Geometría Moderna I: Homotecia

Introducción

En esta entrada estudiamos el tema de homotecia, se trata de una transformación que lleva una figura del plano a otra semejante, con lados correspondientes paralelos y vértices correspondientes concurrentes, esto nos permite entre otras cosas, abordar algunos problemas de construcciones geométricas.

Definición 1. Considera un punto $H$, un conjunto de puntos $F$ y $k$ un numero real, para cada $X \in F$ sea $X’$ tal que $X’$, $X$ y $H$ son colineales y $\dfrac{HX’}{HX} = k$.

Sea $F’$ el conjunto de puntos $X’$, diremos que los conjuntos $F$ y $F’$ son figuras homotéticas y los puntos $X$ y $X’$ son puntos homólogos.

$H$ se llama centro de homotecia, $k$ es la razón de homotecia y la relación entre $F$ y $F’$ es una homotecia con centro en $H$ y razón $k$. Por convención el centro de homotecia $H$ es su propio punto homólogo.

Si puntos homólogos de una homotecia están del mismo lado del centro de homotecia decimos que los conjuntos son directamente homotéticos y la razón de homotecia es positiva, si los puntos homólogos están en lados opuestos respecto del centro de homotecia decimos que las figuras son inversamente homotéticas y la razón de homotecia será negativa.

Homotecia de una recta

Teorema 1. La homotecia de una recta que no pasa por el centro de homotecia es una recta paralela.

Demostración. Sean $H$ y $k$ el centro y la razón de homotecia, y sea $l$ una recta que no pasa por $H$. Tomemos tres puntos arbitrarios $P$, $Q$, $R \in l$, sean $P’$, $Q’$ y $R’$ sus correspondientes puntos homólogos.

Figura 1

Como $\dfrac{HP’}{HP} = k = \dfrac{HQ’}{HQ}$, por el reciproco del teorema de Thales, $PQ \parallel P’Q’$.

Análogamente vemos que $QR \parallel Q’R’$ y $PR \parallel P’R’$.

Supongamos que $P’$, $Q’$ y $R’$ no son colineales, entonces $\triangle P’Q’R’$ es un triángulo y así $\triangle PQR$ es un triángulo con lados paralelos a los de $\triangle P’Q’R’$, lo cual es una contradicción, pues $PQR$ es una recta.

Si fijamos $P$ y $Q$, y tomamos $R$ como variable, entonces $P’$ y $Q’$ son fijos y $R’$ es variable, así todos los puntos $R’$ son colineales con $P’$ y $Q’$.

Por lo tanto, la homotecia de una recta es una recta paralela a esta.

$\blacksquare$

Definición 2. Decimos que dos polígonos $ABCD…$ y $A’B’C’D’…$ son semejantes si los correspondientes lados son proporcionales $\dfrac{AB}{A’B’} = \dfrac{BC}{B’C’} =…$ y los ángulos correspondientes son iguales $\angle A = \angle A’$, $\angle B = \angle B’$, $…$

Corolario. Dos polígonos homotéticos son semejantes.

Demostración. Sean $A$, $B$ y $C$ vértices de un polígono $ABCD…$

Por el teorema anterior, los lados del triángulo $\triangle A’B’C’$, formado por los puntos homólogos de $A$, $B$ y $C$, son paralelos a los lados correspondientes de $\triangle ABC$, por lo tanto, los triángulos son semejantes y así los ángulos correspondientes son iguales y los lados correspondientes son proporcionales.

$\blacksquare$

Polígonos homotéticos

Teorema 2. Si los lados correspondientes de dos polígonos son proporcionales y paralelos entonces los polígonos son homotéticos.

Demostración. Sean $ABCD…$ y $A’B’C’D’…$ dos polígonos que cumplen las condiciones dadas, sea $H$ la intersección de las rectas $AA’$ y $BB’$ y supongamos que $CC’$ no pasa por $H$, entonces sea $H’ = CC’ \cap BB’$.

Figura 2

Como $AB \parallel A’B’$ y $BC \parallel B’C’$ entonces $\triangle HAB \sim \triangle HA’B’$ y $\triangle H’BC \sim \triangle H’B’C’$
$\Rightarrow \dfrac{AB}{A’B’} = \dfrac{HB}{HB’}$ y $\dfrac{BC}{B’C’} = \dfrac{H’B}{H’B’}$. 

Ya que los lados correspondientes de $ABCD…$ son proporcionales a los de $A’B’C’D’…$, entonces
$ \dfrac{HB}{HB’} = \dfrac{AB}{A’B’} = \dfrac{BC}{B’C’} = \dfrac{H’B}{H’B’} $
$\Rightarrow \dfrac{HB}{HB’} – 1= \dfrac{H’B}{H’B’} – 1 \Rightarrow \dfrac{HB – HB’}{HB’} = \dfrac{H’B – H’B’}{H’B’}$
$\Rightarrow \dfrac{B’B}{HB’} = \dfrac{B’B}{H’B’} \Rightarrow HB’ = H’B’$.

