Archivo de la etiqueta: continuidad uniforme

Variable Compleja I: Continuidad en un espacio métrico

Por Pedro Rivera Herrera

Introducción

La idea de continuidad es uno de los conceptos estructurales de la Topología y el Análisis Matemático. Al hablar de esta idea generalmente asociamos el concepto con la ininterrupción de la gráfica de una función, lo cual es claro cuando trabajamos con funciones reales definidas en algún intervalo, intuitivamente pensamos en la ininterrupción de una función considerando que para cualquier punto $z$ en el dominio de una función $f$, se tendrá que $f(x)$ no estará muy separada de $f(z)$ siempre que $x$ se mantenga lo suficientemente cerca de $z$ en el dominio. Pero, ¿qué pasa con las funciones que cuya gráfica no podemos visualizar? Hablar de continuidad para los espacios métricos resulta de gran importancia, ya que mediante la definición de métrica resulta posible generalizar el concepto de continuidad para funciones de $\mathbb{R}^n$ en $\mathbb{R}^m$, con lo cual podemos responder nuestra pregunta y obtener así una idea clara y general sobre lo que es la continuidad.

En esta entrada abordaremos el concepto de continuidad entre espacios métricos desde una perspectiva general, además de establecer la estrecha relación que existe entre los conceptos de sucesión, límite y continuidad, para obtener así una serie de resultados que nos permitirán caracterizar al espacio métrico $(\mathbb{C},d)$, con $d$ la métrica euclidiana, y facilitar nuestro estudio de la continuidad entre funciones complejas que estudiaremos a detalle en la siguiente unidad.

Continuidad en espacios métricos

Definición 9.1. (Continuidad.)
Sean $(X,d_X)$ y $(Y,d_Y)$ dos espacios métricos y sea $A\subset X$. Una función $f:A \to Y$ se dice que es continua en $a\in A$ si para todo $\varepsilon>0$ existe algún $\delta>0$ (que depende de $a$ y $\varepsilon$) tal que:
\begin{equation*}
d_Y\left( f(x), f(a) \right) < \varepsilon \quad \text{si} \quad d_X(x,a)<\delta. \end{equation*} Decimos que $f$ es continua en $A$ si es continua en todo punto de $A$.

Lema 9.1.
Sea $f:X \to Y$ una función arbitraria y sean $A\subset X$ y $B\subset Y$. Entonces:
\begin{equation*}
f(A) \subset B \quad \text{si y solo si} \quad A \subset f^{-1}(B).
\end{equation*}

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Proposición 9.1
Sean $(X,d_X)$ y $(Y, d_Y)$ espacios métricos y sea $f: (X,d_X) \to (Y, d_Y)$ una función. Entonces $f$ es continua en un punto $x_0\in X$ si y solo si para todo $\varepsilon>0$ existe $\delta>0$ tal que:
\begin{equation*}
B(x_0,\delta)\subset f^{-1}\left[B(f(x_0),\varepsilon)\right],
\end{equation*} donde $B(x,r)$ denota una $r$-vecindad de $x$.

Demostración. Una función $f:X \to Y$ es continua en $x_0\in X$ si y solo si para todo $\varepsilon>0$ existe $\delta>0$ tal que:
\begin{equation*}
d_Y\left( f(x_0), f(x) \right) < \varepsilon,
\end{equation*} para toda $x\in X$ tal que $d_X(x_0,x)<\delta$, es decir:
\begin{equation*}
\text{si} \,\, x\in B\left(x_0,\delta\right) \,\, \text{entonces} \,\, f(x)\in B\left(f(x_0),\varepsilon\right),
\end{equation*} o equivalentemente: (¿por qué?)
\begin{equation*}
f\left[B\left(x_0,\delta\right)\right] \subset B\left(f(x_0),\varepsilon\right). \end{equation*} Pero por el lema 9.1 esta última condición es equivalente a:
\begin{equation*}
B\left(x_0,\delta\right) \subset f^{-1}\left[B\left(f(x_0),\varepsilon\right)\right].
\end{equation*}

