos probar que la sucesión $(f_n)_{n \in \mathbb{N}}$ converge puntualmente a $0$ en $[0, \infty).$
    c) $\mathcal{H}$ no es un subconjunto compacto de $\mathcal{C}_b ^0([0. \infty), \mathbb{R}).$ Te sugerimos probar que la sucesión $(f_n)_{n \in \mathbb{N}}$ no converge uniformemente a $0$ en $[0. \infty).$
    Concluye que la compacidad de $X$ es necesaria en el teorema de Arzelá-Ascoli.
  2. Sea $X := \{ (x,y) \in \mathbb{R}^2 \, : \, (x,y) \neq (\frac{1}{2},0) \}$ y sea $f_n \in \mathcal{C}^0([0,1],X)$ tal que $f_n(x) := (x, \frac{1}{n} sen \pi x).$ Considera el conjunto $\mathcal{H} := \{f_n : n \in \mathbb{N}\}.$
    a) ¿Es $\mathcal{H}$ equicontinuo?
    b) ¿Es $\mathcal{H}$ acotado en $\mathcal{C}^0([0,1],X)?$
    c) ¿Es $\mathcal{H}$ relativamente compacto en $\mathcal{C}^0([0,1],X)?$

Enlaces

Y para terminar, dos resultados fuertes de la integral de Riemann-Stieltjes

Por Lizbeth Fernández Villegas

$\textit{MATERIAL EN REVISIÓN}$

Introducción

El contenido de esta sección se basa predominantemente en el libro
Wheeden, R.L., Zygmund, A., Measure and Integral. An Introduccion to Real Analysis. (2da ed.). New York: Marcel Dekker, 2015, págs 34-37.

En la entrada anterior vimos que para cualesquiera $P_1, P_2 \in \mathcal{P}_{[a,b]}$ se cumple que $\underline{S}_{P_1} \leq \overline{S}_{P_2},$ entonces

\begin{align}
-\infty < \underset{P \in \mathcal{P}_{[a,b]}}{\text{sup} \, \underline{S}_P} \leq \underset{P \in \mathcal{P}_{[a,b]}}{\text{ínf} \, \overline{S}_P} < \infty.
\end{align}

Esto también ocurre con la integral de Riemann que se estudia en los cursos de Cálculo, donde además, cuando se da la igualdad $\, \underset{P \in \mathcal{P}_{[a,b]}}{\text{sup} \, \underline{S}_P} = \underset{P \in \mathcal{P}_{[a,b]}}{\text{ínf} \, \overline{S}_P} \, $ se toma el valor del límite como el valor de la integral. (Ver Cálculo Diferencial e Integral II: Definición de la integral definida).

Nota que nosotros no hemos definido así la integral de Riemann-Stieltjes, sino tomando particiones cuyas normas tienden a cero. Aunque la intuición nos dice que particiones de intervalos muy pequeños se aproximan demasiado al valor de la integral, esto no siempre ocurre. Específicamente, incluso cuando se cumple que $\, \underset{P \in \mathcal{P}_{[a,b]}}{\text{sup} \, \underline{S}_P} = \underset{P \in \mathcal{P}_{[a,b]}}{\text{ínf} \, \overline{S}_P} \,$ en el caso de las sumas inferior y superior de Riemann-Stieltjes, la integral podría no existir. Veamos un ejemplo.

Sean $f:[a,b] \to \mathbb{R}\,$ y $\, \alpha:[a,b] \to \mathbb{R}$ definidas como

\begin{equation*}
f(x) = \begin{cases}
0 &\text{ si } &-1 \leq x <0 \\
1 &\text{ si } &0 \leq x \leq 1.
\end{cases}
\end{equation*}

\begin{equation*}
\alpha (x) = \begin{cases}
0 &\text{ si } &-1 \leq x \leq 0 \\
1 &\text{ si } &0 < x \leq 1 .
\end{cases}
\end{equation*}

Observa que $f$ y $\alpha$ tienen un punto de discontinuidad común que provoca que $\int_{-1}^{1}f \, d\alpha$ no exista. En efecto, si $P= \{x_0=-1,…,x_n =1\}$ es una partición entonces para algún $j \in \{1,…,n\}$
$$x_{j-1} \leq 0 \leq x_j$$
Queda como ejercicio probar que $S(P,f,\alpha)= f(\xi_j)$ con $\xi_j \in [x_{j-1}, x_j],$ y así

$$S(P,f,\alpha)= 0\, \text{ o }\, S(P,f,\alpha)= 1$$
sin importar qué tan pequeños sean los intervalos de la partición, por lo que no existe $\underset{|P| \to 0}{lim} \, S(P,f,\alpha).$

Pese a lo anterior, es sencillo verificar que
$$ \underset{P \in \mathcal{P}_{[a,b]}}{\text{sup} \, \underline{S}_P} = \underset{P \in \mathcal{P}_{[a,b]}}{\text{ínf} \, \overline{S}_P} = 1.$$

La siguiente proposición muestra hipótesis en las que la integral de Riemann-Stieltjes y los límites de las sumas sí coinciden.

Proposición: Sea $f:[a,b] \to \mathbb{R}$ acotada y $\alpha:[a,b] \to \mathbb{R}$ monótona creciente. Si $\int_{a}^{b}f \, d\alpha$ existe, entonces

$$\underset{|P| \to 0}{lim} \, \underline{S}_P \, \text{ y } \, \underset{|P| \to 0}{lim} \, \overline{S}_P$$

existen y

$$\underset{|P| \to 0}{lim} \, \underline{S}_P \, = \, \underset{|P| \to 0}{lim} \, \overline{S}_P = \underset{P \in \mathcal{P}_{[a,b]}}{\text{sup} \, \underline{S}_P} = \underset{P \in \mathcal{P}_{[a,b]}}{\text{ínf} \, \overline{S}_P} = \int_{a}^{b}f \, d\alpha.$$

Demostración:
En el caso no trivial, supongamos que $\alpha$ no es constante en $[a,b].$

Sea $I = \int_{a}^{b}f \, d\alpha.$ Entonces dada $\varepsilon >0$ existe $\delta>0$ tal que si $|P|< \delta$ entonces $|I \, – \, S(P,f,\alpha)|< \varepsilon.$

