Archivo de la categoría: Sin clasificar

34. Material en revisión: La composición de funciones continuas es continua.

Por Mariana Perez

Teorema 1:

La composición de funciones continuas es continua.

Demostración:

Usando la definición topológica.

Sean

$ f: A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$

$ g: D \subseteq \mathbb{R}^m \rightarrow \mathbb{R}^k$

Tales que $ f(A) \subseteq D $ y con $A$ y $D$ abiertos.

Hipótesis: $f , g$ continuas.

$\big[$ por demostrar: $g \circ f$ es continua. $\big]$

Basta ver que la imagen inversa de abiertos en $\mathbb{R}^k$ bajo $g \circ f$ es abierta en $\mathbb{R}^n.$

Sea $ W \subseteq \mathbb{R}^k $ un abierto.

$\big[$ por demostrar: $(g \circ f)^{-1} (W) \subseteq \mathbb{R}^n$ es abierto.$\big]$

Por hipótesis, $g^{-1} (W) $ es abierto en $\mathbb{R}^m.$

Como $f $ es continua, $ f^{-1}(g^{-1}(\mathcal{W}))$ es abierto en $\mathbb{R}^n.$

¿Coinciden $ f^{-1}(g^{-1}(\mathcal{W}))$ con $ (g \circ f)^{-1}(\mathcal{W})$?

Por un lado tenemos que:

$(g \circ f)^{-1}(\mathcal{W}) = \{ x \in \mathbb{R}^n \mid (g \circ f)(x) \in \mathcal{W}\} = \{ x \in \mathbb{R}^n \mid (g(f(x))) \in \mathcal{W} \} … (1)$

Por otro lado:

$g^{-1}(\mathcal{W}) = \{ y \in \mathbb{R}^m \big| g(y) \in \mathcal{W} \}$

$f^{-1}(g^{-1}(\mathcal{W})) = \big\{ x \in \mathbb{R}^n \big| f(x) \in g^{-1}(\mathcal{W}) \big\}$

$f^{-1}(g^{-1}(\mathcal{W})) = \big\{ x \in \mathbb{R}^n \big| g(f(x)) \in \mathcal{W} \big\} … (2)$

Luego como $(1)$ y $(2)$ son iguales se tiene que $$ f^{-1}(g^{-1}(\mathcal{W})) = (g \circ f)^{-1}(\mathcal{W}) \; _{\blacksquare}$$

Teorema 2:

Sean $f, g:\mathbb{R}^n \longrightarrow \mathbb{R}$ continuas.

Entonces

(1) $ f + g$ es continua.

(2) $f . g$ es continua y en los puntos $x_0$ donde $g(x_0) \neq 0, \frac{f}{g} $ es continua.

Demostración:

Primer inciso:

Por hipótesis, $f, g:\mathbb{R}^n \longrightarrow \mathbb{R}$ continuas.

(1) $\big[$ por demostrar: $ f + g : A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ es continua.$\big]$

Sea $x_0 \in A.$

Sea $\epsilon > 0.$

Como $f$ es continua, existe $\delta_1 > 0 $ tal que si $x \in B_{\delta_1}(x_0) $ entonces $ f(x) \in B_{\frac{\epsilon}{2}}(f(x_0))…….(1)$

También, como $g$ es continua, existe $\delta_2 > 0 $ tal que si $x \in B_{\delta_2}(x_0) $ entonces $ g(x) \in B_{\frac{\epsilon}{2}} \big( g(x_0) \big)…….(2)$

Luego, si $x \in B_{\delta_3}(x_0) \Rightarrow f(x) + g(x) \in B_{\epsilon} \big( f(x_0) + g(x_0) \big)$ con $\delta_3 = mín \big\{ \delta_1 , \delta_2 \big\}$ ya que de $(1)$ y $(2)$:

Sumando $ \big\| f(x) \, – \, f(x_0) \big\| < \frac{\epsilon}{2}$ y $\big\| g(x) \, – \, g(x_0) \big\| < \frac{\epsilon}{2}$ se tiene que $$\big\| f(x) \, – \, f(x_0) \, + \, g(x) \, – \, g(x_0) \big\| \leq \big\| f(x) \, – \, f(x_0) \big\| + \big\| g(x) \, – \, g(x_0) \big\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon $$

Segundo inciso.