$\blacksquare$

Proposición 9.2.
Sean $(X,d_X)$ y $(Y, d_Y)$ espacios métricos y sea $f: (X,d_X) \to (Y, d_Y)$ una función. Las siguientes afirmaciones son equivalentes:

  1. $f$ es continua en $X$.
  2. Si $A$ es abierto en $Y$, entonces $f^{-1}(A)$ es abierto en $X$.
  3. Si $B$ es cerrado en $Y$, entonces $f^{-1}(B)$ es cerrado en $X$.

Demostración.
1. $\Rightarrow$ 2.
Sea $f$ una función continua y sea $A\subset Y$ un conjunto abierto. Como queremos probar que $f^{-1}(A)$ es abierto en $X$ y dado que $X$ y $\emptyset$ son abiertos en $X$ supongamos que $f^{-1}(A)\neq X$ y $f^{-1}(A)\neq \emptyset$. Sea $x_0 \in f^{-1}(A)$, entonces tenemos que $f(x_0)\in A$ (¿por qué?). Dado que $A$ es abierto en $Y$, entonces existe $\varepsilon>0$ tal que $B(f(x_0),\varepsilon)\subset A$. Como $f$ es continua tenemos por la proposición 9.1 que existe $\delta>0$ tal que: \begin{equation*}
B(x_0,\delta)\subset f^{-1}\left[B(f(x_0),\varepsilon)\right]\subset f^{-1}(A). \end{equation*} De donde se sigue que todo punto de $f^{-1}(A)$ es un punto interior, por lo tanto $f^{-1}(A)$ es abierto en $X$.

2. $\Rightarrow$ 1.
Supongamos que $f^{-1}(A)$ es abierto en $X$ para todo conjunto $A$ abierto en $Y$. Sea $x_0\in X$. Por la proposición 6.2 sabemos que para todo $\varepsilon>0$ se cumple que la bola abierta $B(f(x_0),\varepsilon)$ es un conjunto abierto en $Y$, por lo que $f^{-1}\left[B(f(x_0),\varepsilon)\right]$, es abierto en $X$. Notemos que:
\begin{equation*}
x_0\in f^{-1}\left[B(f(x_0),\varepsilon)\right],
\end{equation*} por lo que existe $\delta>0$ tal que:
\begin{equation*}
B(x_0,\delta)\subset f^{-1}\left[B(f(x_0),\varepsilon)\right].
\end{equation*} Por lo que por la proposición 9.1 se sigue que $f$ es continua en $x_0$.

2. $\Leftrightarrow$ 3.
Se deja como ejercicio al lector.

$\blacksquare$

Proposición 9.3. (Composición de funciones.)
Supongamos que $(X,d_X)$, $(Y,d_Y)$ y $(Z,d_Z)$ son espacios métricos y sean $g:X \to Y$ y $f:Y \to Z$ dos funciones. Si $f$ y $g$ son continuas, entonces la composición $f \circ g$ es continua.

Demostración. Dadas las hipótesis, supongamos que $A$ es un subconjunto abierto de $Z$. Entonces por la proposición 9.2 se sigue que $f^{-1}(A)$ es abierto en $Y$, por lo que $g^{-1}(f^{-1}(A))$ es abierto en $X$. Dado que $g^{-1}(f^{-1}(A)) = (f\circ g)^{-1}(A)$, entonces por la proposición 9.2 tenemos que la función $f \circ g$ es continua.

