Archivo de la etiqueta: teorema fundamental de los grupos abelianos finitos

Álgebra Moderna I: Lemas previos al teorema fundamental de los grupos abelianos finitos.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Como dijimos en la primera entrada de esta unidad, uno de los temas a los que queremos llegar es el Teorema fundamental de los grupos abelianos finitos. En esta entrada enumeramos tres lemas para que sea más sencillo identificarlos y que serán útiles en la demostración del Teorema fundamental. En los tres lemas se considerará $G$ un $p$-grupo abeliano y se hablará de elementos de orden máximo (o mínimo) en algún grupo refiriéndose a elementos cuyo orden es mayor (o menor) o igual que el orden de los demás elementos del grupo en cuestión.

El primer lema nos dice que si tomamos un elemento de orden máximo $g$ en $G$ y un $p$-subgrupo, tal que $\left< g\right>$ no es todo $G$ y luego tomamos un elemento de orden mínimo $h$ en $G\setminus\left< g\right>$, entonces el orden de $h$ es $p$.

El segundo lema nos dice que si tenemos un elemento de orden máximo $g$ en $G$, podemos ver a $G$ como el producto directo interno del generado de $g$ y un $H$ subgrupo de $G$.

El tercer lema nos dice que cualquier $p$-subgrupo abeliano es producto directo interno de grupos cíclicos.

En esta entrada enunciamos y probamos los primeros dos lemas, el tercero está en la siguiente entrada.

El orden de un elemento mínimo

Lema 1. Sean $p\in\z^+$ un primo y $G$ un $p$-grupo abeliano. Sea $g\in G$ un elemento de orden máximo. Si $\left<g\right> \lneq G$ ($\left<g\right>$ es subgrupo propio de $G$) y $h$ es un elemento de orden mínimo en $G\setminus \left<g\right>$, entonces $o(h)=p$ y $\left< g\right> \cap \left< h\right> = \{e\}$.

Demostración.
Sean $p\in \z^+$ un primo y $G$ un $p$-grupo abeliano.

Por la definición de $p$-grupo $|G| = p^n$ para algún $n\in \n$.

Sea $g\in G$ de orden máximo. Como $|G|=p^n$, sabemos que $o(g)$ divide a $ |G| = p^n$ y así $o(g) = p^m$ con $m\leq n$.

Observemos que
\begin{align}\label{eq:uno}
a^{p^m} = e \text{ para toda } a\in G,
\end{align}
ya que para toda $a\in G$, $o(a)=p^l$ con $l\leq m$ (debido a que $o(g)=p^m$ es máximo).

Supongamos que $\left< g \right> \lneq G$. Consideremos un elemento $h$ de orden mínimo en $G\setminus \left< g \right>$.

Veamos primero que $o(h)=p$.

Sabemos que $o(h) = p^t$ para alguna $t\leq n$.

Sabemos que $o(h^p) = p^{t-1} < p^t = o(h)$. Así, por la elección de $h$, $h^p\in\left< g \right>$ y en consecuencia tenemos que
\begin{align}\label{eq:dos}
h^{p} = g^s \text{ para algún } s\in \mathbb{N}.
\end{align}

Entonces $(g^s)^{p^{m-1}} = (h^p)^{p^{m-1}} = h^{p^m} = e$ por (\ref{eq:uno}). Así,
\begin{align}\label{eq:tres}
o(g^s) < p^m \text{ y } g^s \text{ no genera a } \left< g \right>.
\end{align}

Sabemos que $\displaystyle o(g^s) = \frac{o(g)}{(s,o(g))}$. Si $p$ no divide a $s$, como $o(g)$ es una potencia de $p$ tendríamos que $(s, o(g)) = 1$ y así $o(g^s) = o(g) = p^m$ contradiciendo (\ref{eq:tres}). Concluimos entonces que $p|s$ es decir $s = pq$ para algún $q\in\z$.

Consideremos $a = g^{-q}h$. Tenemos que
\begin{align*}\label{eq:cuatro}
a^p = g^{-pq} h^p = g^{-s} h^p &= g^{-s}g^s &\text{ por (\ref{eq:dos})} \\
& = e.
\end{align*}

Además, si $a\in \left< g \right>$ tendríamos que $h = ag^q \in\left< g\right>$ lo cual contradice la elección de $h$.

Hemos encontrado entonces un elemento $a\not\in \left< g \right>$ con $a^p = e$. Notamos que $a\neq e$ ya que $a\not\in \left< g \right>$, entonces $a$ debe ser un elemento de orden $p$. Pero $h$ es un elemento de orden mínimo en $G\setminus \left< g \right>$ y $a\in G\setminus \left< g \right>$ con $o(a) = p$. Así, $h$ debe ser también de orden $p$.

Veamos ahora que $\left< g \right> \cap \left< h\right> = \{e\}$.

Sabemos que $\left<g\right>\cap\left<h\right>$ es un subgrupo de $\left<h\right>$ y $\left<h\right>$ es de orden $p$, entonces $\left<g\right>\cap \left<h\right>$ es de orden $1$ o $p$. Si $|\left<g\right>\cap \left<h\right>|= p$ tendríamos que $\left<g\right>\cap \left<h\right>\leq \left<h\right>$ con $|\left<g\right>\cap \left<h\right>|= p=|\left<h\right>|$, entonces $\left<g\right>\cap \left<h\right>=\left<h\right>$ lo que implica que $\left<h\right>\subseteq \left<g\right>$. En consecuencia tendríamos que $h \in \left<g\right>$, lo que contradice la elección de $h$.