Por hipótesis, $f, g:\mathbb{R}^n \longrightarrow \mathbb{R}$ continuas.

(2) $\big[$ por demostrar: $f . g : A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ es continua.$\big]$

Sea $x_0 \in A.$

Sea $\epsilon > 0.$

Sea $\delta_0$ tal que si $x \in B_{\delta_0}(x_0)$ entonces $ \big| f(x) \big| < 1 + \big| f(x_0) \big|$

Como $f$ es continua, existe $\delta_1 > 0 $ tal que si $x \in B_{\delta_1}(x_0) $ entonces $ f(x) \in B_{\frac{\epsilon}{2}} \big( f(x_0) \big)…….(1)$

También, como $g$ es continua, existe $\delta_2 > 0 $ tal que si $x \in B_{\delta_2}(x_0) $ entonces $ g(x) \in B_{\frac{\epsilon}{2}} \big( g(x_0)\big)…….(2)$

Luego, si $x \in B_{\delta_3}(x_0)$ entonces $f(x).g(x) \in B_{\epsilon} \big( f(x_0).g(x_0) \big).$

Sea $ \delta_3 = mín \big\{ \delta_0 , \delta_1 , \delta_2 \big\}$

$\big[$ por demostrar: $ \big|f(x)g(x) \, – \, f(x_0)g(x_0) \big| < \epsilon.$ $\big]$

$\begin{align*} \big| f(x)g(x) \, – \, f(x_0)g(x_0) \big| &= \big| f(x)g(x) \, – \, f(x)g(x_0) \, + \, f(x)g(x_0) \, – \, f(x_0)g(x_0) \big| < \big| f(x)g(x) \, – \, f(x)g(x_0) \big| + \big| f(x)g(x_0) \, – \, f(x_0)g(x_0) \big| \\ \\ &= \big| f(x)|.|g(x) \, – \, g(x_0) \big| + \big| f(x) \, – \, f(x_0) \big|.\big| g(x_0) \big| \leq \big|(1 + \big| f(x_0) \big| \big) \big| g(x) \, – \, g(x_0) \big| + \big| f(x) \, – \, f(x_0) \big|. \big| g(x_0) \big| \\ \\ &\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align*}$

33.Material de prueba: La imagen inversa de abiertos es abierta bajo una función continua.

Por Mariana Perez

Proposición 1:

Sea $f : A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m $ una función continua en $A$ y $A$ un conjunto abierto.

Entonces para todo abierto $\mathcal{V} \subseteq \mathbb{R}^m $ la imagen inversa de $\mathcal{V}$, $f^{-1}(\mathcal{V})$ es un abierto de $\mathbb{R}^n.$

Demostración:

Sea $\mathcal{V}$ abierto de $\mathbb{R}^n.$

Supongamos que $f^{-1}(\mathcal{V}) \neq \emptyset.$

Si $f^{-1}(\mathcal{V}) = \emptyset $ , es un abierto entonces, terminó la demostración.

Ahora bien, sea $\vec{x_0} \in f^{-1}(\mathcal{V})$ entonces $f(\vec{x_0}) \in \mathcal{V}$ luego, $f(\vec{x_0})$ es punto interior de $\mathcal{V}.$

$\big[$ por demostrar: $\vec{x_0}$ es punto interior de $f^{-1}(\mathcal{V}$ $\big]$

Por hipótesis, $f$ es continua.

