Cálculo Diferencial e Integral I: La derivada

Por Juan Manuel Naranjo Jurado

Introducción

Anteriormente se revisó el concepto de continuidad, característica de la cual emanaban diversas propiedades útiles tal como el teorema del valor intermedio. En esta ocasión, daremos inicio con la séptima unidad que estará enfocada al aspecto teórico de uno de los conceptos más conocidos dentro de las matemáticas: la derivada.

El objetivo de esta entrada es entender este nuevo concepto para que posteriormente podamos analizar las propiedades y aplicaciones que posee.

Interpretación geométrica

Comenzaremos estudiando la interpretación geométrica para construir la definición formal. Pensemos en la siguiente función y notemos los dos puntos marcados.

Considerando que el punto gris está dado por P=(x,f(x)) y el punto negro por P0=(x0,f(x0)), podríamos obtener fácilmente la pendiente de la recta que pasa por ambos puntos.

(1)m=f(x)f(x0)xx0.

¿Qué sucede si dejamos a P0 como un punto fijo y «movemos» el punto P de tal forma que estos puntos comienzan a estar cada vez más cerca? (En la gráfica, el «movimiento» de P se plasma mediante los puntos P1, P2, y P3)

Si tales puntos están cada vez están más cerca, el concepto de límite entra en juego, pues estaríamos buscando PP0. Así, podríamos calcular la pendiente de la recta tangente en el punto P0. De esta forma, el límite deseado es el siguiente:

limxx0f(x)f(x0)xx0.

La derivada

Definición. La función f es derivable en x0 si el siguiente límite existe

limxx0f(x)f(x0)xx0.

En este caso, denotaremos al límite anterior como f(x0) y le llamaremos derivada de f en x0.

También es común encontrar la siguiente definición equivalente de la derivada.

Definición. La función f es derivable en x0 si el siguiente límite existe

limh0f(x0+h)f(x0)h.

Ahora que conocemos la definición de derivada, es momento de ponerla en práctica y revisar algunas funciones que sean derivables.

Ejemplo 1. Prueba que la función f(x)=c, con cR, es derivable para cualquier x0R.

Demostración

Sea x0R. Veremos que limxx0f(x)f(x0)xx0 sí existe.

Notemos que si xx0, entonces

f(x)f(x0)xx0=ccxx0=0xx0=0.

Por lo anterior, se sigue que

limxx0f(x)f(x0)xx0=0.

Por lo tanto, f es derivable en R y f(x)=0.

◻

Ejemplo 2. Prueba que la función f(x)=ax+b es derivable para cualquier x0R.

Demostración

Sea x0R. Bastará probar que el límite limxx0f(x)f(x0)xx0 sí existe.

Para ello, primero veamos que si xx0, entonces

f(x)f(x0)xx0=ax+b(ax0+b)xx0=axax0xx0=a(xx0)xx0=a.

Por lo anterior, se sigue que

limxx0f(x)f(x0)xx0=a.

Por lo tanto, f es derivable en R y f(x)=a.

◻

Continuemos con un segundo ejemplo sencillo para acostumbrarnos a este nuevo concepto.

Ejemplo 3. Prueba que la función f(x)=x2 es derivable para cualquier xR.

Demostración.

Sea x0R.
Procederemos a calcular el límite directamente.

limxx0f(x)f(x0)xx0=limxx0x2x02xx0=limxx0(xx0)(x+x0)xx0=limxx0x+x0=2x0.

Por lo tanto, f es derivable para cualquier xR y f(x)=2x.

◻

Ejemplo 4. Prueba que la función f(x)=x es derivable para cualquier x0>0.

Demostración

Sea x0>0. Para esta demostración, usaremos la segunda definición de límite.

Notemos que si h0, entonces

f(x0+h)f(x0)h=x0+hx0h=x0+hx0hx0+h+x0x0+h+x0=x0+hx0h(x0+h+x0)=hh(x0+h+x0)=1x0+h+x0.

Por lo anterior, se sigue que

limh0f(x0+h)f(x0)xx0=12x0.

Por lo tanto, f es derivable para cualquier x>0 y f(x)=12x.

◻

Es momento de revisar una función que no sea derivable. Para este propósito, emplearemos la función valor absoluto, la cual hemos revisado anteriormente y será conveniente que tengas presente su gráfica, pues este tipo de funciones que generan un «pico» en su gráfica, no son derivables en tal punto.

Ejemplo 5. Sea f:RR, f(x)=|x|. Prueba que f no es derivable en x0=0.

Demostración.

Notemos que limxx0|x|0x0=limxx0|x|x.

Consideremos las sucesiones {an}, {bn} donde an=1n y bn=1n. Tenemos que an, bnR para todo nN. Además, an, bn0 para todo nN y limnan=0=limnbn.

Pero se tiene que

limn|an|an=limn|1n|1n=limn1n1n=1.

Además
limn|bn|bn=limn|1n|1n=limn1n1n=1.

De lo que se concluye que el límite limxx0|x|0x0 no existe.

Por tanto, f no es derivable en x0=0.

◻

Intuitivamente, podemos notar que si tratáramos de encontrar una «recta tangente» en x0=0 moviéndonos por la derecha, será distinta a la «recta tangente» a generada por la izquierda. Esto hace que el límite no exista, sin embargo, podemos ser menos restrictivos en la definición.

Derivadas laterales

De forma complementaria, podemos definir la derivada en términos de la forma en que xx0, es decir, a través de los límites laterales. Así, tenemos las siguientes definiciones.

Definición.

  1. La función f es derivable por la derecha en x0 si el siguiente límite existe

    limxx0+f(x)f(x0)xx0.

    En este caso, denotaremos al límite anterior como f(x0+) y le llamaremos derivada por la derecha de f en x0.
  2. La función f es derivable por la izquierda en x0 si el siguiente límite existe

    limxx0f(x)f(x0)xx0.

    En este caso, denotaremos al límite anterior como f(x0) y le llamaremos derivada por la derecha de f en x0.

Más adelante…

En la siguiente entrada revisaremos la relación existente entre la derivabilidad y la continuidad. Además, revisaremos algunas propiedades que nos permitirán obtener la derivada de una función con mayor facilidad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Da un ejemplo de función que no sea derivable en un punto x0.
  • Prueba que la función f:RR definida por f(x)=ax2+bx+c es derivable en todo R.
  • Prueba que la función f:RR definida por f(x)=x38 es derivable en todo R.
  • Demuestra que f(x)=|x| es derivable para todo x0.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

4 comentarios en “Cálculo Diferencial e Integral I: La derivada

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.