Supongamos que $P= \{x_0 = a,…, x_n =b\}$ con $|P|< \delta.$ Tomemos $\xi_i, \, \eta_i \in [x_{i-1},x_i], \, i=1,…,n, \,$ tales que

\begin{align}
0 \leq M_i \, – \, f(\xi_i) &< \frac{\varepsilon}{\alpha(b) \, – \, \alpha(a)} \, \, \text{ y } \\
0 \leq f(\eta_i) \, – \, m_i &< \frac{\varepsilon}{\alpha(b) \, – \, \alpha(a)}
\end{align}

Sean

\begin{align}
S’_P&= \sum_{i=1}^{n}f(\xi_i) \, (\alpha(x_i) \, – \, \alpha(x_{i-1})) \, \, \text{ y } \\
S^{\prime \prime}_P&= \sum_{i=1}^{n}f(\eta_i) \, (\alpha(x_i) \, – \, \alpha(x_{i-1}))
\end{align}

entonces

\begin{align}
|I \, – \, S’_P|&< \varepsilon \, \, \text{ y}\\
|I \, – \, S^{\prime \prime}_P|&< \varepsilon.
\end{align}

Por otro lado, por (2),

\begin{align}
\nonumber 0 \leq \overline{S}_P \, – \, S’_P &= \sum_{i=1}^{n}M_i \, (\alpha(x_i) \, – \, \alpha(x_{i-1})) \, – \sum_{i=1}^{n}f(\xi_i) \, (\alpha(x_i) \, – \, \alpha(x_{i-1}))\\
\nonumber &= \sum_{i=1}^{n}[M_i \, – \, f(\xi_i)] \, (\alpha(x_i) \, – \, \alpha(x_{i-1})) \\
\nonumber &< \sum_{i=1}^{n}\frac{\varepsilon}{\alpha(b) \, – \, \alpha(a)}\, (\alpha(x_i) \, – \, \alpha(x_{i-1})) \\
\nonumber &= \frac{\varepsilon}{\alpha(b) \, – \, \alpha(a)}\, \sum_{i=1}^{n} (\alpha(x_i) \, – \, \alpha(x_{i-1})) \\
\nonumber &= \frac{\varepsilon}{\alpha(b) \, – \, \alpha(a)}\, (\alpha(b) \, – \, \alpha(a)) \\
&= \varepsilon.
\end{align}

Análogamente

\begin{align}
0 \leq S^{\prime \prime}_P \, – \, \underline{S}_P < \varepsilon.
\end{align}

De (6), (8) y la desigualdad del triángulo se sigue

$$|\overline{S}_P \, – \, I|\leq |\overline{S}_P\, – \, S’_P|+|S’_P \, – \, I|< \varepsilon + \varepsilon = 2 \varepsilon,$$

mientras que de (7), (9) y la desigualdad del triángulo tenemos

$$|\underline{S}_P \, – \, I|\leq |\underline{S}_P\, – \, S^{\prime \prime}_P|+|S^{\prime \prime}_P \, – \, I|< \varepsilon + \varepsilon = 2 \varepsilon,$$

por lo tanto

$$\underset{|P|\to 0}{lim}\, \overline{S}_P = I = \underset{|P|\to 0}{lim}\, \underline{S}_P .$$

Dado que

$$\underline{S}_P \leq \underset{P \in \mathcal{P}_{[a,b]}}{\text{sup} \, \underline{S}_P} \leq \underset{P \in \mathcal{P}_{[a,b]}}{\text{ínf} \, \overline{S}_P} \leq \overline{S}_P$$

entonces también

$$\underset{|P|\to 0}{lim}\, \underline{S}_P =\underset{P \in \mathcal{P}_{[a,b]}}{\text{sup} \, \underline{S}_P} = \underset{P \in \mathcal{P}_{[a,b]}}{\text{ínf} \, \overline{S}_P} = \underset{|P|\to 0}{lim}\, \overline{S}_P$$

terminando así la prueba.

Para finalizar, veamos la siguiente:

Proposición: Sean $f:[a,b] \to \mathbb{R}$ acotada y $\alpha:[a,b] \to \mathbb{R}$ monótona creciente y continua, entonces

a)
$$\underset{|P| \to 0}{lim} \, \underline{S}_P \, \text{ y } \, \underset{|P| \to 0}{lim} \, \overline{S}_P$$

existen y se cumplen las siguientes igualdades:

\begin{align}
\underset{|P| \to 0}{lim} \, \underline{S}_P &= \underset{P \in \mathcal{P}_{[a,b]}}{\text{sup} \, \underline{S}_P} \\
\underset{|P| \to 0}{lim} \, \overline{S}_P &= \underset{P \in \mathcal{P}_{[a,b]}}{\text{ínf} \, \overline{S}_P}.
\end{align}

b) Si además $\underset{P \in \mathcal{P}_{[a,b]}}{\text{sup}} \, \underline{S}_P = \underset{P \in \mathcal{P}_{[a,b]}}{\text{ínf}} \, \overline{S}_P$ entonces

$$\int_{a}^{b}f \, d\alpha$$

existe y

$$\underset{P \in \mathcal{P}_{[a,b]}}{\text{sup}} \, \underline{S}_P = \int_{a}^{b}f \, d\alpha= \underset{P \in \mathcal{P}_{[a,b]}}{\text{ínf}} \, \overline{S}_P.$$

Demostración:
a) Será suficiente probar (10) y (11). Presentamos la demostración de (11). La igualdad faltante es análoga y se dejará como ejercicio al lector.