Sea $\epsilon > 0 $ tal que $B_{\epsilon}(f(\vec{x_0})) \subseteq \mathcal{V}$. Dicha $\epsilon$ existe porque $\mathcal{V}$ es abierto y $f(\vec{x_0}) \in \mathcal{V}.$

Entonces, existe $\delta > 0$ tal que si $\vec{x} \in B_{\delta}(\vec{x_0})$ entonces $f(\vec{x}) \in B_{\epsilon}(f(\vec{x_0})) \subseteq \mathcal{V}.$

$\vec{x_0}$ es punto interior de $f^{-1}(\mathcal{V})$ ya que $B_{\delta}(\vec{x_0}) \subseteq f^{-1}(\mathcal{V})$

Razón: $\vec{x} \in B_{\delta}(\vec{x_0})$ entonces $f(\vec{x}) \in B_{\epsilon}(f(\vec{x_0}))$ entonces $f(\vec{x}) \in \mathcal{V}$ implica $\vec{x} \in f^{-1}(\mathcal{V})._{\blacksquare}$

Proposición 2:

Sea $A \subseteq \mathbb{R}^n$ un abierto.

Sea $f : A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m.$

Si la imagen inversa de abiertos en $\mathbb{R}^m$ es un abierto en $\mathbb{R}^n$, entonces la función $f$ es continua en $A.$

Demostración:

Sea $\vec{x_0} \in A.$

$\big[$ por demostrar: $f$ es continua en $\vec{x_0}$ $\big]$

Sea $\epsilon > 0.$

$\big[$ por demostrar: existe $\delta > 0$ tal que si $x \in B_{\delta}(\vec{x_0})$ entonces $f(\vec{x}) \in B_{\epsilon} (f(\vec{x_0}))$ $\big]$

Sea $\mathcal{V} = B_{\epsilon} (f(\vec{x_0}))$ es un abierto de $\mathbb{R}^m$.

Por hipótesis, $f^{-1}(\mathcal{V}) \subseteq \mathbb{R}^n$ es abierto.

Existe $\delta_1 > 0 $ tal que $B_{\delta} (\vec{x_0}) \subseteq f^{-1}(\mathcal{V}).$

$A$ es abierto, existe $\delta_2 > 0 $ tal que $B_{\delta_2}(\vec{x_0}) \subseteq A.$

Sea $\delta = mín\{ \delta_1 , \delta_2\}$ es la $\delta$ que necesitamos. $_{\blacksquare}$

Teorema:

Sea $f : \mathcal{K} \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m.$

Si $f$ es continua en $\mathcal{K}$ y $\mathcal{K}$ es compacto, entonces $f$ es uniformemente continua en $\mathcal{K}.$

Demostración:

Sea $\epsilon > 0.$

Como $f$ es continua, para cada $x \in \mathcal{K}$ existe $\delta_x > 0$ tal que si $ \| x-y \| < \delta_x $ entonces $\big\|f(x) – f(y) \big\| < \frac{\epsilon}{2}$

Como $\mathcal{K}$ es compacto, $\mathcal{K} \subseteq \bigcup\limits_{x \in \mathcal{K}} B_{\frac{\delta_x}{2}}(x)$ es una cubierta abierta de $\mathcal{K}.$

Entonces, existe una subcubierta finita $B_{\frac{\delta_1}{2}}(x_1), \dots , B_{\frac{\delta_l}{2}}(x_l).$

Tomemos $ \delta = mín \big\{ \frac{\delta_1}{2} , \dots , \frac{\delta_l}{2} \big\}.$

Si $\big\| x \, – \, y \big\| < \delta $ entonces $ y \in B_{\delta}(x)$ pero $ x \in B_{\frac{\delta_j}{2}}(x_j) $ para alguna $j$

$$\big\| x \, – \, x_j \big\| < \frac{\delta_j}{2} \Rightarrow x_j \in B_{\frac{\delta_j}{2}}(x)$$

$$\big\| f(x) \, – \, f(x_j) \big\| < \frac{\epsilon}{2} $$

Luego, si $\big\| y \, – \, x_j \big\| = \big\| y \, – \, x \, + \, x \, – \, x_j \big\| \leq \big\| y \, – \, x \big\| + \big\|x \, – \, x_j \big\| < \delta + \frac{\delta_j}{2} \leq \frac{\delta_j}{2} + \frac{\delta_j}{2} = \delta $

