Conjuntos anidados

Por Lizbeth Fernández Villegas

 MATERIAL EN REVISIÓN

Introducción:

En esta ocasión nos vamos a fijar en colecciones de conjuntos que están contenidos unos en otros. Vamos a suponer que es una cantidad numerable de conjuntos. El primer conjunto contiene al segundo, que a su vez contiene a un tercero y así, sucesivamente.

Ahora pensemos en la intersección de todos esos conjuntos. Intuitivamente podemos visualizar que se tratará de un conjunto muy pequeño, que estará contenido en todos los demás.

Aquí tenemos un ejemplo de una sucesión de conjuntos donde los últimos términos corresponden al mismo conjunto. La intersección de todos los conjuntos es, evidentemente, ese último conjunto

Observemos la sucesión de intervalos [1n,1n]nN.

Nota que todos tienen como elemento al cero. Además es el único elemento que pertenece a la intersección de todos los intervalos, pues si suponemos que hay otro más, dado que 1n0 es posible encontrar un intervalo suficientemente pequeño, que deje fuera este elemento.

Con un radio menor a la distancia entre 0 y el punto rojo, este último queda fuera.

Ahora consideremos el subespacio Q con la métrica usual. En esta ocasión los intervalos serán (21n,2+1n),nN. Queda como ejercicio al lector demostrar que la intersección de estos conjuntos es vacía en Q.

Entonces, ¿bajo qué condiciones podremos asegurar que la intersección no es vacía pese a que los conjuntos se hagan «cada vez más pequeños» y estén contenidos unos en otros? Veamos la siguiente definición:

Definición bolas encajadas: Sea (X,d) un espacio métrico y (B(xn,εn))nN una sucesión de bolas cerradas en X. Si nN se cumple que B(xn+1,εn+1)B(xn,εn) diremos que la sucesión (B(xn,εn))nN es de bolas encajadas.

Sucesión de bolas cerradas encajadas

Proposición principio de bolas encajadas: (X,d) es un espacio métrico completo si y solo si para cualquier sucesión de bolas cerradas encajadas (B(xn,εn))nN cuyos radios tienden a cero, es decir εn0, se cumple que la intersección de todas las bolas cerradas es no vacía. Además nNB(xn,εn)={x} para algún xX.

Demostración:
Supongamos que (X,d) es completo. Sea (B(xn,εn))nN una sucesión de bolas encajadas. Vamos a probar primero que la sucesión de los centros de las bolas cerradas (xn)nN es de Cauchy. Sea ε>0, como εn0, existe NN tal que nN,εn<ε2. Como la sucesión es de bolas encajadas, tenemos que l,mN,B(xl,εl)B(xN,εN) y B(xm,εm)B(xN,εN) entonces d(xl,xm)d(xl,xN)+d(xN,xm)ε2+ε2=ε. Por lo tanto (xn) es de Cauchy. Como X es completo, se sigue que xnx para algún xX


Vamos a demostrar que xnNB(xn,εn). Sea nN. Como las bolas son encajadas, tenemos que kn,B(xk,εk)B(xn,εn) en consecuencia kn, el término de la sucesión xk es elemento de B(xn,εn), que es un conjunto cerrado. Ya que la subsucesión formada por estos últimos términos converge en x se sigue de lo que vimos en Convergencia que xB(xn,εn). Como esto ocurre nN, concluimos que xnNB(xn,εn).

Además x es el único punto en la intersección, pues si existe otro punto xnNB(xn,εn) existen también bolas cerradas suficientemente pequeñas que no contienen a ambos puntos. La demostración de este hecho se deja como ejercicio.

Para el regreso buscamos demostrar que (X,d) es completo. Sea (xn)nN una sucesión de Cauchy.

Vamos a construir una sucesión de bolas encajadas de la siguiente forma:
Ya que la sucesión (xn) es de Cauchy, podemos afirmar que existe N1N tal que n,mN1,d(xn,xm)12. Entonces nN1,xnB(xN1,12)B(xN1,1).

Nuevamente, como (xn) es de Cauchy, existe N2N tal que n,mN2,d(xn,xm)122. Entonces nN2,xnB(xN2,122)B(xN2,12). Nota que esta bola está contenida en la anterior.