Para simplificar la notación, hagamos

$$\underset{P \in \mathcal{P}_{[a,b]}}{\text{ínf}} \, \overline{S}_P := \overline{S}.$$

Nota que (11) se cumple si y solo si dado $\varepsilon>0$ existe $\delta>0$ tal que si $|P|< \delta$ entonces

\begin{align}
\nonumber &&|\overline{S}_P \, – \, \overline{S}| &< \varepsilon\\
\nonumber &\iff& \overline{S}_P \, – \, \overline{S} &< \varepsilon\\
&\iff& \overline{S}_P &< \overline{S} + \varepsilon
\end{align}

Tomemos $\hat{P}=\{\hat{x_0}=a,…,\hat{x_n}=b\}$ una partición de $[a,b]$ tal que

$$\overline{S}_{\hat{P}}<\overline{S}+ \frac{\varepsilon}{2}.$$

y sea
\begin{align}
\textcolor{RoyalBlue}{M= \underset{x \, \in \, [a,b]}{sup} \, |f(x)|.}
\end{align}

Ya que $\alpha$ es uniformemente continua en $[a,b],$ existe $\eta>0$ tal que si $|x \, – \, x’|< \eta$ entonces

\begin{align}
\textcolor{magenta}{|\alpha(x) \, – \, \alpha(x’)| < \frac{\varepsilon}{4(n+1)M}}.
\end{align}

Ahora tomemos $P=\{x_0=a,…,x_m=b\}$ partición de $[a,b]$ tal que $|P|< \eta$ y
$$|P|< \underset{i \in \{1,…,n\}}{\text{mín}}\, (\hat{x_i}\, – \, \hat{x}_{i-1}).$$

Vamos a mostrar que $\overline{S}_P$ cumple (12).

Nota que

\begin{align}
\overline{S}_P &= \sum_{i=1}^{m}M_i \, (\alpha(x_i) \, – \, \alpha(x_{i-1}))\\
&= \sum’ + {\sum}^{\prime \prime}
\end{align}

donde $\sum’$ representa a los sumandos cuyos intervalos no tienen puntos de $\hat{P}\,$ y $\, \sum^{\prime \prime}$ representa a los que sí. Observa que, por como fueron elegidas $P$ y $\hat{P},$ cada intervalo generado por $P$ tiene a lo más un punto de $\hat{P},$ así

\begin{align}
\overline{S}_{P \cup \hat{P}} = \sum’ + {\sum}^{\prime \prime \prime}
\end{align}

donde $\sum^{\prime \prime \prime}$ resulta de reemplazar cada sumando en $\sum^{\prime \prime}$ que es de la forma

$$M_i \, (\alpha(x_i) \, – \, \alpha(x_{i-1}))$$

por la expresión

$$\underset{x \, \in \, [x_{i-1},\hat{x}_j]}{\text{sup}}f(x) \, (\alpha(\hat{x}_j) \, – \, \alpha(x_{i-1})) + \underset{x \, \in \, [\hat{x}_j, x_{i},]}{\text{sup}}f(x) \, (\alpha(x_i) \, – \, \alpha(\hat{x}_j) ) $$

donde $\hat{x}_j$ es el punto de $\hat{P}$ en $(x_{i-1}, x_i).$

Por lo tanto de (16) y (17) tenemos
$$\overline{S}_P \, – \, \overline{S}_{P \cup \hat{P}} = {\sum}^{\prime \prime} \, – \, {\sum}^{\prime \prime \prime}.$$

Observa que se satisface al menos una de las siguientes igualdades:

\begin{align}
M_i &= \underset{x \, \in \, [x_{i-1},\hat{x}_j]}{\text{sup}}f(x) \, \text{ o bien} \\
M_i &= \underset{x \, \in \, [\hat{x}_j, x_{i},]}{\text{sup}}f(x)
\end{align}

Si se cumple (18) entonces

\begin{align}
\nonumber M_i \, (\alpha(x_i) \, – \, \alpha(x_{i-1})) \, – \, [\underset{x \, \in \, [x_{i-1},\hat{x}_j]}{\text{sup}}f(x) \, (\alpha(\hat{x}_j) \, – \, \alpha(x_{i-1})) + \underset{x \, \in \, [\hat{x}_j, x_{i},]}{\text{sup}}f(x) \, (\alpha(x_i) \, – \, \alpha(\hat{x}_j) )] = \\
=\textcolor{RoyalBlue}{\left( M_i \, – \, \underset{x \, \in \, [\hat{x}_j, x_{i},]}{\text{sup}}f(x) \right)} \, \textcolor{magenta}{(\alpha(x_i) \, – \, \alpha(\hat{x}_j) )}
\end{align}

Pero si se cumple (19) se sigue que

\begin{align}
\nonumber M_i \, (\alpha(x_i) \, – \, \alpha(x_{i-1})) \, – \, [\underset{x \, \in \, [x_{i-1},\hat{x}_j]}{\text{sup}}f(x) \, (\alpha(\hat{x}_j) \, – \, \alpha(x_{i-1})) + \underset{x \, \in \, [\hat{x}_j, x_{i},]}{\text{sup}}f(x) \, (\alpha(x_i) \, – \, \alpha(\hat{x}_j) )] = \\
=\textcolor{RoyalBlue}{\left(M_i \, – \, \underset{x \, \in \, [x_{i-1},\hat{x}_j]}{\text{sup}}f(x) \right)} \, \textcolor{magenta}{(\alpha(\hat{x}_j) \, – \, \alpha(x_{i-1}) )}
\end{align}

En cualquier caso, de (13) y (14) la diferencia es a lo más
$$\frac{\textcolor{RoyalBlue}{2M}\textcolor{magenta}{\varepsilon}}{\textcolor{magenta}{4(n+1)M}} = \frac{\varepsilon}{2(n+1)}$$

Entonces.

$$\overline{S}_P \, – \, \overline{S}_{P \cup \hat{P}} \leq \frac{\varepsilon(n+1)}{2(n+1)} = \frac{\varepsilon}{2}.$$

Más aún

$$\overline{S}_{P \cup \hat{P}} \leq \overline{S}_\hat{P} < \overline{S}+\frac{\varepsilon}{2}$$

con lo cual queda demostrada la proposición.

b) Dado que para cualquier $P \in \mathcal{P}_{[a,b]}$

$$\underline{S}_P \leq S(P,f,\alpha) \leq \overline{S}_P$$
entonces haciendo $|P| \to 0$ concluimos:

$$\underset{P \in \mathcal{P}_{[a,b]}}{\text{sup} \, \underline{S}_P} = \int_{a}^{b}f \, d\alpha = \underset{P \in \mathcal{P}_{[a,b]}}{\text{ínf} \, \overline{S}_P}.$$

Más adelante…

¡Gracias por acompañarnos en la exposición de este curso! Si deseas continuar, puedes consultar el contenido correspondiente a Análisis Matemático II. La comunidad sigue creciendo y ya trabaja creando notas con ejercicios que motiven el aprendizaje. Pronto te las compartiremos.

