Archivo de la etiqueta: inversas de matrices

Álgebra Lineal I: Problemas de sistemas de ecuaciones y forma escalonada reducida

Por Ayax Calderón

Introducción

En esta entrada nos encargaremos de resolver algunos problemas de sistemas de ecuaciones lineales y de dar algunos ejemplos más de matrices en forma escalonada reducida.

Problemas resueltos

Problema 1. ¿Para cuáles números reales $a$ se tiene que el siguiente sistema es consistente?. Resuelve el sistema para estos casos.

\begin{align*}
\begin{cases}
x + 2y &=1\\
4x+8y &=a.
\end{cases}
\end{align*}

Solución. Tomando la primera ecuación y multiplicandola por $4$ vemos que

\begin{align*}
4x+8y=4
\end{align*}

De lo anterior se sigue que el único número real $a$ para el cuál el sistema es consistente es $a=4$, pues en otro caso tendríamos ecuaciones lineales que se contradicen entre sí.

Cuando $a=4$, tenemos entonces una única ecuación $x+2y=1$. Para encontrar todas las soluciones a esta ecuación lineal, podemos fijar el valor de $y$ arbitrariamente como un número real $r$. Una vez fijado $y$, obtenemos que $x=1-2y=1-2r$. Así, el conjunto de soluciones es $$\{(1-2r,r): r \in \mathbb{R}\}.$$

$\triangle$

Problema 2. Encuentra todos $a,b\in\mathbb{R}$ para los cuales los sistemas

\begin{align*}
\begin{cases}
2x + 3y &=-2\\
x – 2y &=6
\end{cases}
\end{align*}
y
\begin{align*}
\begin{cases}
x + 2ay &=3\\
-x – y &=b
\end{cases}
\end{align*}
son equivalentes.

Solución. Para resolver el primer sistema tomamos la segunda ecuación y despejamos $x$:
\begin{align*}
x=6+2y.
\end{align*}
Sustituyendo lo anterior en la primera ecuación se tiene
\begin{align*}
2(6+2y)+3y&=-2\\
12+7y&=-2\\
7y&=-14\\
y&=-2.
\end{align*}
Luego sustituimos el valor de $y$ para encontrar $x$
\begin{align*}
x&=6+2y\\
&=6+2(-2)\\
&=2.
\end{align*}
Ahora, para encontrar los valores de $a$ y $b$, sustituimos los valores de $x$ y $y$ que encontramos en el primer sistema y de esta forma garantizamos que ambos sistemas tendrán el mismo conjunto de soluciones, es decir, son equivalentes.
\begin{align*}
\begin{cases}
x + 2ay &=3\\
-x – y &=b
\end{cases}
\end{align*}
\begin{align*}
\begin{cases}
2 + 2a(-2) &=3\\
-2 – (-2) &=b
\end{cases}
\end{align*}
De la segunda ecuación es inmediato que $b=0$.
Por otro lado, despejando $a$ de la primera ecuación se tiene
\begin{align*}
2-4a&=3\\
-4a&=1\\
a&=-\frac{1}{4}
\end{align*}
Concluimos que los sistemas son equivalentes cuando
\begin{align*}
a=-\frac{1}{4}, \hspace{4mm} b=0.
\end{align*}

$\triangle$

Más ejemplos de forma escalonada reducida

Para finalizar con esta entrada veremos más ejemplos de matrices que están en forma escalonada reducida y de matrices que no lo están.

Ejemplo 1. La matriz
\begin{align*}
\begin{pmatrix}
2 & -1 & 3 & 1\\
1 & 0 & 2 & 2\\
3 & 1 & 7 & 0\\
1 & 2 & 4 & -1\end{pmatrix}
\end{align*}
no está en forma escalonada reducida, pues todas las entradas de la primera columna son distintas de cero.
En cambio, la matriz
\begin{align*}
\begin{pmatrix}
1 & 0 & 2 & 0\\
0 & 1 & 1 & 0\\
0 & 0 & 0 & 1\\
0 & 0 & 0 & 0\end{pmatrix}
\end{align*}
sí está en forma escalonada reducida. Queda como tarea moral verificar que esto es cierto.

$\triangle$

Ejemplo 2. La matriz
\begin{align*}
\begin{pmatrix}
0 & 0 & 0 & 0 & 0\\
0 & 1 & -5 & 2 & 0\\
0 & 0 & 0 & 0 & 3\\
0 & 0 & 0 & 0 & 0\end{pmatrix}
\end{align*}
no está en forma escalonada reducida, pues hay filas cero por encima de filas no cero. Otro problema que tiene es que el pivote de la tercer fila no es igual a $1$.


En cambio
\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & -1\\
0 & 1 & 0 & 0 & 2\\
0 & 0 & 1 & 0 & 1\\
0 & 0 & 0 & 1 & 1\end{pmatrix}
\end{align*}
sí está en forma escalonada reducida.

