Cálculo Diferencial e Integral II: Criterios de convergencia para las integrales impropias.

Por Miguel Ángel Rodríguez García

Introducción

En las secciones anteriores vimos las integrales impropias de primer, segundo tipo y tercer tipo, aprendiendo como dar solución a cada una de ella. En esta sección veremos distintos criterios para estudiar la convergencia o divergencia de las integrales impropias. Comencemos enunciando algunos teoremas de convergencia importantes para estas integrales.

Criterios de convergencia

Comencemos con el siguiente teorema.

Teorema: La integral 1f(x)dx converge  ϵ >0   r tal que si x, x>r entonces:

|xxf(t)dt|<ϵ

Demostración:

Sea ϵ>0, af(x)dx converge:

af(x)dx=Llimxaxf(t)dt=L

 r tal que si x, x>r

Por definición de limite:

|axf(t)dtL|<ϵ2  y  |axf(t)dtL|<ϵ2

|axf(t)dtL|<ϵ2   y  |Laxf(t)dt|<ϵ2

Ya que |r|<c si y sólo si c<r<c, entonces:

ϵ2<axf(t)dtL<ϵ2   y  ϵ2<Laxf(t)dt<ϵ2

ϵ<axf(t)dtaxf(t)dt<ϵ

ϵ<xxf(t)dt<ϵ

|xxf(t)dt|<ϵ

|xxf(t)dt|<ϵ

1f(x)dx  converge

◻

Lema: Sea una función f(x) continua en [a,b) entonces la integral impropia abf(x)dx es convergente  ϵ >0   δ>0  tal que si  0<bx<δ  y  0<bx<δ entonces:

|xxf(t)dt|<ϵ

Demostración:

abf(x)dx es convergente:

abf(x)dx=Llimxbabf(x)dx=L

 δ>0 tal que si  0<bx<δ  y  0<bx<δ

|axf(t)dtL|<ϵ2  y  |axf(t)dtL|<ϵ2

Hacemos el mismo procedimiento como la demostración del teorema anterior, por lo que:

|xxf(t)dt|<ϵ  converge

◻

Lema: Sea f continua en [a,b] entonces la integral impropia abf(x)dx es convergente  δ>0 tal que si 0<bx<δ y 0<bx<δ, entonces:

|xxf(t)dt|<ϵ

La demostración se dejará como ejercicio moral, ya que la demostración es muy similar a la demostración del lema anterior.

Teorema: Sea f una función continua en [a,b) y acotada en [a,b] entonces abf(x)dx es convergente.

Demostración:

Sea ϵ>0, como f está acotada en [a,b] entonces:

 M tal que |f(x)|M  x ϵ [a,b]

Tomamos δ=ϵM.

Sea x,x tal que si 0<bx<δ y 0<bx<δ, entonces por propiedades de la integral: [Hipervinculo: Calculo II-Propiedad de valor absoluto de la integral menor o igual que la integral del valor absoluto de una funcion]:

|xxf(t)dt|xx|f(t)|dtxxMdt=M|xx<δM

|xxf(t)dt|<ϵ

 x,x tal que  0<bx<δ  y  0<bx<δ

Por el lema anterior:

abf(x)dx  converge

◻

Teorema: Sea f una función continua en (a,b] y acotada en [a,b] entonces abf(x)dx es convergente.

La demostración se dejará como tarea moral, la idea de la demostración es muy similar a la demostración del teorema anterior.

Teorema: (Criterio de comparación)

Sean f y g dos funciones continuas en [a,) tal que si 0f(x)g(x)  x ϵ[a,), Entonces:

Si ag(x)dx converge entonces af(x)dx converge.

Mientras que si af(x)dx diverge, entonces ag(x)dx diverge.

La demostración se dejará como tarea moral, la idea de la demostración es usar las definiciones de límite.

Una aplicación de las integrales impropias en el área de la física, es calcular la velocidad de escape de la superficie de la Tierra. Sabemos que la fuerza gravitacional está dada como:

F=GmMr2

Donde G=6.671011Nm2kg2 es la constante gravitacional y M la masa de la tierra. Así integramos desde un punto R de la Tierra a la fuerza de gravedad, entonces:

abFdx=RGmMr2dr=GmMR1r2dr=GmM[1r]Rr=GmMR

En ese te caso R es el radio de la Tierra, cuyo valor es R=6.37106m, M=5.981024kg es la masa de la Tierra, por lo que:

GmMRm6.26107Nmkg

Para calcular la velocidad de escape, igualamos la fuerza de gravedad con la energía cinética:

12mv2=GmMR

v=2GMR11,91ms

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra el primer lema de esta sección.
  2. Demuestra el segundo lema de esta sección.
  3. Demuestra el teorema del criterio de la comparación.

Utiliza el criterio de la comparación para determinar la convergencia de las siguientes integrales:

  1. 11+exxdx
  2. 1ex2dx

Más adelante…

En esta sección vimos algunos teoremas y lemas para la determinación de la convergencia de las integrales impropias, por lo que son útiles en algunos casos para el mismo objetivo. Este tema es el último de esta unidad 5, por lo que comenzaremos a estudiar la unidad 6, en el cual se verán algunas aplicaciones de las integrales.

Entradas relacionadas

2 comentarios en “Cálculo Diferencial e Integral II: Criterios de convergencia para las integrales impropias.

  1. Juan

    Hola, no entiendo por qué las dos proposiciones después de «Ya que sabemos que: |a – b| = |b – a|, entonces:» en el primer teorema son equivalentes.

    Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.