$\blacksquare$

Proposición 9.4.
Sean $(X,d_X)$ y $(Y, d_Y)$ espacios métricos, $f:A\subset X \to Y$ una función y sea $a \in A$. Entonces se cumple que:

  1. Si $a\in A\setminus A’$, es decir si $a$ es un punto aislado, entonces $f$ es continua en $a$.
  2. Si $a\in A\cap A’$, es decir si $a$ es un punto de acumulación, entonces $f$ es continua en $a$ si y solo si \begin{equation*}
    \lim_{x \to a} f(x) = f(a).
    \end{equation*}

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Proposición 9.5.
Sean $(X,d_X)$ y $(Y, d_Y)$ espacios métricos y sea $A\subset X$. Una función $f:A \to Y$ es continua en $a \in A$ si y solo si para cualquier sucesión $\{x_n\}_{n\geq1}\subset A$ convergente a $a$ la sucesión $\{f(x_n)\}_{n\geq1}$ converge a $f(a)$.

Demostración.
$\Rightarrow)$
Supongamos que $f:A\to Y$ es una función continua en $a\in A$ y sea $\{x_n\}_{n\geq1}$ una sucesión de $A$ tal que $\lim\limits_{n\to\infty} x_n = a$. Veamos que la sucesión $\{f(x_n)\}_{n\geq1}$ converge a $f(a)$.

Sea $\varepsilon>0$, por la continuidad de $f$ en $a$ existe $\delta>0$ tal que para todo $x\in A$ con $d_X(x,a)<\delta$ se cumple que $d_Y(f(x),f(a))<\varepsilon$. Dado que $\lim\limits_{n\to\infty} x_n = a$, entonces existe algún $N\in\mathbb{N}^+$ tal que: \begin{equation*} d_X(x_n,a)<\delta, \quad \forall n\geq N, \end{equation*} por lo que si $n\geq N$ entonces: \begin{equation*} d_Y(f(x_n),f(a))<\varepsilon, \end{equation*} es decir $\lim\limits_{n\to\infty} f(x_n) = f(a)$.

$(\Leftarrow$
Supongamos que para toda sucesión $\{x_n\}_{n\geq1}\subset A$ convergente a $a$ se cumple que $\lim\limits_{n\to\infty} f(x_n) = f(a)$. Veamos que $f$ es continua en $a$.

Por reducción al absurdo supongamos que $f$ no es continua en $a$. Entonces existe algún $\varepsilon>0$ tal que para todo $\delta>0$ existe $x_\delta \in A$ tal que $d_X(x_\delta,a)<\delta$ y $d_Y(f(x_\delta),f(a))\geq \varepsilon$. Notemos que para cada $n\in\mathbb{N}^+$ el número $\frac{1}{n}$ es positivo, por lo que debe existir $x_n\in A$ tal que $d_X(x_n,a)<\frac{1}{n}$ y $d_Y(f(x_n),f(a))\geq \varepsilon$, es decir que la sucesión $\{x_n\}_{n\geq1}$ converge a $a$, pero la sucesión $\{f(x_n)\}_{n\geq1}$ no converge a $f(a)$, lo cual contradice nuestra hipótesis, por lo que $f$ debe ser continua en $a$.

$\blacksquare$

Ejemplo 9.1.
Sea $(X,d_X)$ un espacio métrico y consideremos al espacio métrico $(\mathbb{R}^n, d)$, donde $d$ es la distancia euclidiana, es decir:
\begin{equation*}
d(x,y) = \left(\sum_{k=1}^n (x_k – y_k)^2\right)^{1/2},
\end{equation*} para todo $x=(x_1, \ldots, x_n)$, $y=(y_1, \ldots, y_n)$ en $\mathbb{R}^n$. Si $f_k : X \to \mathbb{R}$, con $k\in\{1,2, \ldots, n\}$, son funciones continuas, entonces la función $f : X \to \mathbb{R}^n$ dada por $f(x) = (f_1(x), f_2(x), \ldots, f_n(x))$ es continua.