$\triangle$

Ejemplo 3. La matriz $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \end{pmatrix}$ no está en forma escalonada reducida pues el pivote de la segunda fila está más a la izquierda que el de la primera. Sin embargo, si intercambiamos las filas, la matriz $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix}$ sí está en forma escalonada reducida.

$\triangle$

Más adelante veremos un método para llevar una matriz a su forma escalonada reducida y veremos que esto es muy útil para resolver sistemas de ecuaciones lineales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de sistemas de ecuaciones e inversas de matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada resolveremos problemas relacionados con el uso del método de reducción gaussiana para resolver sistemas de ecuaciones y encontrar inversas de matrices.

Problemas resueltos

Problema 1. Sea $A$ una matriz de tamaño $m\times n$ y sean $b$ y $c$ dos vectores en $\mathbb{R}^{m}$ tales que $AX=b$ tiene una única solución y el sistema $AX=c$ no tiene solución. Explica por qué tiene que ser cierto que $m>n$.

Solución. Dado que el sistema $AX=b$ es consistente, usando el teorema de existencia y unicidad podemos concluir que

  1. $\left(A’\vert b’\right)$ no tiene pivotes en la última columna,
  2. $A’$ tiene pivotes en todas sus columnas.

Sin embargo, sabemos que el sistema $AX=c$ no tiene solución. Otra vez por el teorema de existencia y unicidad, esto nos implica que $\left(A’\vert c’\right)$ tiene un pivote en la última columna. Sin embargo, ya sabíamos que $A’$ tiene pivotes en todas sus columnas, pero aún así hay espacio en $\left(A’\vert c’\right)$ para un pivote más, es decir, nos sobra espacio hasta abajo por lo que necesariamente tenemos al menos un renglón más que el número de columnas. Es decir $m\geq n+1$, y por lo tanto $m>n$.

$\triangle$

Problema 2. Determina si existen reales $w$, $x$, $y$ y $z$ tales que las matrices $$
\begin{pmatrix} x & 2\\ y & 1 \end{pmatrix}$$ y $$\begin{pmatrix} 5 & -2 \\ z & w \end{pmatrix}$$ sean inversas la una de la otra.

Solución. En una entrada anterior mostramos que para que dos matrices cuadradas $A$ y $B$ del mismo tamaño sean inversas, basta con mostrar que $AB=I$. De esta forma, haciendo el producto tenemos que el enunciado es equivalente a

\begin{align*}
\begin{pmatrix} 5x+2z & -2x+2w \\ 5y+z & -2y+w \end{pmatrix}
=\begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}.
\end{align*}

Es decir, tenemos un sistema lineal

\begin{align*}
\begin{cases}
5x+2z&=1\\
-2x+2w&=0\\
5y+z&=0\\
-2y+w&=1.
\end{cases}
\end{align*}

Este es un sistema lineal de la forma $AX=b$, donde $$A=\begin{pmatrix} 5 & 0 & 2 & 0 \\ -2 & 0 & 0 & 2 \\ 0 & 5 & 1 & 0 \\ 0 & -2 & 0 & 1 \end{pmatrix}$$ y $$b=\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Para determinar si tiene solución, aplicamos reducción gaussiana a la matriz $(A|b)$. En los siguientes pasos estamos aplicando una o más operaciones elementales.

\begin{align*}
&\begin{pmatrix}
5 & 0 & 2 & 0 & 1 \\ -2 & 0 & 0 & 2 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\
\to &\begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ -2 & 0 & 0 & 2 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix} \\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & 0 & \frac{2}{5} & 1 & 1 \end{pmatrix} \\
\to & \begin{pmatrix}
1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & 1 & \frac{5}{2} & \frac{1}{2} \\ 0 & 0 & \frac{2}{5} & 1 & 1 \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & -\frac{1}{10} \\ 0 & 0 & 1 & \frac{5}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{4}{5} \end{pmatrix}\\
\to & \begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & \frac{5}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}
\end{align*}

Ya encontramos la forma escalonada reducida $(A’|b’)$ de $(A|b)$. La última columna de $(A’|b’)$ tiene un pivote (el de la última fila). De esta forma, el sistema de ecuaciones no tiene solución.

$\triangle$

En la práctica, se pueden usar herramientas tecnológicas para para resolver algunos problemas numéricos concretos. Sin embargo, es importante tener un sólido conocimiento teórico para saber cómo aprovecharlas.