$y \in B_{\delta_j}(x_j) \Rightarrow \big\| f(y) \, – \, f(x_j) \big\| < \frac{\epsilon}{2}$

En consecuencia,

$$\big\| f(x) \, – \, f(y) \big\| \leq \big\| f(x) \, – \, f(x_j) \big\| + \big\| f(x_j) \, – \, f(y) \big\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \; _{\blacksquare}$$

18.1 Material en revisión: Cortes de nivel de una función

Por Mariana Perez

Sea $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$

$$f(x, y) = \left\{ \begin{array}{rcl} \frac{y}{x} & si & x \neq 0 \\ 0 & si & x = 0\end{array} \right.$$

Queremos saber:

  • ¿En qué puntos $f$ tiene límite?
  • ¿En qué puntos $f$ no tiene límite?
  • ¿Cómo es la gráfica de $f$ ?

Analicemos diferentes cortes para poder responder estas preguntas.

1. Cortes paralelos al plano $yz$

$x = x_0$ constante.

$$f(x_0, y) = \left\{ \begin{array}{rcl} \frac{y}{x_0} & si & x_0 \neq 0 \\ 0 & si & x_0 = 0\end{array} \right.$$

Corte especial para $x = 0$

para $x = x_0 = 0$

$$f(0, y) = 0$$

En la siguiente animación, puedes ver los cortes para diferentes valores de $x_0$.

https://www.geogebra.org/classic/vaquauek

2. Cortes con el plano $x=1$

$z=f(1, y) = \frac{y}{1}$

https://www.geogebra.org/classic/mt9rgkzj

3. Cortes paralelos al plano $xz$

$y = y_0$ constante.

$$f(x, y_0) = \left\{ \begin{array}{rcl} \frac{y_0}{x} & si & x \neq 0 \\ 0 & si & x = 0\end{array} \right.$$

Corte especial para $y=0$

para $y=y_0=0$

$f(x, 0) = 0$

$$f(x, 0) = \left\{ \begin{array}{rcl} 0 & si & x \neq 0 \\ 0 & si & x = 0\end{array} \right.$$

En la siguiente animación, puedes ver los cortes para diferentes valores de $y_0$.

https://www.geogebra.org/classic/cmppwyss

32. Material en revisión: Conjuntos Conexos

Por Mariana Perez

Definición:

Se dice que un subconjunto $A \subseteq \mathbb{R}^n$ es disconexo

si existen dos abiertos ajenos $\mathcal{U_1}\, ; \mathcal{U_2}$,

tales que:

$A \subseteq \mathcal{U_1} \cup \mathcal{U_2} $

y

$A \cap \mathcal{U_1} \neq \emptyset$

$A \cap \mathcal{U_2} \neq \emptyset$

Decimos que $A$ es conexo si no es disconexo.

Teorema:

Si $f : A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ es una función continua, y $A$ es conexo entonces, $f(A)$ también es conexo.

Demostración:

Supongamos que $f(A)$ no es conexo.

Entonces existen $\mathcal{V_1}, \mathcal{V_2} \subseteq \mathbb{R}^m$ abiertos, ajenos, tales que $$f(A) \subseteq \mathcal{V_1} \cup \mathcal{V_2}$$ $$f(A) \cap \mathcal{V_1} \neq \emptyset$$ $$f(A) \cap \mathcal{V_2} \neq \emptyset$$

Como $f$ es continua, entonces $f^{-1}(\mathcal{V_1})$ y $f^{-1}(\mathcal{V_2})$ son abiertos.

Afirmación: $f^{-1}(\mathcal{V_1}) \cap f^{-1}(\mathcal{V_2}) = \emptyset$

Supongamos que la intersección no es el conjunto vacío.