Tarea moral

  1. En el ejemplo descrito al inicio, demuestra que
    a)
    $$S(P,f,\alpha)= f(\xi_j)$$
    con $\xi_j \in [x_{j-1}, x_j]$ donde $[x_{j-1}, x_j]$ es el intervalo de la partición que tiene al cero.
    Prueba también que para todo $\delta>0$ existe una partición $P$ con $|P|< \delta$ tal que
    $S(P,f,\alpha)= 0$ o $S(P,f,\alpha)= 1$
    dependiendo el punto $\xi_j$ elegido. Concluye que no existe $\underset{|P| \to 0}{lim} \, S(P,f,\alpha).$
    b) Verifica que
    $$ \underset{P \in \mathcal{P}_{[a,b]}}{\text{sup} \, \underline{S}_P} = \underset{P \in \mathcal{P}_{[a,b]}}{\text{ínf} \, \overline{S}_P} = 1.$$
  2. Demuestra la igualdad (10).

Enlaces

Propiedades de la integral de Riemann-Stieltjes. Parte 1

Por Lizbeth Fernández Villegas

$\textit{MATERIAL EN REVISIÓN}$

Introducción

El contenido de esta sección se basa predominantemente en el libro
Wheeden, R.L., Zygmund, A., Measure and Integral. An Introduccion to Real Analysis. (2da ed.). New York: Marcel Dekker, 2015, págs 26-30.

Mostraremos resultados formales de la integral de Riemann-Stieltjes. Recordemos que en la entrada anterior partimos de dos funciones acotadas $f:[a,b] \to \mathbb{R}$ y $\alpha:[a,b] \to \mathbb{R}$ y una partición $P=\{x_0 = a,…,x_n =b\}$ en $[a,b]$ con puntos $\xi_i \in [x_{i-1}, x_i].$ Definimos la suma de Riemann-Stieltjes como

$$S(P,f,\alpha) = \sum_{i=1}^{n}f(\xi_i)(\alpha(x_i) \, – \, \alpha(x_{i-1})).$$

Este resultado depende de $P, \, f$ y $\alpha.$ En esta ocasión, más que hacer $n \to \infty$ haremos que la norma de la partición tienda a cero. Cuando existe $I \in \mathbb{R}$ tal que para cada $\varepsilon >0,$ existe $\delta >0$ tal que si $|P|< \delta$
entonces $|I \, – \, S(P,f,\alpha)|< \varepsilon,$ diremos que
$$I := \underset{|P| \to 0}{lim} \, S(P,f,\alpha).$$
Si es finito lo llamamos integral de Riemann-Stieltjes de $f$ con respecto a $\alpha$ en $[a,b].$ El valor de $I \,$ se denota como:
$$\int_{a}^{b}f(x) \, d\alpha = \int_{a}^{b}f \, d\alpha.$$

Por supuesto que este límite no siempre existe en $\mathbb{R}.$ Conozcamos una equivalencia que muestra cuando sí.

Proposición. Criterio de Cauchy para la integral de Riemann-Stieltjes: La integral $\int_{a}^{b}f \, d\alpha$ existe si y solo si para cada $\varepsilon>0$ existe $\delta>0$ tal que si $|P|, \, |Q|< \delta$ entonces
$$|S(P,f,\alpha) \, – \, S(Q,f,\alpha)|< \varepsilon.$$

La demostración se propone como tarea moral.

Ejemplos

  • Sean $f, \alpha :[a,b] \to \mathbb{R}$ con $f$ continua y $\alpha$ continuamente diferenciable, entonces
    $$\int_{a}^{b}f \, d\alpha = \int_{a}^{b}f \, \alpha’ \, dx$$
    De hecho, por el teorema del valor medio aplicado en $\alpha,$ para cada $i = 1,2,..,n$ existen $\eta_i \in [x_{i-1}, x_i]$ tales que
    \begin{align}
    S(P,f,\alpha) &= \sum_{i=1}^{n}f(\xi_i)(\alpha(x_i) \, – \, \alpha(x_{i-1})) \\
    &= \sum_{i=1}^{n}f(\xi_i)\alpha'(\eta_i)(x_i \, – \, x_{i-1}).
    \end{align}
Teorema del valor medio en $\alpha.$

Usando la continuidad uniforme de $\alpha’$ podemos asumir que, en intervalos muy pequeños, $\alpha'(\eta_i)= \alpha'(\xi_i),$ en consecuencia

$$\sum_{i=1}^{n}f(\xi_i)\alpha'(\eta_i)(x_i \, – \, x_{i-1})= \sum_{i=1}^{n}f(\xi_i)\alpha'(\xi_i)(x_i \, – \, x_{i-1})$$

Nota que esto ya es la común suma de Riemann y así:
$$\underset{|P| \to 0}{lim} \, S(P,f,\alpha)= \int_{a}^{b} f \, \alpha’ \, dx,$$

o bien

$$\int_{a}^{b}f \, d\alpha = \int_{a}^{b}f \, \alpha’ \, dx.$$

  • Ahora considera $f, \alpha: [a,b] \to \mathbb{R}$ donde

\begin{equation*}
\alpha(x) = \begin{cases}
1 \text{ si $x \geq 0$} \\
\\
0 \text{ si $x < 0$}
\end{cases}
\end{equation*}

Gráfica de $\alpha.$

y $f$ es una función continua en $0.$ Es sencillo demostrar que
$$\int_{-1}^{1}f \, d\alpha = f(0).$$

A continuación enunciaremos algunas propiedades de la integral de Riemann-Stieltjes. Las demostraciones las dejaremos como ejercicio.