Problema 3. Determina si las siguientes matrices son invertibles. En caso de serlo, encuentra la inversa. \begin{align*}
A&=\begin{pmatrix} -1 & 1 & 3 \\ 0 & 1 & 5 \\ 7 & 3 & 2 \end{pmatrix}\\
B&=\begin{pmatrix}1 & 5 & -1 & 2 \\ -1 & 3 & 1 & 2 \\ 3 & 4 & 1 & -2 \\ -15 & 9 & -1 & 22 \end{pmatrix}.
\end{align*}

Solución. Usando la calculadora de forma escalonada reducida de eMathHelp, obtenemos que la forma escalonada reducida de $A$ y $B$ son, respectivamente

\begin{align*}
A_{red}&=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\\
B_{red}&=\begin{pmatrix}1 & 0 & 0 & -\frac{9}{8}\\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{5}{8} \\ 0 & 0 & 0 & 0 \end{pmatrix}.
\end{align*}

Por uno de nuestros teoremas de caracterización, para que una matriz cuadrada sea invertible debe de suceder que su forma escalonada reducida sea la identidad. Esto nos dice que $A$ sí es invertible, pero $B$ no.

Para encontrar la inversa de $A$, consideramos la matriz extendida $(A|I_3)$, y a ella le aplicamos reducción gaussiana. Usamos de nuevo la calculadora de eMathHelp para obtener

\begin{align*}
(A_{red}|X)=
\begin{pmatrix}
1 & 0 & 0 & -\frac{13}{27} & \frac{7}{27} & \frac{2}{27} \\
0 & 1 & 0 & \frac{35}{27} & – \frac{23}{27} & \frac{5}{27} \\
0 & 0 & 1 & -\frac{7}{27} & \frac{10}{27} & – \frac{1}{27}
\end{pmatrix}.
\end{align*}

De aquí obtenemos que la inversa de $A$ es \begin{align*}A^{-1}=\begin{pmatrix} -\frac{13}{27} & \frac{7}{27} & \frac{2}{27} \\ \frac{35}{27} & – \frac{23}{27} & \frac{5}{27} \\ -\frac{7}{27} & \frac{10}{27} & – \frac{1}{27}\end{pmatrix}.\end{align*}

$\triangle$

Finalmente, hay algunos problemas en los que no es posible aplicar herramientas digitales, o por lo menos no es directo cómo hacerlo. Esto sucede, por ejemplo, cuando en un problema las dimensiones o entradas de una matriz son variables.

Problema 4. Sea $a$ un número real. Determina la inversa de la siguiente matriz en $M_{n}(\mathbb{R})$: $$A=\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ a & 1 & 0 & \cdots & 0 & 0 \\ a^2 & a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ a^{n-2} & a^{n-3} & a^{n-4} & \cdots & 1 & 0 \\
a^{n-1} & a^{n-2} & a^{n-3} & \cdots & a & 1 \end{pmatrix}.$$

Solución. Recordemos que para obtener la inversa de una matriz cuadrada $A$, si es que existe, se puede aplicar a la matriz identidad las mismas operaciones elementales que se le apliquen a $A$ para llevarla a forma escalonada reducida.

¿Qué operaciones necesitamos hacer para llevar a $A$ a su forma escalonada reducida? La esquina $(1,1)$ ya es un pivote, y con transvecciones de factores $-a, -a^2,\ldots, -a^{n-1}$ podemos hacer $0$ al resto de las entradas en la columna $1$.

Tras esto, la entrada $(2,2)$ es ahora pivote de la segunda fila, y con transvecciones de factores $-a,-a^2,\ldots, -a^{n-2}$ podemos hacer $0$ al resto de las entradas en la columna $2$. Siguiendo este procedimiento, llevamos a $A$ a su forma escalonada reducida. Esto puede demostrar formalmente usando inducción.

Ahora veamos qué sucede si aplicamos estas mismas operaciones a la matriz identidad. Si aplicamos las mismas operaciones que arreglan la primer columna de $A$, pero a la matriz identidad, obtenemos

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ -a^2 & 0 & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ -a^{n-2} & 0 & 0 & \cdots & 1 & 0 \\
-a^{n-1} & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

Si ahora aplicamos las operaciones que arreglan la segunda columna de $A$, obtenemos

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ 0 & -a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & -a^{n-3} & 0 & \cdots & 1 & 0 \\
0 & -a^{n-2} & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

Continuando de esta manera, en cada columna sólo nos quedará un $1$ y un $-a$. Esto puede probarse formalmente de manera inductiva. Al final, obtenemos la matriz

$$B=\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ 0 & -a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & -a & 1 \end{pmatrix},$$

en donde la diagonal principal consiste de puros unos, y la diagonal debajo de ella consiste de puras entradas $-a$.

Hay dos formas de proceder para dar una demostración formal que esta matriz encontrada es la inversa de $A$. La primera es completar las demostraciones inductivas que mencionamos. La segunda es tomar lo que hicimos arriba como una exploración del problema y ahora realizar de manera explícita el producto $AB$ o el producto $BA$.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»