Introducción
En esta entrada veremos varios ejemplos que nos ayudarán a comprender que la reducción gaussiana es una herramienta muy poderosa a la hora de resolver sistemas de ecuaciones lineales.
Problemas resueltos
Problema 1. Implementa el algoritmo de reducción gaussiana en la matriz
Solución. Para este problema usaremos la siguiente notación para indicar las operaciones elementales que estamos efectuando :
para intercambiar el renglón con el renglón . para multiplicar el renglón por el escalar . para sumarle veces el renglón al renglón .
Problema 2. Resuelve el siguiente sistema homogéneo.
Solución. La matriz asociada al sistema anterior es
Para resolver el sistema
De lo anterior se sigue que para resolver el sistema
Pero este sistema es el sistema
De esta forma,
Problema 3. Determina las soluciones fundamentales del sistema homogéneo
Solución. Sea
Para este problema nuevamente nos interesa llevar la matriz asociada al sistema a su forma escalonada reducida.
Aunque es muy importante saber cómo se hacen estos procedimientos, es cierto que también existen herramientas que nos ayudan a hacer estos cálculos de manera más rápida. En esta ocasión usaremos una calculadora de forma reducida escalonada disponible en línea, la cual nos indica que la forma escalonada reducida de la matriz
De esta forma, el sistema del problema es equivalente al sistema
Las variables pivote son
Como se mencionó en una entrada anterior, para encontrar las soluciones fundamentales hay que expresar a las variables pivote en términos de las variables libres. En el sistema anterior podemos notar que
por lo que
siendo los vectores columna de la última igualdad las soluciones fundamentales del sistema
Hasta ahora hemos visto ejemplos de reducción gaussiana de matrices de tamaño muy concreto y entradas muy concretas. Sin embargo, otra habilidad importante es aprender a usar reducción gaussiana en una matriz de tamaño arbitrario, con algunas entradas específicas. Veamos un ejemplo de cómo hacer esto.
Problema 4. Sea
Solución. Este es un sistema lineal homogéneo de ecuaciones. Esto se puede verificar multiplicando cada ecuación por
Esta matriz se ve algo intimidante, pero igual se le puede aplicar reducción gaussiana. Hagamos esto.
Afortunadamente, en cada fila ya tenemos un pivote y están «escalonados». Basta con hacer transvecciones para asegurar que en cada columna de un pivote, el pivote es la única entrada no cero. Haremos los primeros pasos para encontrar un patrón de qué va sucediendo.
En el primer paso, sumamos dos veces la fila
Con esto la segunda columna ya queda lista. El el siguiente paso, multiplicamos por 3 (y 2) la tercer fila y se lo sumamos a la primera fila (y segunda, respectivamente). Obtenemos:
Para el siguiente paso, ahora hay que multiplicar por 4 (3, 2) la cuarta fila y sumárselo a la primera (segunda, tercera, respectivamente), y obtenemos:
El patrón es ahora claro. Conforme arreglamos la columna
Estamos listos para resolver el sistema asociado. Las variables libres son
Esto determina todas las soluciones.
Entradas relacionadas
- Ir a Álgebra Lineal I
- Entrada anterior del curso: Teorema de reducción gaussiana
- Siguiente entrada del curso: Sistemas de ecuaciones lineales
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»
En el problema 3 hay un error con el Sistema , pusieron
cuando era:
de ahí se siguió el error en lo que seguía.
Gracias por la observación, ya lo corregí.