Límite de una función

Por Lizbeth Fernández Villegas

Introducción:

Es momento de interactuar entre dos espacios métricos, $(X,d_X)$ y $(Y,d_Y)$, cada uno con su respectivo conjunto de puntos y métrica definida en ellos. Podemos relacionar puntos del espacio métrico $X$ con puntos en el espacio métrico $Y$. Será natural preguntarse qué ocurre con las distancias en el nuevo espacio métrico, en comparación con el de origen. Considera la siguiente:

Definición de imagen de un conjunto. Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos. Si $A \subset X$ y $f: X \to Y$, es una función, entonces $f \,$ define un conjunto en $Y$ dado por $f(A):=\{f(x)|x\in A\}$, que llamaremos la imagen de $A$ bajo $f \,$ y es la colección de elementos que se le asignan a cada elemento de $A$.

Función $f: A \subset X \to Y$

Ahora preguntamos: ¿bajo qué circunstancias una función envía puntos de $A \subset X$ a puntos en $Y$ que se aproximan a algún punto $L \in Y$?

Si $x_0$ es un punto de acumulación en $A$, por definición, todas sus bolas abiertas tienen elementos en $A$ distintos de $x_0$. Podemos así, identificar puntos cercanos a $x_0$, según la distancia $d_X$, que bajo la función $f$ sean enviados a puntos en $Y$ que estén cerca de un punto $L$, según la distancia $d_Y$.
Como los puntos cerca de $L$ en $(Y,d_Y)$ son los que están en la bola de radio $\varepsilon$ con centro en $L,$ se busca conseguir que los puntos cerca de $x_0$ caigan justamente en $B_Y(L,\varepsilon)$. (El subíndice $Y$ en $B_Y$ nos recuerda en qué espacio métrico es considerada la bola abierta. Recuerda que pueden ser diferentes, según la métrica a la que se refiera).

Un elemento de la bola abierta con centro en $x_0$ «cae dentro» de la bola abierta con centro en «L.»

De manera formal tenemos la siguiente:

Definición límite de una función: Sea $f: X \to Y$ una función entre espacios métricos y $x_0$ un punto de acumulación de $A$. Decimos que el límite de $f$, cuando $x$ tiende al punto $x_0$ es $L \in Y$, si ocurre que para todo $\varepsilon >0$ existe $\delta > 0$ tal que para todo $x\neq x_0, \text{ si } d(x,x_0)< \delta$ entonces $d(f(x),L)<\varepsilon$. Se denota como:
$$\underset{x \to x_0}{lim} \,f(x) \,=L$$
Se dice entonces que $f(x) \to L$ cuando $x \to x_0$.

Esta definición se puede expresar en términos de bolas abiertas como sigue: $\, \underset{x \to x_0}{lim} \,f(x) \,=L \,$ si para todo $\varepsilon >0$ existe $\delta > 0$ tal que $f(B_X(x_0,\delta) \setminus \{x_0\}) \subset B_Y(L,\varepsilon)$.

Veamos un resultado que nos permite concluir límites a partir de sucesiones.

Proposición: Considera $A \subset X$ y $x_0 \in A$ un punto de acumulación en $A$. Entonces $$\underset{x \to x_0}{lim} \, f(x) \,=L$$ si y solo si para toda sucesión $(x_n)_{n \in \mathbb{N}}$ en $A \setminus \{x_0\}$ tal que $x_n \to x_0$ ocurre que $$\underset{n \to \infty}{lim} \, f(x_n) \,=L$$.
Demostración:
Sea $(x_n)_{n \in \mathbb{N}}$ una sucesión en $A \setminus \{x_0\}$ que converge a $x_0$ y sea $\varepsilon >0$. Como $\underset{x \to x_0}{lim} \, f(x) \,=L$ entonces existe $\delta>0$ tal que para todo $x\neq x_0, \text{ si } d(x,x_0)< \delta \,$ entonces $\, d(f(x),L)<\varepsilon$.