Por lo tanto, $H = H’$.

Así, $AA’$, $BB’$ y $CC’$ son concurrentes y $\dfrac{HA’}{HA} = \dfrac{HB’}{HB} = \dfrac{HC’}{HC}$, es análogo ver que las demás rectas que unen vértices correspondientes concurren en $H$.

Por tanto, $ABCD…$ y $A’B’C’D’…$ se encuentran en homotecia desde $H$ y por el corolario 1, $ABCD…$ y $A’B’C’D’…$, son semejantes, la razón de homotecia es la razón de semejanza, $\dfrac{HA’}{HA} = \dfrac{AB}{A’B’} = \dfrac{BC}{B’C’} =…$

$\blacksquare$

Observación 1. Si la razón de homotecia es 1, los lados correspondientes de las figuras $ABCD…$ y $A’B’C’D’…$ son congruentes y así $\square AA’B’B$ es un paralelogramo, es decir, $AA’$ y $BB’$ no pueden ser concurrentes.

Observación 2. En el caso particular cuando los polígonos son triángulos, solo es necesario pedir que los lados correspondientes sean paralelos, pues esto asegura la semejanza y por tanto la condición de proporcionalidad.

Rectas concurrentes

Proposición. Sea $\triangle ABC$ un triángulo y sean $D$, $E$ y $F$ los puntos de tangencia del incírculo $(I, r)$ de $\triangle ABC$, con los lados $BC$, $AC$ y $AB$ respectivamente, sean $A’$, $B’$ y $C’$ la intersección de las rectas $AI$, $BI$ y $CI$ con el circuncírculo del triángulo $\triangle ABC$, entonces la rectas $A’D$, $B’E$ y $C’F$ son concurrentes.

Demostración. Notemos que $AF = AE$, pues son las tangentes trazadas desde $A$ a $(I, r)$ , como $\triangle AEF$ es isósceles entonces la bisectriz de $A$ es perpendicular a $EF$, $AI \perp EF$.

Figura 3

Por otro lado, tenemos que $\angle C’B’B = \angle C’CB = \dfrac{\angle C}{2}$ pues abarcan el mismo arco; el ángulo $\angle B’IA$ es un ángulo exterior del triángulo $\triangle AIB$, entonces
$\angle B’IA = \angle BAI + \angle IBA = \dfrac{\angle A + \angle B}{2}$.

Sea $G = AI \cap C’B’$, en el triángulo $\triangle GIB’$ tenemos que
$\angle IGB’ = \pi – (\angle C’B’B + \angle B’IA) $
$= \pi – \dfrac{\angle A + \angle B + \angle C}{2} = \dfrac{\pi}{2}$.

Por lo tanto, $AI \perp B’C’$ $\Rightarrow EF \parallel B’C’$, de manera análoga podemos ver que $ED \parallel B’A’$ y $DF \parallel A’C’$.

De lo anterior se sigue que $\triangle DEF \sim \triangle A’B’C’$, y por el teorema 2, $A’D$, $B’E$ y $C’F$ concurren en algún punto $H$ que es el centro de homotecia de los triángulos $\triangle DEF$ y $\triangle A’B’C’$.

$\blacksquare$

Inscribir un triángulo en otro triángulo dado

Problema. 1 En un triángulo dado inscribir un triángulo cuyos lados sean perpendiculares a los lados del triángulo dado.

Solución. Sea $\triangle ABC$ el triángulo dado, la idea es construir una homotecia desde uno de los vértices, tomemos $D \in BC$, distinto de $B$, $C$ y también diferente al pie de la altura por $A$.

Por $D$ trazamos la perpendicular a $BC$ que interseca a $AC$ en $E$, por $E$ trazamos la perpendicular a $AC$ que interseca a $AB$ en $F$.

Por $F$ trazamos la perpendicular a $AB$ que interseca a $DE$ en $G$.

Figura 4

Sea $G’ = BC \cap AG$, por $G’$ trazamos la paralela a $GE$ que interseca a $AC$ en $E’$, también trazamos la paralela a $GF$ por $G’$ que interseca a $AB$ en $F’$.

Por construcción $EE’$, $FF’$ y $GG’$ concurren en $A$, $G’F’ \perp AB$ y $G’E’ \perp AC$.

Como $\triangle AF’G’ \sim \triangle AFG$ y $\triangle AG’E’ \sim \triangle AGE$
$\dfrac{AF’}{AF} = \dfrac{AG’}{AG} = \dfrac{AE’}{AE}$.

Por tanto, $E’$, $F’$ y $G’$ son puntos homólogos de $E$, $F$ y $G$ respectivamente, con centro de homotecia en $A$.

Por el teorema 1, $E’F’ \parallel EF$ y así $E’F’ \perp AC$.

$\blacksquare$

Observación. Notemos que construimos $DE \perp BC$ y tal que $E \in AC$, pero pudimos haber construido $E \in AB$ de lo que resultaría un triangulo distinto $\triangle E’F’G’$ y por lo tanto tenemos dos soluciones.