Solución. Sea $\varepsilon>0$, entonces existen $\delta_k > 0$, tales que si $d_X(x,a) < \delta_k$ entonces:
\begin{equation*}
d(f_k(x),f_k(a)) = |\,f_k(x) – f_k(a)\,| < \frac{\varepsilon}{\sqrt{n}},
\end{equation*} para toda $k\in\{1,2, \ldots, n\}$. Por lo que tomando $\delta = \text{mín}\{\delta_1, \ldots, \delta_n\}$, tenemos que si $d_X(x,a) < \delta$, entonces: \begin{equation*}
d(f(x),f(a)) = \left(\sum_{k=1}^n (f_k(x) – f_k(a))^2\right)^{1/2} < \varepsilon, \end{equation*} de donde se sigue el resultado.

Por otra parte, considerando que toda función $f:X \to \mathbb{R}^n$ se puede expresar en términos de sus funciones componentes, es decir $f(x) = (f_1(x), f_2(x), \ldots, f_n(x))$ para toda $x\in X$, y dado que para toda $k\in\{1, 2, \ldots, n\}$ se cumple:
\begin{equation*}
|\,f_k(x) – f_k(y)\,| \leq \left(\sum_{k=1}^n (f_k(x) – f_k(y))^2\right)^{1/2} = d(f(x),f(y)), \end{equation*} por lo que si $f$ es una función continua, entonces cada función componente $f_k : X \to \mathbb{R}^n$ es continua.

Definición 9.2. (Homeomorfismo.)
Sean $(X,d_X)$ y $(Y,d_Y)$ dos espacios métricos. Un homeomorfismo entre $X$ y $Y$ es una función $f:X\to Y$ tal que:

  1. $f$ es biyectiva.
  2. $f$ es continua en $X$.
  3. La inversa de $f$ es continua en $Y$, es decir, $f^{-1}: Y \to X$ es continua.

Si existe un homeomorfismo entre $X$ y $Y$, entonces diremos que los espacios métricos $(X,d_X)$ y $(Y,d_Y)$ son homeomorfos.

Observación 9.1.
Formalmente no hemos definido lo que es una función compleja de variable compleja, sin embargo para ejemplificar los conceptos de esta entrada podemos considerar la siguiente función sin mayor problema. En caso de existir duda de dicha definición puede consultarse la entrada 12 en la cual se aborda dicho concepto de manera formal.

Ejemplo 9.2.
Sea $D = B(0,1)\subset\mathbb{C}$. Consideremos a la función $f:\mathbb{C} \to D$ dada por:
\begin{equation*}
f(z) = \frac{z}{1+|\,z\,|}, \quad z\in\mathbb{C}.
\end{equation*} Veamos que $f$ induce un homeomorfismo entre $D$ y $\mathbb{C}$.

Solución. Primeramente verifiquemos que $f$ es biyectiva. Sean $z_1,z_2\in\mathbb{C}$, es claro que si $z_1 \neq z_2$, entonces $|\,z_1\,| \neq |\,z_2\,|$, por lo que:
\begin{equation*}
\frac{z_1}{1+|\,z_1\,|} \neq \frac{z_2}{1+|\,z_2\,|},
\end{equation*} es decir que $f(z_1) \neq f(z_2)$, por lo que $f$ es inyectiva.
Por otra parte, si $w\in D$ tenemos que $|\,w\,|<1$, por lo que $1 – |\,w\,|>0$. Entonces tomando: \begin{equation*}
z = \frac{w}{1-|\,w\,|},
\end{equation*} es claro que $w = f(z)$. Como $w\in D$ era arbitrario entonces tenemos que $f$ es sobreyectiva.
Por lo tanto, como $f$ es biyectiva tenemos que existe la función inversa de $f$, es decir $f^{-1}:D \to \mathbb{C}$ dada por:
\begin{equation*}
f^{-1}(z) = \frac{z}{1-|\,z\,|}, \quad z\in\mathbb{C}.
\end{equation*} Considerando los resultados de esta entrada es fácil probar que $f$ y $f^{-1}$ son continuas, por lo que se deja como se deja como ejercicio al lector.

