Archivo de la etiqueta: transformaciones normales

Álgebra Lineal II: Transformaciones normales, simétricas y antisimétricas

Por Ayax Calderón

Introducción

A partir de la noción de adjunción que definimos en la entrada anterior, es posible definir ciertos tipos especiales de transformaciones lineales: las transformaciones normales, las simétricas y las antisimétricas.

Primero veremos las transformaciones lineales simétricas y antisimétricas. Estos nombres quizás te recuerden a las matrices simétricas y antisimétricas. Existe una relación importante entre ambos conceptos, aunque no es tan directo enunciarla. Veremos esto con calma.

Después, hablaremos de las transformaciones normales. Este tipo de transformaciones están motivadas por la pregunta de qué sucede cuando una transformación conmuta con su adjunta. Definiremos esto de manera adecuada y demostraremos algunas propiedades que cumplen las transformaciones normales.

En esta entrada $V$ es un espacio euclidiano. En particular, estaremos trabajando únicamente en espacios vectoriales sobre los reales. Más adelante discutiremos los análogos complejos de los resultados que veremos.

Transformaciones simétricas y antisimétricas

Comencemos con las siguientes dos definiciones.

Definición. Sea $V$ un espacio euclideano con producto interior $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Diremos que $T$ es:

  • Simétrica o auto-adjunta si $T^*=T$.
  • Antisimétrica o alternante si $T^*=-T$.

Tal vez estos nombres te parezcan familiares. El siguiente problema nos ayudará a explicar la relación entre las transformaciones simétricas y las matrices que llevan el mismo nombre.

Problema. Sea $V$ un espacio euclideano con producto interior $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal simétrica. Sea $A$ la forma matricial de $T$ en alguna base ortonormal de $T$. Demuestra que $A$ es una matriz simétrica.

Solución. Por una proposición de la entrada anterior, por elegir una base ortonormal se tiene que la matriz correspondiente a $T^\ast$ es $^t A$. Pero como $T$ es una matriz simétrica, se tiene que $T^\ast=T$. De este modo, $^t A= A$, y por lo tanto $A$ es una matriz simétrica.

$\square$

Sucede algo análogo con las matrices antisimétricas, lo cual queda como tarea moral.

Transformaciones normales

Introduzcamos una definición más.

Definición. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal. Diremos que $T$ es normal si $T$ conmuta con su transformación adjunta, es decir, si $$TT^*=T^*T.$$

Similarmente, diremos que una matriz $A\in M_n(\mathbb{R})$ es normal si $$A{}^tA={}^tAA.$$

Ejemplo. La matriz $\begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix}$ es normal. En efecto, puedes verificar que:

$$\begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix}\begin{pmatrix} 1 & 3 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 0 \\ 0 & 10 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ -3 & 1 \end{pmatrix}\begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix}.$$

$\triangle$

Las definiciones de transformaciones y matrices normales están conectadas mediante el siguiente resultado sencillo de demostrar.

Proposición. Si $T:V\to V$ es una transformación es normal con $V$ espacio euclideano y tomamos una base ortonormal $\beta$ de $V$, entonces $\text{Mat}_\beta(T)$ es normal.

Caracterización geométrica de transformaciones normales

Las matrices normales tienen algunas propiedades geométricas que las caracterizan. El siguiente enunciado formaliza esto.

Problema. Sea $T$ una transformación lineal sobre un espacio euclidiano $V$. Demuestra que los siguientes incisos son equivalentes:

  1. $||T(x)||=||T^*(x)||$ para todo $x\in V$.
  2. $\langle T(x),T(y)\rangle=\langle T^*(x),T^*(y) \rangle$.
  3. $T$ es normal.