Entonces existe $\vec{x} \in f^{-1}(\mathcal{V_1}) \cap f^{-1}(\mathcal{V_2})$ por lo que se cumple que $f(\vec{x}) \in \mathcal{V_1}$ y $f(\vec{x}) \in \mathcal{V_2}$ por lo tanto $ \mathcal{V_1} \cap \mathcal{V_2} \neq \emptyset$ (CONTRADICCIÓN: ya que los supusimos ajenos).

Entonces $A \subseteq f^{-1}(\mathcal{V_1}) \cup f^{-1}(\mathcal{V_2}).$

Sea $\vec{x} \in A$. Calculamos $f(\vec{x}) \in f(A).$

Entonces $f(A) \subseteq \mathcal{V_1} \cup \mathcal{V_2}$, es decir, se tiene que $\vec{x} \in \mathcal{V_1}$ o $\vec{x} \in \mathcal{V_2}$, por lo tanto $$\vec{x} \in f^{-1}(\mathcal{V_1}) \; \text{o} \; \vec{x} \in f^{-1}(\mathcal{V_2})$$

Si $f(\vec{x}) \in \mathcal{V_1}$ entonces $\vec{x} \in f^{-1}(\mathcal{V_1}).$

Si $f(\vec{x}) \in \mathcal{V_2}$ entonces $\vec{x} \in f^{-1}(\mathcal{V_2}).$

Por lo tanto, $$\vec{x} \in f^{-1}\mathcal{V_1}\cup f^{-1}(\mathcal{V_2}).$$

Falta ver que $$A \cap f^{-1} (\mathcal{V_1}) \neq \emptyset$$ $$A \cap f^{-1} (\mathcal{V_2}) \neq \emptyset$$

Como $f(A) \cap \mathcal{V_1} \neq \emptyset$ entonces, existe $\vec{a_1} \in A$ tal que $f^{-1}(\vec{a_1}) \in \mathcal{V_1}$ es decir $\vec{a_1} \in f^{-1}(\vec{a_1}) \cap A \neq \emptyset.$

Análogamente, como $f(A) \cap \mathcal{V_2} \neq \emptyset$ entonces, existe $\vec{a_2} \in A$ tal que $f^{-1}(\vec{a_2}) \in \mathcal{V_2}$ es decir $\vec{a_2} \in f^{-1}(\vec{a_2}) \cap A \neq \emptyset.$ $_{\blacksquare}$

CASO PARTICULAR

$$f : A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$$

Teorema del valor intermedio.

Si $A$ es conexo y $f$ es continua, y existen $\vec{x_1}$, $\vec{x_2}$ $\in A$ tales que $$f(\vec{x_1}) < f(\vec{x_2})$$

Para todo $c$ tal que $f(\vec{x_1}) < c < f(\vec{x_2})$ existe un $\vec{x_c} \in A$ tal que $$f(\vec{x_c}) = c$$

Por el teorema que acabamos de probar $f(A) \subseteq \mathbb{R}$ es un conjunto conexo.

Si no existiera $\vec{x_c} \in A$ tal que $f(\vec{x_c}) = c$ entocnes consideremos

$\mathcal{V_1} = (-\infty, c)$

$\mathcal{V_2} = (c, \infty)$, abiertos y ajenos.

Por lo que, como $\vec{x_1} \in A \Rightarrow f(\vec{x_1}) \in f(A)$ pero $f(\vec{x_1}) \in \mathcal{V_1}$ entonces $f(A) \cap \mathcal{V_1} \neq \emptyset$

Análogamente, como $\vec{x_2} \in A \Rightarrow f(\vec{x_2}) \in f(A)$ pero $f(\vec{x_2}) \in \mathcal{V_2}$ entonces $f(A) \cap \mathcal{V_2} \neq \emptyset$

Luego $f(A)$ sería disconexo. (CONTRADICCIÓN)

$\therefore$ existe $\vec{x_c} \in A$ tal que $f(\vec{x_c}) = c$ $_{\blacksquare}$