Inscribir un cuadrado en un triángulo dado

Problema 2. Dado un triángulo, inscribir un cuadrado en el triángulo dado.

Solución. Sea $\triangle ABC$ el triángulo dado, construimos un cuadrado exteriormente $\square BDEC$ sobre $BC$, sean $D’ = AD \cap BC$ y $E’ = AE \cap BC$.

Como $BC \parallel DE$ entonces $D’$ y $E’$ son puntos homólogos de $D$ y $E$ respectivamente con centro de homotecia en $A$.

Por $D’$ trazamos una paralela a $BD$ que interseca a $AB$ en $B’$ y por $E’$ trazamos una paralela a $CE$ que interseca a $AC$ en $C’$.

Figura 5

Como $B’D’$ es transversal a $AB$ y a $AD$ y es paralela a $BD$ entonces $\dfrac{AB’}{AB} =\dfrac{AD’}{AD}$ y por tanto, $B$ y $B’$ son puntos homólogos, de manera similar podemos ver que $C$ y $C’$ son puntos homólogos.

Como $\square BDEC$ y $\square B’D’E’C’$ son figuras homotéticas entonces, por el corolario, son semejantes, por lo tanto, $\square B’D’E’C’$ es un cuadrado.

$\blacksquare$

Observación. Si alguno de los ángulos $\angle B$ o $\angle C$ es obtuso, entonces una de las rectas $AD$ o $AE$ intersecaría a $BC$ por fuera y no seria posible la construcción.

Así, si nuestro triángulo $\triangle ABC$ es obtusángulo tenemos que tomar como centro de homotecia el vértice del ángulo obtuso.

Si $\triangle ABC$ es acutángulo existen tres soluciones, una por cada vértice como centro de homotecia, y si es rectángulo hay dos soluciones.

Construir una secante a un triángulo dado

Problema 3. Dado un triángulo $\triangle ABC$, construye $D \in AB$ y $E \in AC$ tal que $BD = DE = EC$.

Solución. Supongamos que ya tenemos la figura requerida (figura 6). Por $A$ trazamos una paralela a $DE$ que interseca a $BE$ en $F$, por $F$ trazamos una paralela a $AC$ que interseca a $BC$ en $G$.

Figura 6

Como $AF \parallel DE$ y $FG \parallel EC$, por el teorema de Thales, tenemos
$\dfrac{BA}{BD} = \dfrac{BF}{BE} = \dfrac{BG}{BC}$.

Así que $(A, D)$, $(F, E)$ y $(G, C)$ son pares de puntos homólogos, con centro en $B$.

Inversamente, para construir el cuadrilátero auxiliar $\square BAFG$ hacemos lo siguiente (figura 7), trazamos una circunferencia con centro en $A$ y radio $AB$, $(A, AB)$, construimos $L \in AC$ tal que $LC = AB$, trazamos una paralela $l_1$ a $BC$ por $L$, sea $F = (A, AB) \cap l_1$, trazamos una paralela $l_2$ a $AC$ por $F$, sea $G = BC \cap l_2$.

Figura 7

Como $\square LCGF$ es un paralelogramo entonces $FG = LC = AB = AF$.

Finalmente, sean $E = AC \cap BF$ y $D$ la intersección de la paralela por $E$ a $AF$ con $AB$.

Por construcción $\square BDEC$ y $\square BAFG$ son homotéticos, con centro de homotecia en $B$, y tenemos que $\dfrac{BD}{BA} = \dfrac{DE}{AF} = \dfrac{EC}{FG}$ $\Rightarrow BD = DE = EC$.

$\blacksquare$

Tarea moral

  1. Sean $B$, $B’$ y $C$, $C’$ pares de puntos homólogos de dos figuras homotéticas $F$ y $F’$, considera $A \in F$, por $B’$ y $C’$ tracemos paralelas a $AB$ y $AC$ respectivamente, sea $A’$ la intersección de estas dos últimas rectas, prueba que $A$ y $A’$ son puntos homólogos.
  2. Si dos triángulos están en homotecia muestra que sus incentros, circuncentros, ortocentros y centroides son puntos homólogos, y que sus bisectrices, mediatrices, alturas y medianas son rectas homotéticas.
  3. Dadas dos rectas $l_1$ y $l_2$ que se intersecan en un punto inaccesible, trazar una recta que pase por un punto dado $P$ y la intersección de las rectas dadas (figura 8).
Figura 8
  1. En un triangulo dado inscribir un triangulo cuyos lados sean paralelos a las bisectrices internas del triangulo dado.
  2. En un triangulo dado $\triangle ABC$, construir un cuadrado tal que un vértice este en la extensión de $AB$, otro en la exención de $AC$ y los otros dos vértices en $BC$.
  3. Construir un triangulo $\triangle ABC$ dados $\angle A$, $AB + BC$ y $AC + BC$.

Más adelante…

Continuando con el tema de homotecia, en la próxima entrada veremos circunferencias homotéticas.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.