Continuando recursivamente, la bola k de la sucesión en construcción estará dada por el centro xNk donde Nk es tal que n,mNk,d(xn,xm)12k. Entonces nNk,xnB(xNk,12k)B(xNk,12k1).

Así, la sucesión (B(xNn,12n1))nN es de bolas encajadas y sus radios tienden a cero. Por hipótesis sabemos que la intersección de estos conjuntos es {x}, para algún xX. Es sencillo probar que la sucesión de centros (xNn)nN converge en x (se dejará como ejercicio). Entonces tenemos una subsucesión de la sucesión de Cauchy (xn) que es convergente y, como vimos en entrada anterior, esto demuestra que (xn)x por lo que X es completo.

Notemos que para asegurar la contención de un conjunto en otro, necesitamos obtener información acerca de las distancias entre sus elementos. Esto motiva una definición para conjuntos más generales que una bola cerrada:

Definición diámetro de un conjunto: Sea AX. Entonces el diámetro de A se define como:
diam(A)=sup{d(x1,x2):x1,x2A}.

Cuando el conjunto {d(x1,x2):x1,x2A} no es acotado, diremos que el diámetro es .

Proposición: Sea (xn)nN una sucesión en (X,d) y para cada NN,XN={xk:kN} el conjunto de los términos de la sucesión que van a partir de xN. Entonces (xn) es una sucesión de Cauchy si y solo si
limNdiam(XN)=0

Demostración:
Supón que (xn) es una sucesión de Cauchy en X y sea ε>0. Entonces existe KN tal que l,mK,d(xl,xm)<ε. En consecuencia diam(XK)ε. Como para todo LK,(XL)(XK) se sigue que para todo LK,diam(XL)diam(XK)ε. Por lo tanto limNdiam(XN)=0

Ahora supongamos que limNdiam(XN)=0. Buscamos demostrar que (xn) es de Cauchy. Sea ε>0, como los diámetros tienden a cero, existe KN tal que en particular (XK) satisface que diam(XK)<ε. Entonces l,mK,d(xl,xm)<ε lo cual demuestra que (xn) es de Cauchy.

Terminemos con la siguiente:

Proposición: Sean (An)nN una sucesión de subconjuntos cerrados de un espacio métrico completo (X,d) tales que para todo nN,An+1An y además limndiam(An)0. Entonces nNAn={x} para algún xX).

Demostración:
Para cada nN elegimos xnAn. Entonces para cada NN el conjunto XN definido en la proposición anterior está contenido en AN, pues los conjuntos están anidados. En consecuencia, diam(XN)diam(An)0. La proposición anterior nos permite concluir que (xn) es una sucesión de Cauchy. Como X es completo, se sigue que (xn)x para algún xX. Dejamos como ejercicio demostrar que nNAn={x}.

¿Recuerdas la distancia de Hausdorff vista en La métrica de Hausdorff? Nota que si A y B son subconjuntos de X entonces dH(A,B)diam(AB). En esa misma entrada vimos que conjuntos anidados convergen a la intersección de todos ellos, y que este conjunto está formado por los puntos de convergencia de sucesiones que tienen elementos en los conjuntos anidados. En entradas futuras veremos que los espacios compactos son cerrados. ¿Cómo justificarías las proposiciones vistas en esta entrada a partir de los resultados presentados en la métrica de Hausdorff?

Más adelante…

Veremos los conceptos de conjunto denso y conjunto nunca denso. Descubriremos un resultado que ha sido muy importante en el estudio de los espacios métricos completos: El teorema de Baire.

Tarea moral

  1. Sea Q el subespacio de R con la métrica usual. Demuestra que la intersección de los intervalos [21n,2+1n],nN es vacía.
  2. Demuestra que si x está en la intersección de bolas encajadas nNB(xn,εn) entonces es único.
  3. Demuestra que la sucesión de centros (xNn)nN de la proposición converge en x.
  4. Sea AX. Demuestra que diam(A)=diam(A).
  5. Da un ejemplo de un espacio métrico completo y de una sucesión de bolas cerradas en este espacio, encajadas unas en otras que tenga intersección vacía.

Enlaces

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.