Si $(x_n) \to x_0$ en $X$ entonces $(f(x_n)) \to L$ en $Y$

Como $(x_n) \to x_0$, entonces existe $N \in \mathbb{N}$ tal que $\forall \, n\geq N, \, d(x_n,x_0)< \delta$, así $\forall \, n \geq N, \, d(f(x_n),L) < \varepsilon$ por lo tanto $f(x_n) \to L\, $ en $\, Y$.

Ahora supón que el recíproco no es cierto. Entonces existe $\varepsilon_0 >0$ tal que $\forall \, \delta>0$ existe $x_0 \neq x_0 \,$ con $\, d_X(x_0,x_0)<\delta$ pero $\, d_Y(f(x_0),L)> \varepsilon$.

De modo que para cada bola abierta con centro en $x_0$ y radio $\frac{1}{n}$ con $n \in \mathbb{N}$ podemos elegir un punto $x_n \in (B_X(x_0,\frac{1}{n}) \setminus \{x_0\})$ pero $\, d_Y(f(x_n),L)> \varepsilon_0$.

Hay un punto en $B_X(x_0,1)$ que $f$ envía fuera de $B_Y(L,\varepsilon_0)$

La sucesión $x_n \to x_0$ pero la sucesión $(f(x_n))_{n \in \mathbb{N}} \,$ al quedarse siempre fuera de la bola abierta $B_Y(L,\varepsilon_0)$ no converge a $L$, lo cual es una contradicción.

Hay un punto en $B_X(x_0,1/2)$ que $f$ envía fuera de $B_Y(L,\varepsilon_0)$

Por lo tanto $\, \underset{x \to x_0}{lim} \, f(x) \,=L$.

Hay un punto en $B_X(x_0,1/n)$ que $f$ envía fuera de $B_Y(L,\varepsilon_0)$

Las siguientes proposiciones son propiedades de límites de funciones en los espacios métricos mencionados:

Proposición: Sean $f:A \to \mathbb{C}$ y $g:A \to \mathbb{C}$. Si $x_0$ es un punto de acumulación en $A$ y $\underset{x \to x_0}{lim}\, f(x) \,=L_1 \,$ y $\, \underset{x \to x_0}{lim}\, g(x) \,=L_2$, se tiene que:

a) $\underset{x \to x_0}{lim} \, f(x) \pm g(x) \,=L_1 \pm L_2$
b) $\underset{x \to x_0}{lim} \, f(x)g(x) \,=L_1 L_2$
c) $\underset{x \to x_0}{lim} \, f(x) / g(x) \,=L_1 / L_2$ cuando $L_2 \neq 0$

La demostración se deja como ejercicio.

Proposición: Sean $f,g: A \subset X \to \mathbb{R}^n\, $ Si se definen
$(f+g)(x)=f(x)+g(x)$ y $(f \cdot g)(x)=f(x) \cdot g(x)$ entonces si $x_0$ es un punto de acumulación en $A$ y $\underset{x \to x_0}{lim}\, f(x) \,=L_1 \,$ y $\, \underset{x \to x_0}{lim} \,g(x) \,=L_2$, se tiene que:

a) $\underset{x \to x_0}{lim} \, f(x) \pm g(x) \,=L_1 \pm L_2$.
b) $\underset{x \to x_0}{lim} \, f(x) \cdot g(x) \,=L_1 \cdot L_2$.
c) $\underset{x \to x_0}{lim} \, \lambda f(x) \,= \lambda L_1 \,$con $\,\lambda \in \mathbb{R}$.

La demostración se deja como ejercicio.

Más adelante…

Veremos el caso para cuando la función sí está definida en $x_0 \in A \subset X$ y más aún, la función tiene como límite al punto $f(x_0)$. Hablaremos así de funciones continuas en un punto $x_0$ y observaremos el efecto que estas funciones producen en subconjuntos abiertos y cerrados de un espacio métrico.

Tarea moral

  1. Demuestra las dos proposiciones anteriores.

Enlaces

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.