Proposición: Sean $f, f_1, f_2, \alpha, \alpha_1$ y $\alpha_2$ funciones de $[a,b] \to \mathbb{R}$ y $c \in \mathbb{R},$ entonces se satisfacen:

a) Si $\int_{a}^{b} f \, d\alpha$ existe, entonces también existen tanto $\int_{a}^{b}cf \, d\alpha$ como $\int_{a}^{b}f \, d(c\alpha)$ y además
$$\int_{a}^{b}cf \, d\alpha = \int_{a}^{b}f \, d(c\alpha) = c \int_{a}^{b}f \, d\alpha.$$

b) Si tanto $\int_{a}^{b} f_1 \, d\alpha$ como $\int_{a}^{b} f_2 \, d\alpha$ existen, entonces también
$\int_{a}^{b} (f_1 + f_2) \, d\alpha$ existe y
$$\int_{a}^{b} (f_1 + f_2) \, d\alpha = \int_{a}^{b} f_1 \, d\alpha + \int_{a}^{b} f_2 \, d\alpha.$$

c) Si tanto $\int_{a}^{b} f \, d\alpha_1$ como $\int_{a}^{b} f \, d\alpha_2$ existen, entonces también
$\int_{a}^{b} f \, d(\alpha_1+ \alpha_2)$ existe y
$$\int_{a}^{b} f \, d(\alpha_1+ \alpha_2) = \int_{a}^{b} f \, d\alpha_1 + \int_{a}^{b} f \, d\alpha_2.$$

Para finalizar esta sección, veremos que es posible obtener la integral de Riemann-Stieltjes como equivalencia de la suma de integrales correspondientes a cada división del intervalo, como muestra la siguiente:

Proposición: Si $\int_{a}^{b} f \, d\alpha$ existe y $a \leq c \leq b,$ entonces

a) Tanto $\int_{a}^{c}f \, d\alpha$ como $\int_{c}^{b}f \, d\alpha$ existen y

b) $\int_{a}^{b}f \, d\alpha = \int_{a}^{c}f \, d\alpha + \int_{c}^{b} f \, d\alpha.$

Demostración:
Para simplificar la notación, hagamos $S_P[a,b] = S(P,f,\alpha)$ donde $P \in \mathcal{P}_{[a,b]}.$

Para mostrar que $\int_{a}^{c} f \, d\alpha$ existe, de acuerdo con el criterio de Cauchy para la integral de Riemann-Stieltjes encunciado arriba, será suficiente probando que para todo $\varepsilon>0$ existe $\delta>0$ tal que si $P_1, \, P_2 \in \mathcal{P}_{[a,c]}$ con $|P_1|, \, |P_2|< \delta,$ entonces

\begin{align}
(S_{P_1}[a,c] \, – \, S_{P_2}[a,c]) < \varepsilon.
\end{align}

Como $\int_{a}^{b}f \, d\alpha \,$ existe entonces dada $\varepsilon>0$ existe $\delta>0$ tal que para cualesquiera $P’_1, \, P’_2 \in \mathcal{P}_{[a,b]}$ con $|P’_1|, \, |P’_2|< \delta, \,$ tenemos
\begin{align}
(S_{P’_1}[a,b] \, – \, S_{P’_2}[a,b]) < \varepsilon.
\end{align}

Sean $P_1, \, P_2 \in \mathcal{P}_{[a,c]}$ tales que $|P_1|, \, |P_2|< \delta$ y toma $P \in \mathcal{P}_{[c,b]}$ tal que también $|P|< \delta.$

Definimos $P’_1 = P_1 \cup P \, $ y $\, P’_2 = P_2 \cup P.$ Nota que ambas son particiones de $[a,b]$ cuya norma es menor que $\delta$ y por tanto satisfacen (4).

Notemos que

\begin{align}
S_{P’_1}[a,b] &= S_{P_1}[a,c]+ S_{P}[c,b] \\
\text{y } S_{P’_2}[a,b] &= S_{P_2}[a,c]+ S_{P}[c,b]
\end{align}

así, restando (5) de (6)

\begin{align}
S_{P_1}[a,c] \, – \, S_{P_2}[a,c] + \cancel{S_{P}[c,b] \, – \, S_{P}[c,b]} = S_{P’_1}[a,b] \, – \, S_{P’_2}[a,b]
\end{align}

De (7) y (4) se cumple (3), por lo tanto

$\int_{a}^{c}f \, d\alpha$ existe.

Análogamente se puede probar que $\int_{c}^{b}f \, d\alpha$ existe, mientras que (5) y (6) permiten concluir que
$$\int_{a}^{b}f \, d\alpha = \int_{a}^{c}f \, d\alpha + \int_{c}^{b}f \, d\alpha$$
que es lo que queríamos demostrar.

Más adelante…

Veremos algunas propiedades más de la integral de Riemann-Stieltjes, por lo pronto desarrolla las ideas con los siguientes ejercicios.

Tarea moral

  1. Prueba el Criterio de Cauchy para la integral de Riemann-Stieltjes: La integral $\int_{a}^{b}f \, d\alpha$ existe si y solo si para cada $\varepsilon>0$ existe $\delta>0$ tal que si $|P|, \, |Q|< \delta$ entonces
    $$|S(P,f,\alpha) \, – \, S(Q,f,\alpha)|< \varepsilon.$$
  2. Considera $f, \alpha: [a,b] \to \mathbb{R}$ donde
    \begin{equation*}
    \alpha(x) = \begin{cases}
    1 \text{ si $x \geq 0$} \\
    0 \text{ si $x < 0$}
    \end{cases}
    \end{equation*}
    y $f$ es una función continua en $0.$ Prueba que
    $$\int_{-1}^{1}f \, d\alpha = f(0).$$
  3. Sean $f, f_1, f_2, \alpha, \alpha_1$ y $\alpha_2$ funciones de $[a,b] \to \mathbb{R}$ y $c \in \mathbb{R}. \,$ Demuestra que se satisfacen:
    a) Si $\int_{a}^{b} f \, d\alpha$ existe, entonces también existen tanto $\int_{a}^{b}cf \, d\alpha$ como $\int_{a}^{b}f \, d(c\alpha)$ y además
    $$\int_{a}^{b}cf \, d\alpha = \int_{a}^{b}f \, d(c\alpha) = c \int_{a}^{b}f \, d\alpha.$$
    b) Si tanto $\int_{a}^{b} f_1 \, d\alpha$ como $\int_{a}^{b} f_2 \, d\alpha$ existen, entonces también
    $\int_{a}^{b} (f_1 + f_2) \, d\alpha$ existe y
    $$\int_{a}^{b} (f_1 + f_2) \, d\alpha = \int_{a}^{b} f_1 \, d\alpha + \int_{a}^{b} f_2 \, d\alpha.$$
    c) Si tanto $\int_{a}^{b} f \, d\alpha_1$ como $\int_{a}^{b} f \, d\alpha_2$ existe, entonces también
    $\int_{a}^{b} f \, d(\alpha_1+ \alpha_2)$ existe y
    $$\int_{a}^{b} f \, d(\alpha_1+ \alpha_2) = \int_{a}^{b} f \, d\alpha_1 + \int_{a}^{b} f \, d\alpha_2.$$
  4. Sean $f, \alpha:[a,b] \to \mathbb{R}$ funciones acotadas. Demuestra que si $[a’,b’] \subset [a,b]$ y $\int_{a}^{b} f \, d\alpha$ existe entonces también $\int_{a’}^{b’} f \, d\alpha$ existe.

