Álgebra Moderna I: Teoremas y Proposiciones relacionadas con subgrupos normales y grupo Alternante.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En entradas anteriores definimos el índice de H en G con H un subgrupo del grupo G. Además, dimos la definición de subgrupo normal, y demostramos equivalencias usando clases laterales izquierdas y derechas.

Cuando sólo hay dos clases laterales en G, es muy fácil concluir esa equivalencia, es decir, es fácil verificar que toda clase lateral derecha es una clase lateral izquierda y viceversa. Digamos, si [G:H]=2 y tomamos a,bG. Por un lado tenemos que se crea una partición P1={H,aH} de G y por otro lado tenemos P2={H,Hb}. Como ambas particiones tienen H, entonces necesariamente aH=Hb. Así, concluimos que HG.

Lo anterior lo demostraremos de manera formal en esta entrada.

Representación gráfica de qué sucede cuando [G:H]=2.

Proposición sobre subgrupos

Proposición. Sean G un grupo y H un subgrupo de G.

  1. Si [G:H]=2, entonces g2H para toda gG.
  2. Si [G:H]=2, entonces H es normal en G.

Demostración.
Sea G un grupo, HG con [G:H]=2.

1. P.D. g2H para toda gG.

Sea gG. Como [G:H]=2 hay dos clases laterales izquierdas, H y aH para alguna aGH, y G=H˙aH, donde ˙ en este caso es una unión disjunta.

Como gG, entonces gH ó gaH.

Si gH, al ser H un subgrupo, g2H.
Si gaH, g=ah para alguna hH.
Por lo tanto g2=ahah.

Pero también, g2G=H˙aH. Por un lado, si g2aH, g2=ah~ con h~H.
ah~=g2=ahahh~=hahCancelamos la a que se repitea=h1h~h1Despejando a.

Pero cada uno de h,h~,h1H. Por lo que aH y esto sería una contradicción.
Por lo tanto g2H.

2. Como [G:H]=2 hay dos clases laterales izquierdas H y aH con aGH. Hay también dos clases laterales derechas H y Hb con bGH y además
H˙aH=G=H˙Hb.

Si gaH, entonces gH, así gG=H˙Hb pero gH, y entonces gHb. Por lo que aHHb.

Si gHb, entonces gH, así gG=H˙aH pero gH, y entonces gaH. Por lo que HbaH.

Así, aH=Hb y toda clase lateral izquierda es una clase lateral derecha.
Por lo tanto, podemos concluir que HG.

◼

Ejemplos.

Enunciamos dos ejemplos sencillos:

Ejemplo 1. Como [Sn:An]=2, entonces AnSn.

Ejemplo 2. En D2n=a,b con a la rotación 2πn y b la reflexión con respecto al eje x.
Sea H=a.
[D2n:H]=|D2n||H|=2nn=2.
Por lo tanto HD2n.

Más teoremas de subgrupos

Veamos que el hecho de que un número divida al orden de un grupo, no implica que haya un subgrupo de ese tamaño. Esto se puede ilustrar con un ejemplo.

Teorema. Sea A4 el subgrupo alternante de S4.
A4 no tiene subgrupos de orden 6.

Demostración.
Consideremos el subgrupo A4 de S4.

Sabemos que
|A4|=|S4|2=4!2=242=12.

Así, 6||A4|.

P.D. A4 no tiene subgrupos de orden 6.

Supongamos que existe HA4 con |H|=6.

[A4:H]=A4H=126=2HA4Prop. anterior inciso 2.

Sea β=(abc)A4 un 3ciclo.
Por el inciso 1 de la proposición anterior (β2)2H. Luego, β=β4=(β2)2H. Así, todo 3ciclo está en H.

Pero en S4 hay exactamente ocho 3ciclos. Entonces |H|8 y esto es una contradicción pues supusimos que |H|=6.

Por lo tanto A4 no tiene subgrupos de orden 6.

◼

Ahora veamos qué sucede si multiplicamos dos subgrupos. Esta multiplicación es posible y tiene sentido, pero esto no siempre nos da un subgrupo, aquí damos algunos casos en donde esto sí pasa.

Teorema. Sea G un grupo, H,K subgrupos de G.

  1. Si HG ó KG, entonces HKG.
  2. Si HG y KG, entonces HKG.

Demostración.

Sea G un grupo, H y K subgrupos de G.

1. Supongamos que HG.

P.D. HKG.
Por un resultado de una entrada previa, basta ver que HK=KH.

Si hH, kK, como HG, entonces hk=kh~ con h~H por la conmutatividad parcial. Por lo tanto HKKH.

Además kh=h¯k con h¯H, de nuevo, por la conmutatividad parcial ya que HG. Por lo tanto KHHK.

Así, HK=KH y HKG.

Para KG se demuestra que HK=KH de forma análoga.

2. Supongamos que HG, KG.
Sean hH,kK y aG. Veamos que a(hk)a1HK.

Agregando un neutro,
a(hk)a1=ah(a1a)ka1=(aha1)(aka1).

Pero como HG sabemos que aha1H, y como KG sabemos que aka1K, entonces a(hk)a1=(aha1)(aka1)HK.

Por lo tanto HKG.

◼

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea G un grupo, H un subgrupo de G con 3=[G:H]. ¿Es H normal en G?
  2. Prueba que en S4 hay exactamente ocho 3-ciclos.
  3. Demuestra que A5 no tiene subgrupos de orden 20: Supón por contradicción que H es un subgrupo de de orden 20.
    1. Sea αA5 un 5-ciclo. Prueba que si αH entonces H,αH y α2H son las 3 clases laterales izquierdas de H en A5.
    2. Prueba que α3 no está en ninguna de esas tres clases laterales.
    3. Concluye que αH para todo α 5-ciclo, y así H tendría más de 20 elementos.
  4. Sea G un grupo, H y K subgrupos de G. Prueba o da un contraejemplo:
    1. Si HK es un subgrupo de G, entonces H es normal en G o K es normal en G.
    2. Si HK es un subgrupo normal de G, entonces H es normal en G y K es normal en G.

Más adelante…

Esta entrada es la última antes de comenzar un pequeño tema nuevo: el grupo cociente. Seguiremos viendo cómo se pueden generar particiones de los grupos y definiremos una operación entre los elementos de esta partición.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.