Archivo de la etiqueta: axioma de extensión

Teoría de los Conjuntos I: Axiomas de existencia, de comprensión y de extensión

Por Gabriela Hernández Aguilar

Introducción

«Se entiende por un conjunto a la agrupación en un todo de objetos bien diferenciados de nuestra intuición o nuestra mente».

Georg Cantor

Para iniciar nuestro curso presentaremos en esta entrada tres de los primeros axiomas de Zermelo-Fraenkel.

Axioma de existencia

Para siquiera hablar de conjuntos, es importante garantizar que hay por lo menos un conjunto. El axioma de existencia nos garantiza eso.

Axioma de existencia. Existe un conjunto que no tiene elementos.

Una manera de describir a los elementos del conjunto otorgado por el axioma de existencia es con la siguiente propiedad:

«$P(x): x\ \text{es un conjunto que no es igual a sí mismo}$».

Si lo piensas, no existe algo que cumpla esta propiedad pues cualquier conjunto que demos siempre será igual a sí mismo. Una forma de imaginarnos a este conjunto es pensar en una bolsa que no tenga nada adentro, como se muestra en la siguiente imagen.

Ten cuidado, pues esta manera de pensar a un conjunto sin elementos es informal. Sin embargo, en los ejercicios al final, verás cómo formalizarla.

Podríamos pensar, a partir de nuestra imagen anterior, que si tenemos dos bolsas de un color distinto que no tengan nada adentro, resultarían en dos conjuntos distintos. El siguiente axioma esclarece dicha cuestión, pues establece un criterio que nos permite distinguir cuándo dos conjuntos $X$ y $Y$ son iguales.

Axioma de extensión. $X=Y$ si para cualquier conjunto $x$, $x\in X$ si y sólo si $x\in Y$.

Así, retomando la imagen de la bolsa vacía, para la teoría de conjuntos dos bolsas vacías son realmente el mismo objeto, aún cuando éstas no sean del mismo color.

Definición. Sean $X$ y $Y$ conjuntos. Diremos que $X$ está contenido en $Y$, en símbolos $X\subseteq Y$, si para todo $x\in X$ se tiene $x\in Y$.

Para demostrar la igualdad entre conjuntos, basta probar que $X\subseteq Y$ y $Y\subseteq X$ de acuerdo al axioma de extensión.

Con este axioma y la definición de contención, podemos probar que el conjunto que nos otorga el axioma de existencia es único.

Antes de realizar la demostración de que el conjunto que nos da el axioma de existencia es único, acordaremos que, para demostrar la igualdad entre conjuntos $x$ y $y$, es necesario demostrar que $x\subseteq y$ y $y\subseteq x$, por lo que para referirnos a que se esta demostrando la primera contención pondremos «$\subseteq$]» al inicio de la prueba y para probar la segunda contención pondremos «$\supseteq$]» al inicio de la prueba.

Previo a realizar la demostración haremos una pausa para hablar acerca del argumento por vacuidad. En la entrada anterior hicimos mención de que las propiedades en el lenguaje de la teoría de los conjuntos nos permitirian describir propiedades que pueden o no satisfacer conjuntos dados.

De esta manera, si consideramos a $z$ como un conjunto sin elementos, la propiedad $\forall x(x\in z\rightarrow \varphi(x))$ es verdadera siempre, pues no hay conjunto $x$ que pertenezca a $z$.

Proposición. Existe un único conjunto sin elementos.

Demostración. Sean $A$ y $B$ conjuntos que no tienen elementos, veamos que $A=B$.

$\subseteq$] Por vacuidad, si $x\in A$, entonces $x\in B$, pues no hay nadie en $A$.

$\supseteq$] Por vacuidad, si $x\in B$, entonces $x\in A$, pues no hay nadie en $B$.

Por lo tanto, $A=B$.

$\square$

Definición. Al único conjunto que no tiene elementos le llamaremos conjunto vacío y será denotado por $\emptyset$.

Presentamos el último ingrediente axiomático de esta entrada. En vez de llamarse «axioma» se llama «esquema» pues condensa muchos axiomas, uno por cada propiedad $P$ y cada conjunto $A$.

Esquema de comprensión. Sea $P(x)$ una propiedad. Para cualquier conjunto $A$ existe un conjunto $B$ tal que $x\in B$ si y sólo si $x\in A$ y satisface $P(x)$.

Este esquema nos permite construir conjuntos con elementos de otro conjunto que satisfacen una propiedad. Esto último evitará tener contradicciones como la paradoja del barbero que veremos en la siguiente entrada.

Tarea moral

  1. Da dos propiedades diferentes tales que para cualquier conjunto que des, no exista un conjunto que las cumpla y nos den otra forma de describir a los elementos del conjunto vacío.
  2. ¿Es verdadero o falso $\emptyset\in \emptyset$? Argumenta tu respuesta.
  3. Prueba que si $P(x)$ es una propiedad, para todo conjunto $A$ existe un único conjunto $B$ tal que $x\in B$ si y sólo si $x\in A$ y $P(x)$. (Esto prueba que el conjunto que nos otorga el esquema de comprensión es único).
  4. Imagina que cambiamos el axioma de existencia por «Existe por lo menos un conjunto $X$.» Mediante este nuevo axioma y el esquema de comprensión, demuestra la existencia del conjunto vacío. Como sugerencia usa la discusión intuitiva que dimos del vacío.

Más adelante…

En esta entrada hablamos de axiomas básicos y de construcción, los cuales nos permitirán hablar de nuevos conjuntos, así mismo, con ellos probaremos teoremas importantes de la teoría de los conjuntos. En la siguiente entrada, abordaremos la famosa paradoja de Russell o también llamada paradoja del barbero.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»