Proposición 9.6.
Sean $(X,d_X)$, $(Y,d_Y)$ y $(Z, d_Z)$ espacios métricos y sean $g:X \to Y$ y $f:Y \to Z$ dos funciones.

  1. Si $g$ es un homeomorfismo, entonces $f$ es continua si y sólo si $f \circ g$ es continua.
  2. Si $f$ es un homeomorfismo, entonces $g$ es continua si y sólo si $f \circ g$ es continua.

Demostración.

  1. Dadas las hipótesis, por la proposición 9.3 es claro que $f = (f\circ g) \circ g^{-1}$ es continua si y sólo si $f \circ g$ es continua.
  2. Dadas las hipótesis, por la proposición 9.3 es claro que $g = f^{-1}\circ(f\circ g)$ es continua si y sólo si $f \circ g$ es continua.

$\blacksquare$

Tarea moral

  1. Demuestra el lema 9.1.
  2. Completa la demostración de la proposición 9.2.
  3. Prueba que las funciones $f$ y $f^{-1}$ del ejemplo 9.2 son continuas.
  4. Sean $a, b\in\mathbb{R}\setminus\{0\}$. Considera a los siguientes conjuntos: \begin{align*}
    X = \{x+iy \,:\, x^2+y^2 = 1\},\\
    Y = \left\{x + iy \, : \, \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1\right\}. \end{align*} Demuestra que $X$ y $Y$, dotados con la métrica euclidiana de $\mathbb{C}$, son homeomorfos. Hint: Considera la función $f(x+iy) = ax + iby$.
  5. Demuestra la proposición 9.4.

Más adelante…

En esta entrada hemos dado una definición clara y general del concepto de continuidad, caracterizando así a los espacios métricos mediante dicho concepto y obteniendo resultados que nos permitieron relacionar a los conceptos de sucesión y de límite con el de continuidad. Estos resultados serán de gran utilidad en las siguientes entradas al estudiar a las funciones complejas (de variable compleja).

La siguiente entrada abordaremos los conceptos de conexidad y compacidad de un espacio métrico, en particular caracterizaremos a los conjuntos de $\mathbb{C}$ mediante estos conceptos, definiremos nuevos conceptos y obtendremos nuevos resultados que relacionan a los conceptos de continuidad, conexidad y compacidad en un espacio métrico, los cuales utilizaremos a lo largo del curso al trabajar con funciones de $\mathbb{C}$ en $\mathbb{C}$.

Entradas relacionadas

Cálculo Diferencial e Integral I: Continuidad uniforme

Por Juan Manuel Naranjo Jurado

Introducción

En las entradas anteriores nos enfocamos en estudiar la definición de continuidad y sus propiedades. Especialmente, los teoremas revisados empleaban fuertemente el concepto de continuidad en un intervalo. En esta entrada haremos la revisión de un tipo de continuidad aún más exigente: la continuidad uniforme.

Primero recordemos que una función es continua en un intervalo $A$ si lo es para cada uno de sus elementos. Es decir,

$$\lim_{x \to y} f(x) = f(y) \quad \forall y \in A.$$

En términos de la definición del límite, lo podemos ver de la siguiente forma: Dado $\varepsilon > 0$ y $y \in [a,b]$, existe $\delta > 0$ tal que para todo $x \in A$ tal que $0 < |x – y| < \delta$ se satisface que $|f(x)-f(y)| < \varepsilon$. Es importante enfatizar que, en general, el valor de $\delta$ dependerá tanto de $\varepsilon$ como de $y$.

Analicemos con mayor detalle los siguientes ejemplos:

$$f(x) = x, \quad g(x) = x^2.$$

Ambas funciones son continuas en todo $\mathbb{R}$. Consideremos $y \in \mathbb{R}$ y calculemos el valor de $\delta$ en términos de un valor dado $\varepsilon > 0$ para probar la continuidad en $y$.