Solución. $(1)\Rightarrow (2)$. Supongamos $(1)$. Usando la identidad de polarización dos veces y la linealidad de $T$ y $T^*$ obtenemos
\begin{align*}
\langle T(x),T(y) \rangle &=\frac{||T(x+y)||^2-||T(x)||^2-||T(y)||^2}{2}\\
&=\frac{||T(x+y)^*||^2-||T(x)^*||^2-||T(y)^*||^2}{2}\\
&=\langle T(x)^*,T(y)^* \rangle.
\end{align*} lo cual prueba $(2)$.

$(2)\Rightarrow (3)$. Supongamos ahora $(2)$. Entonces para cualesquiera $x,y\in V$ se tiene que
\begin{align*}
\langle (T\circ T^* – T^*\circ T)(x), y \rangle &=\langle T(T^*(x)),y\rangle- \langle T^*(T(x)) ,y\rangle \\
&=\langle T^*(x),T^*(y) \rangle – \langle y,T^*(T(x))\rangle\\
&=\langle T(x),T(y) \rangle – \langle T(y),T(x)\rangle\\
&=0.
\end{align*}
Como la igualdad anterior se da para todo $y$, en particular se cumple, por ejemplo, para los $y$ de una base. Así, $(T\circ T^*-T^*\circ T)(x)=0$ para cualquier $x\in V$, lo que precisamente significa que $T\circ T^*= T^*\circ T$, es decir, que $T$ es normal.

$(3)\Rightarrow (1)$. Finalmente, supongamos $(3)$. Entonces
\begin{align*}
||T(x)||^2&=\langle T(x),T(x)\rangle\\
&=\langle x,T^*(T(x))\rangle \\
&= \langle T(T^*(x)),x \rangle\\
&=\langle T^*(x),T^*(x) \rangle \\
&= ||T^*(x)||^2,
\end{align*}
y por lo tanto $||T(x)||=||T^*(x)||$ para todo $x\in V$, lo que prueba $(1)$.

$\square$

Más adelante…

Por la proposición que enunciamos para transformaciones normales, tenemos que si $T$ es de este tipo, entonces $||T(x)||=||T^*(x)||$. Esto es una propiedad geométrica, pues está relacionando dos normas. Sin embargo, una cosa que nos interesa mucho estudiar es cuándo sucede algo parecido: $||T(x)||=||x||$. Esto lo que nos estaría diciendo es que «$T$ preserva las normas». En la siguiente entrada motivaremos y exploraremos este tipo de transformaciones lineales, a las que llamaremos ortogonales.

Tarea moral

  1. Demuestra que la forma matricial de una transformación antisimétrica, bajo una base ortonormal, es una matriz antisimétrica.
  2. Demuestra que cualquier transformación lineal $T$ en un espacio euclideano puede ser escrita de la forma $T=S+A$, donde $S$ es transformación lineal simétrica y $A$ es transformación lineal antisimétrica. Demuestra que esta manera de escribir a $T$ es única.
  3. Hemos platicado mucho de qué sucede cuando representamos transformaciones lineales en un espacio euclideano $V$ mediante bases ortonormales. Pero, ¿qué pasa si no hacemos esto? Determina si lo siguiente es verdadero o falso cuando elegimos una base $\beta$ de $V$ que no sea ortonormal.
    • Si $A$ es la matriz de una transformación $T$ en la base $\beta$, entonces $^tA$ es la matriz de $T^\ast$ en la base $\beta$.
    • Si $T$ es simétrica, entonces su matriz $A$ en la base $\beta$ es simétrica.
    • Si $T$ es normal, entonces su matriz $A$ en la base $\beta$ es normal.
  4. Sea $T:\mathbb{R}^2\to \mathbb{R}^2$ un rotación de ángulo $\theta\in(0,\pi)$. La representación matricial de $T$ en la base canónica está dada por
    $$\begin{pmatrix}
    \cos\theta &-\sin\theta\\
    \sin\theta &\cos\theta
    \end{pmatrix}.$$
    Verifica que $T$ es normal.
  5. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal normal. Prueba que $T-c\text{id}$ es normal para todo real $c$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»