Enlaces

Funciones de variación acotada. Parte 2

Por Lizbeth Fernández Villegas

$\textit{MATERIAL EN REVISIÓN}$

Introducción

El contenido de esta sección se basa predominantemente en el libro
Wheeden, R.L., Zygmund, A., Measure and Integral. An Introduccion to Real Analysis. (2da ed.). New York: Marcel Dekker, 2015, págs 22-26.

Tal como lo hicimos en la entrada anterior, seguiremos hablando de las funciones de variación acotada. Notemos que en los resultados de esta teoría no suele pedirse que la función sea continua o acotada, más aún, esto pudiera no ser suficiente para que una función sea de variación acotada, tal como lo muestra un ejercicio de la tarea moral de esta sección. Veamos entonces qué hipótesis pudieran ser útiles. Comencemos con la siguiente:

Definición. Discontinuidades del primer tipo. Sea $f: \mathbb{R} \to \mathbb{R}$ y sea $x_0 \in \mathbb{R}.$ En los siguientes dos casos, $f$ no es continua en $x_0.$

a) Cuando $\underset{x \to x_0 ^+}{lim} \, f(x)$ y $\underset{x \to x_0 ^-}{lim} \, f(x)$ existen y son distintos de $\infty$ pero
$$\underset{x \to x_0 ^+}{lim} \, f(x) \neq\underset{x \to x_0 ^-}{lim} \, f(x).$$

El límite por la izquierda en $x_0$ es distinto al límite por la derecha.

b) Cuando $\underset{x \to x_0 ^+}{lim} \, f(x)$ y $\underset{x \to x_0 ^-}{lim} \, f(x)$ existen y son distintos de $\infty$ y además
$$\underset{x \to x_0 ^+}{lim} f(x) = \underset{x \to x_0 ^-}{lim} \, f(x)$$
pero $ \underset{x \to x_0 }{lim} f(x) \neq f(x_0).$

Existe el límite en $x_0$ pero la función no es continua ahí.

En cualquiera de estas situaciones, diremos que $f$ tiene una discontinuidad del primer tipo en $x_0.$

Proposición. Sea $f:[a,b] \to \mathbb{R} \,$ una función de variación acotada en $[a,b],$ entonces tiene a lo más una cantidad numerable de discontinuidades y todas son del primer tipo.

Demostración:
Sea $f$ de variación acotada. De acuerdo con la entrada anterior, $f$ es acotada en $[a,b]$. Veamos un caso bonito en el que $f$ es creciente.

El conjunto de discontinuidades de $f$ puede expresarse como
$$D := \underset{n \in \mathbb{N}}{\bigcup} \, \left\{x_0 : \underset{x \to x_0 ^+}{lim} f(x) \, – \, \underset{x \to x_0 ^-}{lim} \, f(x) \geq \frac{1}{n} \right\}$$

pues el «tamaño del salto» en una discontinuidad siempre será mayor que algún $\frac{1}{n}$ suficientemente pequeño.

Nota que cada uno de los conjuntos que compone la unión es o bien finito o vacío, (pues para cada $k \in \mathbb{N} \,$ el segmento $\frac{1}{k}$ cabe un número finito de veces en la altura $f(b) \, – \, f(a)$), por lo tanto, $D$ es contable.

Cada conjunto $\{ x_0: \underset{x \to x_0 ^+}{lim} f(x) \, – \, \underset{x \to x_0 ^-}{lim} \, f(x) \geq \frac{1}{k} \}$ es finito o vacío.

Ahora veamos el caso general. De acuerdo con el teorema de Jordan, visto al final de la entrada anterior,
$$f = f_1 \, – \, f_2,$$
con $f_1$ y $f_2$ funciones crecientes y acotadas que, por lo que acabamos de ver, tienen un número contable de discontinuidades del primer tipo, por lo tanto $f_1 \, – \, f_2 =f$ también cumple la condición.

Definición: Norma de $P.$ Sea $P=\{x_0=a , \, x_1, \, …, \, , x_n = b\}$ una partición de $[a,b].$ La norma de $P$ se define como la longitud del intervalo más grande de la partición y se denota como:

$$|P| := \underset{1 \leq i \leq n}{\text{máx }} \{x_i \, – \, x_{i-1}\}.$$

El resultado que veremos a continuación muestra condiciones bajo las cuales, cuando los intervalos generados por la partición son chiquititos, es posible aproximarse mucho a la variación a través de sumas $S_P.$ Esto no siempre es así, recordemos el tercer ejemplo de la entrada anterior. ¿Puedes dar ejemplos de particiones $P$ donde $S_P[f;a,b]$ no se acerca a $V,$ aun siendo $|P|$ menor que cualquier $\delta >0 ?$ (Ver ejercicio en tarea moral).

Proposición. Si $f$ es una función continua en $[a,b]$ entonces
$$V=\underset{|P| \to 0}{lim} \, S_P,$$
es decir, dado $M<V,$ existe $\delta >0$ tal que $M < S_P$ para cualquier partición $P$ de $[a,b]$ con $|P|< \delta.$

Demostración:

Sea $\mu>0$ tal que
$$M + \mu < V$$

Tomemos
$$\hat{P} = \{\hat{x}_0=a,…,\hat{x}_n=b\}$$
tal que
\begin{align}
M+ \mu < S_{\hat{P}}.
\end{align}

Como $f$ es continua en $[a,b]$ entonces es uniformemente continua en $[a,b].$ Sea $\delta_1 >0$ tal que si $|x \, – \, x^*|< \delta_1$ entonces
\begin{align}
|f(x) \, – \, f(x^*)| < \frac{\mu}{2(n+1)}
\end{align}

Nota que $\frac{\mu}{2(n+1)}$ sí es fijo, pues $n$ lo es por ser el número de intervalos de la partición $\hat{P}$ elegida.