Para la función $f$, consideremos $\delta = \varepsilon$. Si $0<|x-y| < \delta$, entonces

$$|f(x) -f(y)| = |x-y| < \delta = \varepsilon.$$

Para $g$, el valor de delta anteriormente dado no funciona. En este caso, como se probó en una entrada anterior, podemos considerar $\delta’ = min \{ 1, \frac{\varepsilon}{1+2|y|} \}$. Si $0 < |x-y| < \delta’$, entonces

\begin{align*}
|x^2-y^2| & = |x-y||x+y| \\ \\
& < |x-y|(1+2|y|) \\ \\
& < \delta’ (1+2|y|) \\ \\
& \leq \frac{\varepsilon}{1+2|y|} \cdot (1+2|y|) \\ \\
& = \varepsilon.
\end{align*}

Podemos observar que el valor de $\delta$ para $f$ depende únicamente de $\varepsilon$, mientras que para la función $g$, depende tanto de $\varepsilon$ como de $y$. Esto debido a que $g$ tiene cambios más «drásticos» que $f$.

Continuidad uniforme

Motivado directamente de lo anterior, si $\delta$ funciona para cualesquiera $x$, $y$, es decir, no depende de $y$, entonces tenemos la siguiente definición.

Definición. Sea $f: A \to \mathbb{R}$. Se dice que $f$ es uniformemente continua en $A$ si para todo $\varepsilon > 0$ existe $\delta > 0$ tal que para cualesquiera $x$, $y \in A$ que satisfacen $|x-y| < \delta$, entonces $|f(x) – f(y)| < \varepsilon$.

De la definición se sigue que toda función uniformemente continua es continua. Sin embargo, el recíproco no es cierto y como contraejemplo tenemos la función $g(x) = x^2$ que es continua, pero por lo revisado al inicio podemos decir intuitivamente que no es uniformemente continua en $\mathbb{R}$. Considerando esto, vale la pena mencionar algunos criterios que permiten identificar cuando una función $f$ no es uniformemente continua.

Criterios de no continuidad uniforme. Sea $f: A \to \mathbb{R}$. Entonces los siguientes enunciados son equivalentes.

  1. $f$ no es uniformemente continua en $A$.
  2. Existe $\varepsilon_0 > 0$ tal que para todo $\delta > 0$ existen los puntos $x_\delta$, $y_\delta$ en $A$ tales que $|x_\delta – y_\delta| < \delta,$ pero $|f(x_\delta) – f(y_\delta)| \geq \varepsilon_0$.
  3. Existe $\varepsilon_0 > 0$ y dos sucesiones $\{x_n\}$, $\{y_n\}$ tales que $\lim\limits_{n \to \infty} (x_n-y_n) = 0$ y $|f(x_n)-f(y_n)| \geq \varepsilon_0$ para todo $n \in \mathbb{N}$.

Ahora revisaremos un teorema que nos servirá para saber en qué momento se tiene continuidad uniforme en un intervalo de la forma $[a,b]$.

Teorema de continuidad uniforme. Si $f$ es continua en un intervalo acotado y cerrado $[a,b]$, entonces $f$ es uniformemente continua.

Demostración.

Supongamos que $f$ no es uniformemente continua en $[a, b]$. Entonces existe $\varepsilon_0 > 0$ y dos sucesiones $\{x_n\}$ y $\{y_n\}$ en $[a,b]$ tales que $|x_n-y_n| < \frac{1}{n}$, pero $|f(x_n)-f(y_n)| \geq \varepsilon_0$ para todo $n \in \mathbb{N}$.

Dado que $[a, b]$ está acotado, la sucesión $\{x_n\}$ también está acotada. De esta forma, por el teorema de Bolzano-Weierstrass, existe una subsucesión $\{ x_{n_k} \}$ de $\{x_n\}$ que converge a un real $z$. Además, como $[a, b]$ es un intervalo cerrado, el límite $z$ pertenece al intervalo (por el corolario revisado en esta entrada). Notemos que para la subsucesión $\{y_{n_k}\}$, se tiene que

$$|y_{n_k} – z| \leq |y_{n_k} – x_{n_k}| + |x_{n_k} – z|.$$

Por lo que se sigue que $\{y_{n_k} \}$ también converge a $z$.

