Introducción
Lo que haremos en esta última entrada es utilizar el axioma de elección para probar un resultado muy conocido en álgebra lineal: que todo espacio vectorial tiene una base. Para comprender algunos de los términos que utilizaremos en esta sección puedes consultar el curso de Álgebra Lineal I disponible aquí en el blog.
Recordatorio de definiciones
Daremos un breve recordatorio sobre qué quiere decir que un subconjunto arbitrario (finito o no) de un espacio vectorial sea generador, linealmente independiente o base.
Definición. Sea $V$ un espacio vectorial sobre un campo $F$ y $S\subseteq V$. Decimos que $S$ es generador si para cualquier $v\in V$ existe una cantidad finita de vectores $v_1,\ldots,v_n$ en $V$ y de escalares $\alpha_1,\ldots,\alpha_n$ en $F$ tales que $$v=\alpha_1v_1+\ldots+\alpha_nv_n.$$
Definición. Sea $V$ un espacio vectorial sobre un campo $F$ y $L\subseteq V$. Decimos que $L$ es linealmente independiente si para cualquier elección finita de vectores distintos $v_1,\ldots,v_n$ en $L$ y escalares $\alpha_1,\ldots,\alpha_n$, la igualdad $$0=\alpha_1v_1+\ldots+\alpha_nv_n$$ implica que $\alpha_1=\ldots=\alpha_n=0$.
Definición. Sea $V$ un espacio vectorial sobre un campo $F$ y $B\subseteq V$. Decimos que $B$ es una base de $V$ si $B$ es generador y linealmente independiente.
Todo espacio vectorial tiene una base
Demostraremos el siguiente resultado
Teorema. Todo espacio vectorial tiene una base.
Demostración.
Sea $V$ un espacio vectorial sobre un campo $F$. Lo que queremos mostrar es que existe un subconjunto $B$ de $V$ que genera a $B$ y que es linealmente independiente.
Si $V=\set{0}$, entonces $\emptyset$ es una base para $V$. Supongamos ahora que $V$ tiene al menos dos vectores distintos. Sea $\mathcal{F}=\set{L\subseteq V:L\ \textnormal{es un conjunto linealmente independiente}}$. Notemos que $\mathcal{F}$ es no vacío. En efecto, sea $v\in V$ un elemento distinto del vector cero. Luego, $\set{v}$ es linealmente independiente, por lo que $\set{v}\in\mathcal{F}$.
Lo que haremos ahora es probar que $\mathcal{F}$ es una familia de conjuntos de carácter finito. Sea $L$ un conjunto tal que $L\in\mathcal{F}$. Luego, $L$ es linealmente independiente y, por tanto, cualquier subconjunto de $L$ es linealmente independiente, en particular todos los subconjuntos finitos de $L$ son linealmente independientes. En consecuencia, cualquier subconjunto finito de $L$ pertence a $\mathcal{F}$.
Ahora, sea $L$ un conjunto tal que todo subconjunto finito de $L$ pertenece a $\mathcal{F}$. Para cualquier elección de vectores distintos $v_1,\ldots,v_n$ tenemos entonces que $\{v_1,\ldots,v_n\}$ es linealmente independiente. Pero entonces cualquier elección de escalares $\alpha_1,\ldots,\alpha_n$ tales que $$0=\alpha_1v_1+\ldots+\alpha_nv_n$$ cumple que $\alpha_1=\ldots=\alpha_n=0$. Concluimos entonces que $L$ es linealmente independiente. Por tanto, $L\in\mathcal{F}$. Esto demuestra que $\mathcal{F}$ es una familia de conjuntos de carácter finito.
Ahora, por el axioma de elección (en la versión de lema de Tukey-Teichmüller) toda familia no vacía de carácter finito tiene un elemento $\subseteq$-maximal. Sea $B$ un elemento $\subseteq$-maximal en $\mathcal{F}$. Afirmamos que $B$ es una base para $V$. Como $B$ es linealmente independiente, sólo basta probar que $B$ genera a $V$.
Procedamos por contradicción y supongamos que $B$ no genera a $V$. Sea $v\in V$ que no esté en el espacio generado por $B$. Entonces $B\cup\set{v}$ sería un subconjunto de $V$ linealmente independiente que contiene propiamente a $B$ (ver, por ejemplo la última proposición en la entrada Conjuntos generadores e independencia lineal). ¡Esto contradice la maximalidad de $B$ con respecto a la contención en $\mathcal{F}$!
Así, $B$ es linealmente independiente y generador, y por lo tanto es una base de $V$.
$\square$
Tarea moral
Los siguientes resultados presentan algunos refinamientos del resultado mencionado. Por ejemplo, enuncian que «cualquier base parcial se puede completar» a una base, o que «de cualquier conjunto generador se puede extraer una base», etc.
- Sea $V$ un espacio vectorial sobre un campo $K$. Muestra que todo conjunto linealmente independiente está contenido en una base de $V$.
- Sea $V$ un espacio vectorial. Muestra que si $S$ es un subconjunto generador de $V$, entonces existe $\beta\subseteq S$ tal que $\beta$ es una base para $V$.
- Sea $V$ un espacio vectorial con base $\beta$. Si $S$ es un conjunto linealmente independiente, muestra que existe un subconjunto $S_1$ de $\beta$ tal que $S\cup S_1$ es una base para $V$.
Entradas relacionadas
- Ir a Teoría de los Conjuntos I
- Entrada anterior: El lema de Zorn
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»