Toma $\delta >0$ tal que
\begin{align}
\delta < \text{mín} \{\delta_1, \underset{1 \leq i \leq n}{mín}\{\hat{x}_i \, – \, \hat{x}_{i-1}\}\}.
\end{align}

Sea $P=\{x_0, \, x_1, \, …, \, , x_m\}$ una partición de $[a,b],$ tal que $|P|< \delta.$ Afirmamos que esta partición satisface lo deseado, es decir que
\begin{align}
M < S_P.
\end{align}

Partimos de la igualdad
\begin{align}
S_P[f;a,b] = \sum_{i=1}^{m}|f(x_1) \, -\, f(x_{i-1})|
\end{align}

Ahora separemos los términos del lado derecho sumando en $\sum’$ todos los sumandos donde no hay elementos de $\hat{P}$ en el intervalo de $P$ correspondiente y sumando en $\sum ´´$ aquellos donde sí los hay.

\begin{align}
S_P[f;a,b] &= \sum_{i=1}^{m}|f(x_i) \, -\, f(x_{i-1})|
&= \sum’ + \sum ´´
\end{align}

Por (3) todos estos intervalos son menores que cualquier intervalo de $\hat{P},$ entonces cada intervalo $[x_{i-1}, x_i]$ de $P$ contiene a lo más un término $\hat{x}_j$ de $\hat{P}$ y así $\sum ´´$ tiene a lo más $n+1$ sumandos.

Sea $Q = P \cup \hat{P},$ entonces $Q$ es un refinamiento de ambas particiones. Bajo este indicador podemos reemplazar cada sumando de $\sum ´´$
$$|f(x_i) \, -\, f(x_{i-1})|$$
por los sumandos que separa el término $\hat{x}_j$ de $\hat{P}$
$$|f(x_i) \, -\, f(\hat{x}_{j})|+|f(\hat{x}_j) \, -\, f(x_{i-1})|.$$
La suma de todos estos la representaremos con $\sum´´´.$

Por (2) y (3),
\begin{align}
\sum´´´ < 2(n+1) \frac{\mu}{2(n+1)} = \mu.
\end{align}

y como
\begin{align}
S_Q = \sum’ + \sum´´´ \\
\Rightarrow \sum’ = S_Q \, – \, \sum´´´
\end{align}

de (7) y (8) tenemos
y como
\begin{align}
S_P > \sum’ > S_Q \, – \, \mu \geq S_{\hat{P}} – \mu > M
\end{align}

Por lo tanto $S_P > M$ que es lo que queríamos demostrar.

Corolario. Si $f$ tiene derivada continua $f’$ en $[a,b],$ se tiene que:

a) $V=\int_{a}^{b}|f'(x)|\, dx$

b) $S^+=\int_{a}^{b}(f'(x))^+ \, dx$

c) $S^-=\int_{a}^{b}(f'(x))^- \, dx$

Demostración:
a) Sea $P = \{x_0 =a,…,x_n =b\}$ una partición de $[a,b].$ Por el teorema del valor medio, aplicado en cada intervalo $[x_{i-1} \,, \, x_{i}]$ con $i = 1,…,n$ sabemos que existe $\xi_i \in [x_{i-1} , x_{i}]$ tal que

$$|f(x_i) \, – \, f(x_{i-1})| = |f'(\xi_i)|(x_i \, – \, x_{i-1})$$

Por el teorema que acabamos de demostrar concluimos que
\begin{align}
V = \underset{|P| \to 0}{lim} \, S_P = \underset{|P| \to 0}{lim} \, \sum_{i=1}^{n} |f'(\xi_i)|(x_i \, – \, x_{i-1}) = \int_{a}^{b} |f'(x)|\, dx.
\end{align}

b) A continuación usaremos un resultado visto en la entrada anterior y haremos también una sustitución en $V$ con la igualdad en a).

\begin{align}
\nonumber S^+ &= \frac{1}{2}(V \, + \, f(b) \, – \, f(a))\\
\nonumber &= \frac{1}{2}\left[\int_{a}^{b}|f'(x)|\, dx + \int_{a}^{b}f'(x) \, dx \right] \\
\nonumber &=\frac{1}{2} \int_{a}^{b} (|f'(x)|+f'(x)) \, dx \\
&= \int_{a}^{b} (f'(x))^+ \, dx.
\end{align}

c) La demostración es análoga a la anterior, partiendo de
$$S^- = \frac{1}{2}(V \, – \, f(b) \, + \, f(a))$$
y la proponemos como ejercicio.

Pasemos ahora a conocer las curvas rectificables, comenzando con aquellas que pertenecen al plano $\mathbb{R}^2.$

Definición. Curva en el plano y traza. Sean $\phi: [a,b] \to \mathbb{R}$ y $\psi: [a,b] \to \mathbb{R}$ dos ecuaciones paramétricas. Una curva en el plano $\mathbb{R}^2$ está dada por:
$\mathcal{C}(t)=(\phi(t), \, \psi(t))$ con $a \leq t \leq b.$

La traza de $\mathcal{C}$ es el conjunto $\{(x,y) \in \mathbb{R}^2 : x=\phi(t), \, y=\psi(t), \, a \leq t \leq b \}$.

Nota que en la definición no se excluye que la traza pueda tener intersecciones ni tampoco se dan las condiciones necesarias para que sea continua o acotada.

Definición. La longitud de $\mathcal{C}.$ Sea $P=\{t_0 =a, \, t_1,…,t_{n-1}, \, t_n= b\}$ una partición de $[a,b].$ Para cada $t_i, \, i= 0,…, n$ definimos $P_i := (\phi(x_i), \psi(x_i)).$ Pensemos en dibujar los puntos $P_i$ y las líneas que los conectan con su sucesor. La suma de la medida de cada una de estas líneas está dada por:

$$l(P)= \sum_{i=1}^{n} \, \sqrt{(\phi(t_i)-\phi(t_{i-1}))^2+(\psi(t_i)-\psi(t_{i-1}))^2}$$

y denota la longitud de la poligonal generada. Como esta longitud depende de la partición, presentamos la longitud de $\mathcal{C}$ como:

$$L=L(\mathcal{C})= \underset{P \in \mathcal{P}}{Sup} \, \, l(P)$$

Entonces $0 \leq L \leq \infty.$

Representación de $l(P).$

Veamos bajo qué condiciones podemos hablar de una longitud finita.