Además, si $f$ es continua en el punto $z$, entonces las subsucesiones $\{f(x_{n_k}) \}$ y $\{f(y_{n_k}) \}$ convergen a $f(z)$. Pero esto es una contradicción, pues $|f(x_n)-f(y_n)| \geq \varepsilon_0$ para todo $n \in \mathbb{N}$.

Así, la hipótesis de que $f$ no es uniformemente continua en el intervalo acotado y cerrado $[a, b]$ implica que $f$ no es continua en algún punto $z \in [a,b]$. Por tanto, concluimos que si $f$ es continua en todo punto del intervalo $[a, b]$, entonces $f$ es uniformemente continua.

$\square$

Retomando el ejemplo $g(x) = x^2$, $g$ no es uniformemente continua en $\mathbb{R}$, sin embargo, sí es uniformemente continua en cualquier intervalo $[a,b]$. En particular, podemos modificar ligeramente el valor de delta que se propuso anteriormente $\delta’ = min \{ 1, \frac{\varepsilon}{1+2|y|} \}$, y usar en su lugar $\delta = min \{ 1, \frac{\varepsilon}{1+2 max\{|a|, |b| \}} \}$. Notemos que este último valor no depende de $y$.

Funciones Lipschitz

Probar mediante la definición que una función es uniformemente continua puede ser una tarea difícil. Por ello, revisaremos una condición que, de cumplirse, nos facilitará este problema.

Definición. Sea $f: A \to \mathbb{R}$. Si existe una constante $K > 0$ tal que
$$|f(x) – f(y)| \leq K|x-y|$$

para todos $x$, $y \in A$, entonces se dice que $f$ es una función de Lipschitz en $A$.

La definición anterior nos permite clasificar a las funciones que cumplen que

$$\frac{|f(x) – f(y)|}{|x-y|} \leq K, \quad x \neq y.$$

Observemos que el miembro izquierdo de la desigualdad es el valor absoluto de la pendiente de la recta que pasa por los puntos $(x, f(x))$ y $(y, f(y))$. Así, podemos interpretar que una función es de Lipschitz si la pendiente de la recta formada por cualesquiera dos puntos en la gráfica de $f$ está acotada por algún valor $K$.

Teorema. Si $f: A \to \mathbb{R}$ es una función de Lipschitz, entonces $f$ es uniformemente continua.

Demostración.

Sea $\varepsilon > 0$.

Como $f$ es una función de Lipschitz, existe $K > 0$ tal que para cualesquiera $x, y \in A$, $|f(x) – f(y)| \leq K|x-y|.$

Consideremos $\delta = \frac{\varepsilon}{K}$. Si $|x-y| < \delta$, entonces se tiene que

\begin{align*}
|f(x)-f(y)| & < K|x-y| \\
& < K \frac{\varepsilon}{K} \\ 
& = \varepsilon.
\end{align*}

Por tanto, $f$ es uniformemente continua.

$\square$

Revisemos un ejemplo donde se prueba continuidad uniforme a través del teorema anterior.

Ejemplo 1. La función $f(x) = x^2$ es uniformemente continua en $A = [0, b]$, con $b > 0$.

Demostración.

Notemos que

\begin{align*}
|f(x)-f(y)| & = |x^2 – y^2| \\
& = |x+y||x-y| \\
& \leq 2b |x-y|.
\end{align*}

$$\therefore |f(x)-f(y)| \leq 2b |x-y|.$$

Consideremos $K = 2b$. Como $f$ es de Lipschitz, entonces es uniformemente continua.

$\square$

Cabe resaltar que no toda función uniformemente continua es de Lipschitz, para probarlo veamos el siguiente ejemplo.

