Archivo de la etiqueta: Aplicaciones de la diferencial

Cálculo Diferencial e Integral I: Diferenciales

Por Karen González Cárdenas

Introducción

Vimos que una forma de expresar a la derivada de una función y=f(x) es utilizando la notación:
dydx=f(x)

Recordemos que dydx es un «símbolo» que utilizamos para denotar el límite:
limΔx0ΔyΔx.
Por lo tanto, no consideremos a dydx como una fracción donde su numerador es dy y su denominador dx. No obstante, en diversos problemas de aplicaciones del Cálculo es necesario dar interpretaciones separadas a dx y dy. En esta entrada, veremos cuál es la interpretación de estos nuevos «símbolos» y cómo su aplicación nos resulta útil.

Definición de la diferencial de una función

Definición (Diferencial): Si tenemos una función f derivable. Definimos a la diferencial de f como el producto de su derivada por la diferencial de la variable independiente x.
df(x)=f(x)dx.

Para simplificar un poco la notación consideremos y=f(x) y nos quedamos con:
dy=f(x)dx.

A continuación, veremos algunos ejemplos donde se nos pide hallar la diferencial de una función haciendo uso de la definición revisada.

Algunos ejemplos de funciones y su diferencial

Obtén la diferencial de las siguientes funciones:

  1. y=x33x
  2. ρ=sin(aθ)
  3. t=xa+ax
  4. s=θcos(θ)
  5. y=log(sin(x))
  6. γ=etcos(πt)

Solución: Aplicaremos la definición siguiente en cada uno de los incisos
dy=f(x)dx.

  1. Para la función y=x33x tenemos:
    dy=(x33x)dx=(3x23)dx
    Por lo que la diferencial es dy=(3x23)dx.
  2. Ahora para la función ρ=sin(aθ):
    dρ=(sin(aθ))dθ=acos(aθ)dθ
    Concluimos que dρ=acos(aθ)dθ.
  3. Aplicando la definición con t=xa+ax:
    dt=(xa+ax)dx=(xa+ax1)dx=(1aax2)dx=(1aax2)dx
    Por lo tanto dt=(1aax2)dx.
  4. Del mismo modo para s=θcos(θ):
    ds=(θcos(θ))dθ=(cos(θ)θsin(θ))dθ
    Así ds=(cos(θ)θsin(θ))dθ.
  5. Y si consideramos y=log(sin(x)):
    dy=(log(sin(x)))dx=1sin(x)cos(x)dx=cos(x)sin(x)dx=ctg(x)dx
    Por lo que dy=ctg(x)dx.
  6. Finalmente para γ=etcos(πt):
    dγ=(etcos(πt))dt=(etcos(πt)etsin(πt))dt
    Concluyendo dγ=(etcos(πt)etsin(πt))dt.

A continuación, veremos una interpretación geométrica de la diferencial que más adelante nos permitirá revisar algunos problemas de aplicación.

Una interpretación de la diferencial

Tomemos la función y=f(x) y al punto A sobre la gráfica de f. Consideremos a f(x) como el valor de la derivada en A y tracemos la recta tangente en dicho punto.

Nombremos al segmento AB como dx. Recordemos que la definición de la diferencial es:
dy=f(x)dx.

Por lo visto en la primera entrada de esta unidad sabemos que:
f(x)=tan(α).

Además, aplicando la definición de la función tangente apoyándonos en el gráfico siguiente, se tiene:
tan(α)=coca(*)=CBAB

Cuando sustituimos () y dx=AB obtenemos lo siguiente:
dy=(CBAB)(AB)=(CBAB)(AB)=CB
Observamos que dy nos brinda una aproximación al incremento Δy que está dado por el segmento A1B, cuando dx es pequeña.

Es decir:
dyΔy.

Utilizaremos esta cualidad cuando necesitemos hallar un valor aproximado del incremento de una función. En las siguientes secciones, revisaremos un par de problemas donde haremos uso de la diferencial para resolverlos.

Problema 1

Obtener el incremento del área de un cuadrado de lado 8m al aumentar el lado 5mm.
Para resolver este problema veremos dos métodos de solución, en el primero no usaremos la diferencial y en el segundo si la utilizaremos.

Solución sin usar la diferencial

Sabemos del problema que:
I=8mΔl=5mmA=64m2l0=8.005m
Por lo que el área del nuevo cuadrado con el lado l0 sería:
A0=(8.005m)2=64.080025m2

Obtenemos el incremento del área ΔA haciendo la resta del área original con el área del nuevo cuadrado.
ΔA=64.080025m264m2=0.080025m2

ΔA=0.080025m2.

Solución utilizando la diferencial

Si tomamos a l como el lado del cuadrado tenemos que su área es:
A=l2.
Como sabemos que dAΔA usando la definición para la diferencial de a tendríamos:
dA=2ldl=2(8)(0.005)=0.08
Por lo tanto tenemos que el incremento obtenido es:
ΔA0.08m2.

Notamos que es una buena aproximación al incremento obtenido en el método anterior. Sin embargo, al haber utilizado la diferencial, el problema nos resultó un poco más sencillo de resolver.

Problema 2

Si sabemos que 25=5, obtén una aproximación al valor 27.
Solución:
Consideraremos la función y=x. Del problema podemos ver que el incremento de x es:
Δx=2725=2

Ahora obtengamos la diferencial de y:
dy=dy2x()

Nosotros consideraremos a x=25 y como una aproximación al diferencial de x al incremento Δx=2. Entonces ocurre que al sustituir todo en () tenemos:
dy=2225=2(2)(5)=15=0.2
Concluimos así que una aproximación al valor de 27 es:
275+0.25.2
275.2
Si comparamos esta aproximación con el valor que nos brinda una calculadora 27=5.1961 considerando sólo cuatro decimales) podemos notar que es bastante similar.

En la siguiente sección encontrarás ejercicios que podrás realizar para aplicar lo estudiado en esta entrada.

Más adelante

¡Te felicitamos por concluir con el curso de Cálculo Diferencial e Integral I! Con este tema cerramos el temario. Esperamos que hayas disfrutado este viaje por el mundo del Cálculo. Te invitamos a continuar con tu estudio ahora con el curso de Cálculo Diferencial e Integral II que se encuentra disponible en la siguiente página.

Tarea moral

  • Demuestra usando la definición, las siguientes reglas para las diferenciales:
    • d(s+t)=ds+dt
    • Con c una constante:
      d(cu)=cdu
    • d(st)=sdt+tds
  • Hallar la diferencial de las siguientes funciones:
    • y=14x
    • t=sin2s
    • u=logcv
  • Sabiendo que 16=4 utilizando la diferencial obtén una aproximación de 17.
  • Utilizando la diferencial da una aproximación del incremento del volumen de un cubo con l=3m al aumentar el lado 0.002m.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»