Definición curva rectificable. Sea $\mathcal{C}$ una curva. Diremos que es rectificable si $L(\mathcal{C}) < \infty.$

Proposición. Sea $\mathcal{C}$ una curva. Entonces $\mathcal{C}$ es rectificable si y solo si tanto $\phi$ como $\psi$ son de variación acotada. Más aun.

$$V(\phi), \, V(\psi) \leq L \leq V(\phi) + V(\psi).$$

Demostración:
Supongamos que $\mathcal{C}$ es rectificable. Sea $P=\{t_0 =a, \, t_1,…,t_{n-1}, \, t_n= b\}$ una partición de $[a,b].$

Sabemos que para cualesquiera $A,B \in \mathbb{R},$
\begin{align}
|A| &\leq \sqrt{A^2 + B^2} \, \text{ y} \\
|B| &\leq \sqrt{A^2 + B^2}
\end{align}

Por definición

$$l(P)= \sum_{i=1}^{n} \, \sqrt{(\phi(t_i)-\phi(t_{i-1}))^2+(\psi(t_i)-\psi(t_{i-1}))^2} \leq L.$$

Usando (13) y (14) en cada término de $l(P)$
\begin{align}
\nonumber && \sum_{i=1}^{n} \, |\phi(t_i)-\phi(t_{i-1})|&\leq \sum_{i=1}^{n} \, \sqrt{(\phi(t_i)-\phi(t_{i-1}))^2+(\psi(t_i)-\psi(t_{i-1}))^2} \leq L \\
&\Rightarrow& V(\phi) &\leq L
\end{align}

Análogamente
\begin{align}
V(\psi) &\leq L
\end{align}

Es decir, $V(\phi) $ y $V(\psi)$ son de variación acotada. Recíprocamente, partiendo de este hecho y usando que para cualesquiera $A,B \in \mathbb{R}$ se cumple que
\begin{align}
\sqrt{A^2+B^2} \leq |A|+|B|
\end{align}

concluimos
\begin{align}
l(P) \leq \sum_{i=1}^{n} \, |\phi(t_i)-\phi(t_{i-1})|+\sum_{i=1}^{n} \, |\psi(t_i)-\psi(t_{i-1})| \leq V(\phi) + V(\psi)
\end{align}

Por lo tanto $L \leq V(\phi) + V(\psi)$ lo que significa que $\mathcal{C}$ es rectificable.

Al final de esta sección se te propone, en el ejercicio 4 de la tarea moral, una función que no es de variación acotada. De acuerdo con la proposición que acabamos de probar, la curva dada por $(f(t),f(t)), \, [0 \leq t \leq 1]$ no es rectificable aunque, curiosamente, tiene su traza en apenas un segmento de la línea $y =x$ en $\mathbb{R},$ lo que significa que la longitud de la traza de una curva no necesariamente coincide con la longitud de la curva.

Las curvas en $\mathbb{R}^n$

La idea de la curva en $\mathbb{R}^2$ también puede generalizarse en el caso $\mathbb{R}^n.$ A partir de $P=\{t_0 =a, \, t_1,…,t_{n-1}, \, t_m= b\}$ una partición de $[a,b]$ podemos definir la curva con puntos en $\mathbb{R}^n$ de la forma $(\phi_1(t), \, \phi_2(t),…, \phi_n(t))$ con $t \in [a,b]$ y donde cada $\phi_i$ es una ecuación paramétrica. La longitud de la curva está dada por:

$$l(P)= \sum_{i=1}^{m} \sqrt{ \sum_{j=1}^{n}(\phi_j(t_i) \, – \, \phi_j(t_i))^2 }.$$

También diremos que $L = \underset{P \in \mathcal{P}}{Sup} \, \, l(P)$ y si $L \in \mathbb{R}$ definimos que la curva es rectificable.

Más adelante…

Presentaremos la integral de Riemann-Stieltjes motivándola con conceptos de Probabilidad, viendo su significado a través de la función distribución o la esperanza.

Tarea moral

  1. Construye una función $f: \mathbb{R} \to \mathbb{R}$ no decreciente, acotada que sea continua en los números irracionales y discontinua en los racionales como sigue: si $\{r_n : n \in \mathbb{N}\}$ es el conjunto de números racionales define $f(x) = \underset{n \, : \, r_n \leq x}{\sum} \, 2^{-n}.$ ¿Es de variación acotada?
  2. El ejercicio 3 de la entrada anterior decía lo siguiente:
    Sea $[a,b]$ un intervalo con el $\, 0$ en su interior y $f:[a,b] \to \mathbb{R}$ tal que
    \begin{equation*}
    f(x) = \begin{cases}
    1 & \text{si $x = 0$} \\
    0 & \text{si $x \neq 0$}
    \end{cases}
    \end{equation*}
    Entonces $S_P = 2 \,$ o $\, S_P = 0,$ de modo que $V=2.$
    Sea $\varepsilon>0.$ Para cada $\delta >0$ ¿Puedes dar ejemplo de una partición $P_{\delta} \,$ donde $|S_{P_{\delta}} \, – \, V|> \varepsilon, \,$ aun siendo $|P_{\delta}|$ menor que $\delta ?$
  3. Prueba que si $f$ tiene derivada continua, entonces $S^-=\int_{a}^{b}(f'(x))^- \, dx.$
  4. Sea $f:[0,1] \to \mathbb{R}$ tal que
    \begin{equation*}
    f(x)=\begin{cases}
    x \, sen(\frac{1}{x}), \, \text{ si $0<x \leq 1$} \\
    f(x) = 0, \, \text{ si $x=0$}
    \end{cases}
    \end{equation*}
    Muestra que $f$ es acotada y continua en $[0,1]$ pero $V = \infty.$
  5. Demuestra que también en el caso en que la curva está en $\mathbb{R}^n,$ $\mathbb{C}$ es rectificable si y solo si cada $\phi_j$ es de variación acotada.

Enlaces