Ejemplo 2. La función $f(x) = \sqrt{x}$ es uniformemente continua en $A = [0,2]$, pero no es de Lipschitz.

Demostración.

Como $f$ es continua en el intervalo cerrado y acotado $[0,2]$, entonces $f$ es uniformemente continua.

Consideremos $x$, $y \in A$ con $y = 0$, $x \neq 0$ y supongamos que existe $K > 0$ tal que $|f(x)-f(0)| \leq K|x – 0|$, es decir $|g(x)| < K|x|$. Entonces

\begin{gather*}
& |\sqrt{x}| < K |x|.
\end{gather*}

Como $x \in A$, se sigue que
\begin{gather*}
& \sqrt{x} < K x. \\ \\
\Leftrightarrow & \frac{\sqrt{x}}{x} < K. \\ \\
\Leftrightarrow & \frac{1}{\sqrt{x}} < K \tag{1}.
\end{gather*}

Además, notemos que $1<K+1$, esto implica que $1<(K+1)^2$. Es decir, $ \frac{1}{(K+1)^2} < 1$. Por tanto, $\frac{1}{(K+1)^2} \in (0,1) \subset A$.

De está forma, podríamos considerar particularmente a $x \neq 0$ como $x = \frac{1}{(K+1)^2}$. Sin embargo, también debe cumplir $(1)$, esto implica que $K +1 < K$. Lo cual es una contradicción. Por tanto, $f$ no es de Lipschitz.

$\square$

Finalmente, veremos un ejemplo donde usamos los dos teoremas vistos en esta entrada con la finalidad de probar continuidad uniforme.

Ejemplo 3. Prueba que la función $f(x) = \sqrt{x}$ es uniformemente continua en $A = [0, \infty)$.

Demostración.

Del ejemplo anterior, sabemos que $f$ es uniformemente continua en el intervalo $[0,2]$. Ahora probaremos que también lo es en el intervalo $[1,\infty).$

Sean $x$, $y \in [1, \infty)$, entonces se tiene que

\begin{align*}
|f(x)-f(y)| & = | \sqrt{x}-\sqrt{y}| \\
& = | \sqrt{x}-\sqrt{y}| \cdot \frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}+\sqrt{y}} \\
& = \frac{|x-y|}{\sqrt{x}+\sqrt{y}} \\
& \leq \frac{1}{2} |x-y|.
\end{align*}

Por lo tanto, $f$ es una función de Lipschitz en el intervalo $[1, \infty)$. Por lo que se sigue que es uniformemente continua en tal intervalo. Como $f$ es uniformemente continua en $[0,2]$ y $[1, \infty)$, entonces también lo es en $A = [0,2] \cup [1, \infty).$

$\square$

Más adelante…

En las siguientes entradas complementaremos el estudio de las funciones continuas revisando propiedades específicas relacionas con las funciones monótonas. Adicionalmente, responderemos una pregunta que surge de forma muy natural: si $f$ es una función continua, ¿qué sucede con su inversa?

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Da un ejemplo de función que sea uniformemente continua.
  • Demostrar que la función $f(x) = \frac{1}{x}$ es uniformemente continua en $[a, \infty)$ siendo $a$ una constante positiva.
  • Prueba que la función $f(x) = \frac{1}{x^2}$ no es uniformemente continua en $(0, \infty)$. Sugerencia: Usa el criterio 3 de no continuidad uniforme y considera las sucesiones $\{ \frac{1}{n} \}$ y $\{ \frac{1}{n+1} \}.$
  • Demuestra que si $f$ y $g$ son funciones uniformemente continuas en $A \subset \mathbb{R}$, entonces $f+g$ también es uniformemente continua en $A.$
  • Demuestra que si $f$ y $g$ son funciones uniformemente continuas en $A \subset \mathbb{R}$ y ambas están acotadas en $A$, entonces $f \cdot g$ es uniformemente continua en $A.$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»