Concluimos que $\left<g\right>\cap \left<h\right> = \{e\}$.

$\blacksquare$

$G$ como producto de $\left< g\right>$ y un subgrupo cualquiera

Lema 2. Sean $p\in \z^+$ un primo y $G$ un $p$-grupo abeliano. Supongamos que $g\in G$ es un elemento de orden máximo. Entonces $G$ es el producto directo interno de $\left< g\right>$ y un subgrupo $H$ de $G$.

Demostración.
Sean $p\in\z^+$ primo.

Realizaremos la demostración por el segundo principio de inducción.

H.I. Supongamos que para todo grupo abeliano $\tilde{G}$ con $|\tilde{G}| = p^k$ y $0\leq k < n$ se tiene que si $\tilde{g}\in \tilde{G}$ es de orden máximo, entonces $\tilde{G}$ es el producto directo interno de $\left< \tilde{g}\right>$ y un subgrupo $\tilde{H}$ de $\tilde{G}$.

Sea $G$ un $p$-grupo abeliano con $|G| = p^n$ para algún $n\in\n$.

Sea $g\in G$ de orden máximo. Como $|G| = p^n$, sabemos que $o(g)$ divide a $|G| = p^n$ y así $o(g) = p^m$ con $m\leq n$.

Si $G = \left<g\right>$ el resultado se cumple considerando $H=\{e\}$.

Si $\left< g \right> \lneq G$ consideremos un elemento $h$ de orden mínimo en $G\setminus \left<g\right>.$

Por el lema 1, sabemos que $o(h) = p$ y que $\left<g\right> \cap \left<h\right> = \{e\}$. Sea $H = \left< h \right>.$

Observemos que $gH$ es un elemento de orden máximo en $G/H$ ya que por (\ref{eq:uno}), $(aH)^{p^m} = a^{p^m}H = H$ para todo $a\in G$. Además $(gH)^{o(g)} =g^{o(g)}H = H $ por lo que $o(gH) \leq o(g) = p^m$, y si $o(gH)< p^m$ tendríamos que
\begin{align*}
H = (gH)^{p^{m-1}} = g^{p^{m-1}} H
\end{align*}
y así $g^{p^{m-1}} \in \left< g \right> \cap H = \{e\}$, es decir $g^{p^{m-1}}=e$ contradiciendo que $o(g) = p^m$.

Concluimos así que $gH$ es un elemento de orden máximo en $G/H$, con $G/H$ un $p$-grupo abeliano de orden $|G/H|=|G|/|H|=\frac{p^n}{p}=p^{n-1}$ que es menor que el orden de $G$.

Por H.I. sabemos que $G/H$ es el producto directo interno de $\left<gH \right>$ y un subgrupo $\tilde{H}$ de $G/H$.

Por el teorema de la correspondencia $\tilde{H} = K/H$ para algún $H\leq K \leq G$.

Veamos que $G$ es el producto directo interno de $\left< g\right>$ y $K$.

Veamos primero que $\left<g\right> \cap K = \{e\}$.

Si $x\in \left<g\right> \cap K$, entonces $xH\in \left<gH\right>\cap K/H = \left<gH\right> \cap \tilde{H}$ y como $G/H$ es el producto directo de $\left<gH\right>$ y $\tilde{H}$, entonces $\left<gH\right>\cap \tilde{H} = \{H\}$. Así, $xH \in \{H\}$, entonces $xH=H$ lo que implica que $x\in H$.

Tenemos que $x\in \left<g\right>\cap H = \{e\}$ probando que $x = e$. Así, $\left<g\right> \cap K = \{e\}$.

Veamos ahora que $G=\left<g\right> K $.

Sea $y\in G$, sabemos que $yH\in G/H = \left<gH\right>\tilde{H} = \left<gH\right>K/H$. Esto implica que
\begin{align*}
yH &= (gH)^tkH \text{ para algunos } t\in\z, k\in K\\
&= g^tkH.
\end{align*}

Entonces $(g^tk)^{-1}y = \hat{h}$ con $\hat{h}\in H$. Así $y = g^t k \hat{h}$. Como $H\leq K$ tenemos que $k\hat{h} \in K$, entonces $y\in\left<g\right>K$.

Concluimos que $\left<g\right> \cap K = \{e\}$ y $\left<g\right> K = G$.

Así, $G$ es el producto directo interno de $\left<g\right>$ y $K$.

$\blacksquare$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Considera los siguientes grupos y realiza para cada uno los ejercicios descritos a continuación:

  • $S_4.$
  • $\z_{11}.$
  • $A_5.$
  • $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}.$
  1. Determina si los grupos anteriores son $p$-grupos abelianos. De no serlo, considera un $p$-subgrupo abeliano de ellos.
  2. Busca (en el grupo o en el $p$-subgrupo abeliano) un elemento $g$ de orden máximo tal que $\left< g\right>$ sea un subgrupo propio y encuentra $h$ elemento de orden mínimo en el complemento de $\left< g \right>$ tal que su orden sea $p$.
  3. Describe al grupo o al $p$-subgrupo abeliano como el producto directo interno $\left<g\right>$ y un subgrupo $H$.

Más adelante…

Aunque estos lemas pueden parecer muy técnicos, su función es clara y se verá en la siguiente entrada. Como estos lemas ya están demostrados, la prueba del Teorema fundamental de los grupos abelianos finitos es bastante directa. En la siguiente entrada enunciaremos y demostraremos el tercer lema que se requiere y por fin podremos enfrentarnos al Teorema fundamental de los grupos abelianos finitos.

Entradas relacionadas