Definición:

Sea $A \subseteq \mathbb{R}^n$

Se dice que $A$ es conexo por trayectorias (c.p.t.) si para todo par de puntos $\vec{p}, \vec{q} \in A$ existe una curva poligonal tal que une $\vec{p}$ con $\vec{q}$ y está contenida en $A.$

Ejemplo:

$$A = \mathbb{R}^n \setminus \big\{(x,y) \in \mathbb{R}^2 \big| x \leq 0, y = 0 \big\}$$

Ejemplo:

$$\mathcal{C} = \left\{ (x,y) \in \mathbb{R}^2 \big| x\neq 0 ; y = \sin \left( \frac{1}{x} \right) \right\} \cup \; \mathcal{U} = \big\{ (x,y) \in \mathbb{R}^2 \mid x = 0 , -1 \leq y \leq 1 \big\}$$

$\mathcal{C}$ es conexa pero $\mathcal{C}$ no es conexa por trayectorias poligonales.

Matemáticas Financieras: Tasas efectivas de interés

Por Erick de la Rosa

Introducción

Este apartado se presentara el concepto de tasa efectiva de interés, sus características y la forma en que se puede aplicar, tanto al modelo de interés simple como al compuesto, para evidenciar su uso.

Definición

Se entiende como tasa efectiva de interés o también tasa efectiva por periodo, a la proporción de intereses ganados por unidad de capital de tiempo. El llamarla efectivo mensual o efectiva, dentro de las matemáticas financieras, para especificar la tasa de la que se está hablando, esto es la tasa que corresponde a la que se pagará por unidad de capital y de tiempo.

Desarrollo

La periodicidad de la tasa es la que nos va a indicar cada cuando se tienen que pagar los intereses. Éstos pueden ser pagados con la periodicidad que se desee, esto es; en años, meses, días, semanas, etc. Bastará con hacer mención que la tasa es efectiva por día, por semana, por mes, etc. Es necesario hacer mención que la tasa de interés siempre tendrá que contar con el lapso o periodicidad con la que se esté trabajando, ya que con esto se da a conocer cada cuando se harán los pagos de los intereses.

El hecho de que éste tipo de tasas se les agregue la palabra «efectiva» hace posible que se eviten confusiones con otro tipo de tasas, como las nominales, las instantáneas, las cuales se verán más adelante.

Ejercicios resueltos

Ejercicio. En el modelo de interés simple se nos pide que se calcule Los intereses generados por un capital de \$100 con una tasa efectiva mensual del 15% en un plazo de 5 meses

Solución

La respuesta se obtiene aplicando el modelo de interés simple, como a continuación se muestra:

$$M=K(1+it)=100(1+.15(5))=175$$

Los intereses generado son de: \$75

Ejercicio. Haciendo uso del modelo de interés simple, calcula los intereses generados por una tasa efectiva trimestral de 22%, en un plazo de 10 meses con un capital de \$500

Solución

Se sabe que un en 10 meses se tienen 3 trimestres, por lo que $t=3+.333=3.333$

Repitiendo el mismo procedimiento, se tiene:

$$M=500(1+(.22)(3.3333))=536.663$$

Los intereses generados son de \$36.663

Ejercicio. Usando el modelo de interés compuesto calcula los intereses generados por una tasa efectiva anual del 6.5%, luego de 2 años 6 meses, con un monto de \$300.

Solución

La tasa es efectiva anual, entonces el tiempo es de 2.5 años. Luego usando el modelo de interés compuesto se tiene:

$$M=300(1+(0.065))^{2.5}=300(1.170507)=351.15121$$

Los intereses que genera dicha tasa son: \$51.15120

Más adelante…

Se estarán analizando los diferentes tipos de tasas con las que operan las matemáticas financieras, para conocer e identificar sus características así como sus diferencias.

Ir a Matemáticas Financieras

Entrada anterior

Entrada siguiente